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The complexity of the physical engineering objects requires new technologies in software development able
to simulate real-life cases. The huge number of such cases can be covered by object-oriented paradigm.
This general idea and some advantages of using object-oriented language (Smalltalk) are exemplified by
a presentation of a system for earth dam control. The system is an expert type program equipped with
advanced monitoring and visualisation functions for existing dams. The software development process
starting from the requirement description is presented. The structure of the dam model and of the inference
engine as well as of the class hierarchy is shown as the examples. The re-usability of the system is proved
by its implementation for different earth dams.

1. INTRODUCTION

For several years a visible difference between the rate of development of software and hardware
could have been observed — the progress in software was markedly lagging behind the increased
abilities of hardware. This situation resulted in development of the branch of computer science
called software engineering. Since some time, many software engineers claim that only the more
widespread use of methodology based on the paradigm of object-oriented programming (e.g. [7, 14])
opens perspectives for qualitative changes in the rate of development of usable software. Practical
applications in technology need software that takes into consideration the great complexity of the
problems described, as well as the limitations on the side of the software user. These requirements
are difficult to satisfy and combining them demands a wide application of graphical user’s interfaces,
together with the methods of artificial intelligence (including expert systems). On.the other hand,
to simulate behaviour of complex engineering objects, an application of the methads of qualitative
analysis seems necessary, in addition to the classical numerical methods (see [16, 17]). However,
irrespective of the need to carry such basic research, it is necessary to use the present state of
knowledge in practical applications — which was the aim of the work that led to this paper.

The complexity of problems, the multitude of disciplines describing real engineering structures,
and the need to provide an easy communication with the user result in high costs of building
the software. They constitute the most important factors limiting the development of engineering
software. In classical applications, the amount of labour needed to build the user interface exceeds
about five times the amount needed to build the calculation part proper. An additional problem is
the difficulty to adapt the system when the needs of the user change.

The methodology based on the object-oriented programming paradigm promises to break the
cost barrier, facilitating easy modification, and speeding up the development of both the graph-
ical aser interface and other parts of the system. In the paper we present an application of this
methodology to systems supporting exploitation of earth dams.

The phase of building the system presented in this paper has also been considerably shortened,
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even though the system has a much broader scope than the classical expert system. On the other
hand, the phase of knowledge acquisition has not been shortened. There is a number of tools
supporting the acquisition of knowledge (e.g. [4, 5, 9]), which may shorten the process of building
the knowledge base. However, this aspect of the problem has not been considered in this paper.

The expert systems may be categorised as analytic or synthetic [12], or else — using the ter-
minology of [1] — solving the engineering tasks of the derivation or formation type. The first
group contains diagnosis (searching for causes of defect or malfunction), interpretation (searching
for models in collections of facts, readings, etc.), monitoring (watching changes in the system in
order to interfere in the case of emergency), and prediction. The other group contains tasks such as
design, planning and assembly. The system presented in the paper is a typical representative of the
first group, although most of the considered aspects may also be applied when building a system
supporting, e.g., a design task.

Most of the expert systems addressing problems connected with exploitation of hydrotechnical
objects refer to concrete dams [11] or retaining walls [6]. Because of the specific character of those
objects the analysis of their behaviour and possibility of failure has a different character than in
the case of earth dams. The complexities of mechanical phenomena together with occurrence of
filiration effects are the reasons for a different instrumentation of analysis [20, 3]. In the systems
described in the paper the calculation modules have not been included — usage of finite elements
method analysis is placed outside of the system and serves to determine the border values of
parameters describing the state of the dam. Yet, including the finite elements method is certainly
possible [8]; there is a number of object-oriented programs available for that task (e.g. [2, 19]).

2. MODELLING REAL-LIFE ENGINEERING OBJECTS

The basic problem to be solved by the methodology of creating software modelling the engineering
aspects of real-life objects is the complexity of the task. It is due to the complexity of the field itself
as well as to the specific demands made by the users of such software systems.

2.1. The domain

A multitude of formal disciplines participates in modelling real-life engineering objects, each de-
scribing in its particular way the physical phenomena relevant to the given class of objects. In each
of them the methodology of modelling is burdened with great inborn complexity, each introduces a
separate terminology, physical theories and appropriate mathematical language. The term “real-life
objects” is supposed to mean that for a sufficiently adequate presentation of all aspects considered
essential from the engineering point of view, it is impossible to apply assumptions simplifying or
limiting the model to only some selected aspects, contrary to the common academic practice. It
results in an essentially interdisciplinary character of production teams whose members cannot
avoid the difficulties of co-ordination of terminology and the effort of crossing borders of their own
disciplines. This cognitive and managerial difficulties were particularly early recognised in the case
of artificial intelligence (expert) systems; in the literature (e.g. [5]) it is stressed that a serious
problem here is the so-called acquisition of domain knowledge from experts who usually have no
experience of co-operation in making computer systems.

The common present-day approach to computer-supported modelling of engineering problems
consists of integrating existing software packages which were made with traditional technology,
within the limits of narrow paradigms, e.g. CAD systems, structural modelling systems (especially
those based on finite elements method), the systems registering measurement data, and systems
of visualisation of data and results. In the case of human teams, problems of communication arise
mostly at the level of terminology, whereas in the case of specialised software packages they arise
at the level of translation of data formats and organisation of co-operation of different subsystems
of the target system.
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2.2. The user’s needs

It is obvious that the structure of needs of the user of such systems results from the structure of
the underlying engineering problem. Yet, ideas concerning the scope of computer assistance to the
engineer change, along with the increase of possibilities to apply hardware and software to tasks
which were so far performed “manually”. With increasing accessibility of more and more powerful
computing equipment, we observe a growing demand for multiaspect systems, aiding all phases of
modelling, analysis and presentation of results.

Another measure of usability of system functions is the simplicity of tools offered by it and
their adequacy to the real needs generated by the problem. The present state of affairs is that
on the one hand we have commercial “all purpose” packages (like ABAQUS, Mathematica, AVS,
FemView), which are not very flexible and, although they offer hundreds of functions attested by
thousand-page manuals, when facing an actual problem they often are by themselves not sufficient
to model it adequately. On the other hand, software systems appear which are made ad hoc to
solve some particular problem — they, in turn, often are not universal enough and hard to apply
to different, though formally related problems.

Finally, attention should be given to the possibility of using the systems in many programming
environments (hardware and software platforms). If the software system is not a fully integrated
package but is made of many different tools, transferring it to another environment, if possible at
all, calls for expert assistance of a team of computer science professionals.

The problems mentioned above were so far not systematically analysed, although in many papers
the need for undertaking the task has been indicated.

2.3. Traditional versus postulated software engineering methodology

The paper attempts to show an alternative to the currently predominating methodology of pro-
duction and maintenance of computer software systems designated to modelling of engineering
tasks.

The commonly applied technology (called here “traditional”) can be characterised as follows.
The process of constructing the system engages for a long time large teams of experts in particular
aspects of the modelled object, computer science, ergonomics and man-machine interfaces. The
complexity of the problem and incompatible means of description lead unavoidably to difficulties
in formulating the specification and to incoherence of the resulting system.

A side effect of this procedure is a limited flexibility of the product and its resistance to mod-
ifications of its specification (in regard to both the scope of functions offered by the system and
the maintenance tools). Moreover, because of very high costs of production and servicing, it is
unprofitable to produce a professional systems dedicated for solving a narrow range of problems in
a specific way, i.e. systems in which only narrow groups of users are interested. That is why today
the tendency prevails to form “all purpose” packages (aimed for everybody but in fact for nobody).
It is assumed that the final application will be configured by the end user himself using the tools
offered by the package. However, it is a task which can be successfully performed only by an expert
trained in using the package. At the base of that situation lies also an economic mechanism: the
user of commercial package pays for the capabilities which in most part he will not use (and which
he does not need), whereas the manufacturers of (more and more powerful) hardware are interested
in a software market where over-developed systems demanding yet more powerful hardware prevail
(and so the circle is closed).

This analysis of commercial software market points to a certain inadequacy of the traditional
technology for the user needs, particularly concerning systems dedicated to narrow groups of users.
Such diagnosis, although incomplete, makes it possible to list the most essential postulates to be
fulfilled by the alternative technology:
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e It should be based on the programming paradigm that enables a uniform formulation of all
aspects of the system, reducing the need for keeping large teams of narrowly specialised experts.

e The programming environment should enable rapid realisation of a prototype system (with
respect to the scope of functions and the ways of maintenance) and provide tools for easy,
dynamical introduction of modifications of specifications. The end users of the system (who will
use it as a tool for modelling of engineering tasks) should be able to influence its shape and
functionality from the earliest stage of design.

e A system dedicated to a narrow class of problems should still be designed with consideration
to its reusability (e.g., with a division of the software into usability levels: upper levels being
common to a broad class of problems, and lower ones — specialised in generating specific
solutions for more narrow classes), as it is economically justified to form “open systems” (such
that their modules may be used again in other applications and could be easily preserved and
modified).

¢ Of substantial importance is the property of self-documentation of the system (well thought out,
not ad hoc user interface, resulting from the structure of the problem, not from the structure
of available programming tools); using the system cannot demand a thorough study of many
hundreds of manual pages.

According to our opinion, the technology with such features is offered by the programming
environments based on the object-oriented programming methodology, a paradigm more and more
approved both by the producers of commercial software and the academic circles dealing with
software engineering (see e.g. [10, 18]). In the subsequent part of the paper we will show a practical
application of such a methodology, using the example of a series of monitoring systems for earth
dams, designed and implemented in our Institute over the past three years.

3. A SYSTEM FOR MONITORING, DIAGNOSIS AND VISUALISATION OF EARTH DAM
STATE

The task consisted in constructing a computer system which would assist the personnel of an earth
dam in monitoring its state and diagnosing incorrectness of its functioning. The system should also
archive and present the data collected during the exploitation of the dam. The system should have
the following functionality:

e registration of measurement data from the control and measurement apparatus (pressure cells,
piezometers, and others);

e registration of observations of the state of the ob ject done by the personnel;
e rule-based inference for diagnosis of the state of the object and signalling possible hazards;

e visualisation of current and past (archived) data — for purposes of documentation and periodic
analyses.

At the beginning, it was assumed that the system will be aimed at a very narrow group of users
connected with a single real object — the earth dam built at Czorsztyn (Poland). An adaptation
of the system for similar dams, in the case of success, was also considered.

3.1. Conditions of design

Such formulation of the task determined the following design conditions:

e the first aim was to produce a workable system in a short time (due to the advancing construction
of the dam at Czorsztyn);
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e the expected (and proved in practice) difficulties in knowledge acquisition from experts implied
a choice of system architecture with a simple knowledge representation scheme, enabling its fast
implementation;

e a possibility of adaptation of solutions to similar objects (in this case: other earth dams) had to
be taken into account — hence the need for minimalization of procedural specifications (encap-
sulated in the system) in favour of exchangeable and easily modifiable declarative specifications;

e strong emphasis had to be put on easy interaction with the users of the system, as most of them
practically never got in contact with computer systems before;

o the small size of the construction team required the use of effective methodology of design and
implementation of the system.

3.2. Sources and representation of knowledge

The input data for the system were the quantitative readings of the control and measurement
apparatus (gauges) and the qualitative evaluation of the state of particular structural elements of
the dam. For the subsystem supporting the diagnosis of the state of the dam it was assumed that
the rules would be formulated in the qualitative form (using such terms as “readings normal” or
“fast increase of readings”). The knowledge formulated in this way has a more general character
(i.e., it is applicable to broader class of objects).

The quantitative readings from the gauges had to be transformed into a qualitative form. The
quantification procedures should be based on domain-specific criteria of quantification (coming
from simulation and calculation models of earth mechanics or filtration phenomena). However, the
verification of correctness of these quantification criteria had been considered to lie outside of the
system.

Thus, the sources of knowledge and methods of its representation were divided into three levels
— general qualitative knowledge (rules), quantification procedures specific for the object (the dam),
and quantification criteria (external in relation to the system).

3.3. The user, or the functional scope of the system

For a system of this type it is also necessary to define the term “user”, in a way corresponding to
the functional scope of the system. Thus we distinguished:

o the “everyday user”, i.e. the maintenance personnel of the dam: an interface for input of ob-
servations from inspection tour of the object is necessary (registration of measurement data is
partly automatic); the user expects tools for visualisation of measurement data and access to
the data from the history of the object;

e the domain ezpert, i.e. an earth dam specialist evaluating the state of the dam at longer intervals
(e.g., every six months): he must have access to all collected measurement data and selective
access to the data base containing the history of the dam (e.g., a list of all malfunctions noticed
for the given region of the dam);

o the knowledge-engineering expert, i.e. a person verifying adequacy of the knowledge base (rules)
and quantification procedures: he evaluates the functioning of the system over a long period
of time, taking decisions about a probable changes of the inference rules and quantification
criteria; he requires the data necessary for, e.g., an additional verification of the methods used
for modelling, and an access to the modules storing the rules and quantification procedures.
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3.4. The implementor, or the range of necessary programming techniques

From the software engineering point of view, design and implementation of the system required an
application of techniques from the following disciplines:

ezpert systems (acquisition and representation of knowledge; implementation of inference engine;
Justification of diagnosis results);

data bases (archiving quantitative and qualitative facts describing the history of the object;
generating reports);

computer graphics (visualisation of data: charts displaying quantitative data, tree diagrams
presenting justification of the diagnosis);

user interface design, taking into account different types of users with different needs (ergonomy,
organisation of interaction, visual design).

4. REALISATION OF THE TASK

Below we shortly present the process of realisation of the above characterised task. The course of
presentation corresponds generally to system design sequence.

4.1. Choosing the paradigm of model formulation: object-oriented programming

Object-oriented programming is characterised by the features which, in our opinion, well correspond
to the needs discussed above. These features include abstract data structures, strictly separated code,
and inheritance (generalisation and specialisation facilitating modularisation and reusability of the
software). The possibility of expressing aggregated and well-structured data types enables to write
compact and readable programs. The paradigm also enables a conceptually (and formally) uniform
notation of various system modules.

4.2. A note on programming environment used

In our case it was Smalltalk-80 language [13] with the VisualWorks™ programming environment
(from ParcPlace Systems). As it is not a commonly known tool, the choice needs a justification.
Among the people who are in everyday contact with current software engineering practice it is rather
common to reduce object-oriented programming to the popular programming language C++. We
appreciate its popularity but we must state that for a language aimed at real-life object mod-
elling, C++ is too engrossed with details of purely technical character. The latest realisations
(e.g., Microsoft Visual C++ ver. 1.5) are also sub ject to the “rule of large commercial packages”,
as formulated above. The Smalltalk environment is easily portable to various software/hardware
platforms like UNIX (with X-Windows), Microsoft Windows, Macintosh and others, and after in-
stallation takes only 8 MB of hard disk space, whereas Visual C++, besides taking over 150 MB of
disk space, enables construction of applications which may run only in the MS Windows environ-
ment, and cannot be mastered — as a tool — in a period of time shorter than a few months. Thus
it is not a language which we would recommend for use by small teams which want to produce a
professional engineering application cheaply and fast.
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4.3. Internal system structure

According to the object-briented programming methodology, the system was built around the data
structures representing both the elements of the real object and the functional elements of the

system itself. They are:

o The dam model — a declarative data structure (formally: a hierarchy of descriptions, structured
as a tree), reflecting the division of the dam into subobjects. The model stores topographical,
quantitative and qualitative data pertinent to the given level of description. Also the data base
storing the history of the dam is organised around the model. The model represents the facts.

o The inference graph — a declarative data structure representing the deduction rules (formally:
an oriented graph, with edge direction representing the direction of implication). The nodes
of the graph correspond to facts (hypotheses, confirmed conclusions), formulated in qualitative

terms.

From the dynamic point of view, the operation of the system is structured according to the
cycle: fact — quantification — deduction — result of deduction (fact or additional question). The
information flow and internal structure of the system are depicted in Fig. 1.

measurements DAMMODEL
MANAGER

(quantification)

interaction
with dam
personel

dam model
(declarative)

4
additional answers
questions (facts)

yy \
rules
graph
DIAGNOSIS
(deduction)

report

generation

Fig. 1. Internal system structure

4.4. Dam model

The dam model is defined declaratively by means of a set of structural objects. A structural object
is a collection of pairs: attribute name/attribute value, where attribute values include also links (or
sets of links) to other structural objects. Two examples of structural objects describing parts of a
dam are given below. DAMPart and ObservationZone are class names (in Smalltalk sense).



278 A. Radomski and O. Gajl

DAMPart damModel
{ zones: (observationZonel observationZone2 observationZone3
observationZone4 observationZone5 controlGallery)
upWaterLevel: upWaterLevel
downWaterLevel: downWaterLevel

rainFall: rainFall
~maxWaterLevel:  398.60

crestLevel: 400.20 }
ObservationZone observationZonel
{lex: #observationZone

partOf: damModel

id: 1

fromHm: 0.0

toHm: 130.0

sections: crossSectionl

crest: crestS1

downstreamSlope: downstreamSlopeS1

upstreamSlope: upstreamSlopeS1

contactAreas: contactAreaS1

landslides: roadLandslide }

During subsequent sessions with the system, the dam model is filled up by data coming from
gauges and observations.

4.5. Inference graph

The inference graph represents knowledge in the system. It conmsists of facts (structural objects
denoting prepositions). Two facts linked by an edge labeled “successor” represent an implication:

Fact factA
{ succ: factB }
Fact factB

i

is equivalent to: factA = factB.

To avoid unnecessary complication, we decided to hide negation inside symbolic fact names.
Thus, to represent that fact “bigRainFallLately” does not hold, a fact “notBigRainFallLately” has
to be added to the graph.

Two (or more) nodes having a common successor constitute the graph representation of logical
disjunction. To represent logical conjunction, we introduce a special (asemantical) kind of facts —
instances of class And. Such a fact holds if and only if all of its predecessors hold:

Fact factA
{ succ: andl }
Fact factB
{ smec: andl }
And andl
{ succ: factC }
Fact factC

s, 6

is equivalent to: factA & factB = factC.
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Fact “holds” when it is confirmed. Fact can be confirmed by application of the above described
rules to the inference graph; leaf nodes of the graph (nodes without predecessors) are confirmed
by quantification procedures. Thus, if any of automatic piezometers located in the measurement
section 1 exhibits fast increase of its reading, a fact “piezometerMeasurementSectionlFastIncrease”
will be confirmed. Inference mechanism then tries to propagate the “confirmed” state along edges
of the inference graph. The upper bound of the confirmed facts (i.e., a subset of confirmed facts
which have no confirmed successors) is taken as a result of the inference.

Such an inference scheme corresponds to a production system without variables and with forward
chaining using depth-first search. Formally it is an approach based on a finite-state automaton,
rather than the “classical” one widely used in expert systems.

The important feature of our approach is its opportunistic character. Facts (graph nodes) repre-
sent malfunctions (states of abnormal functionality of the dam). Thus, the inference mechanism is
activated only when gauge readings or observations recognised as malfunction signals are registered.

4.6. Control flow scheme

Input stream for the system consist of measurement data readings and qualitative evaluations
introduced into the system by the personnel of the dam. In the first case the quantification proce-
dures are activated. The new fact is transformed into a symbolic (qualitative) form. The inference
subsystem reviews the set of new facts: only when a fact deviating from the norm appears, the
appropriate node of the inference graph is activated (“confirmed”). The inference subsystem au-
tomatically propagates the activation along the edges of the graph corresponding to implications.
As a result of inference, new facts (hypotheses) appear in the system. The appearance of a new
hypothesis may activate the subsystem responsible for generating additional questions. They may
be addressed to the human personnel or to the history data base (demanding, for example, retrieval
of the facts or hypotheses from the past, which may confirm the newly generated hypothesis).

The diagnosis process stops when all elements of input stream are consumed in the manner
described above.

4.7. A note on the generality of solution

The internal structure of the system has two important features. First, it is formulated on a general,
abstract level. Such a scheme may fit to any real object of engineering modelling, if only it can
be decomposed into a hierarchy of subobjects described by elementary attributes (quantitative or
qualitative), and if knowledge about the object can be expressed as a set of rules formulated at the
qualitative level, after application of relevant quantification procedures. It seems that the class of
such objects is quite broad.

Second, the information specific for the object (and scope of modelling), i.e. the structure of
the object, facts about it and inference rules are given in a declarative way, independent of the
internal mechanism determining the dynamics of system operations. Thus, they can be replaced by
another data without any interference with the internal system mechanisms. It does not apply to
quantification procedures — in the present version of the system, they are given at the procedural
level and must be formulated anew for another real object. Extension of the system by a module
solving (declaratively given) equations and constrains that determine the quantification rules should
eliminate this difficulty in the future.

4.8. Functional structure of the system

By the functional structure of the system we understand the range of functions offered to the user
and tools of interaction by means of which the user can activate these functions. The functional
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structure should follow from the structure of user’s needs, in the same way as the internal structure
of the system is built around the data structures representing the model of a real object.

The process of interface design was interactive: we started from a prototype (in which, of course,
the internal subsystems were not completely implemented), and the recipient of the product (who
represented various final users of the system, see Section 3.3) reviewed its functional structure
and proposed modifications and additions. After some time (usually a few weeks) the cycle was
repeated. It should be added that the process was running in parallel with the implementation
of the internal mechanisms of the system as well as with the formulation and refinement of the
knowledge base rules (knowledge acquisition from experts).

The system presents its functionality on the computer screen with three groups of windows.
They are:

e inspection tour questionnaires (filled everyday by the personnel of the dam),

e dam views: planar (topographic) view of the dam, the measurement cross-section views and
individual gauge views,

o system reports, either popping up automatically (e.g. signalling malfunctions of the dam as
detected by the diagnosis subsystem), or generated on the user request (e.g. excerpts from the
history database, charts of quantitative measurement data).

Functional scheme of the system windows, i.e. how the user can pass from one window to another,
is presented in Fig. 2; examples of various kinds of windows are given in colour plates (Figs. I-VI).

main menu P> | planarview » upstream water level history
graph
malfunctions report cross-section view
and questionnaires (settlement columns)
(short - daily, full - weekly) cross-seetionvisw » gauges (earth pressure)
dam history browser (earth pressure chart) history graph
-1
|
cross-section view
\ (pore pressure map)
diagnosis results cross-sectionview » gauges (pore pressure)
{generated automatically) \ (pore pressure chart) history graph
4 o ——

Fig. 2. Functional scheme of the system windows

5. DESIGN DETAILS OF SELECTED MODULES

A description of all design and implementation details of the system lies outside the scope of
this paper. However, we want to illustrate the adopted methodology of object-oriented design and
programming with description of solutions to selected design problems.
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Planar View

Fig. I. Window presenting landscape view of NYSA dam
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Fig. II. The same window after zoom
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Fig. III. Window presenting cross section view (left) and open piezometer data (right);
both taken from system for monitoring of NYSA dam
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5.1. Program layers

One of the major software engineering postulates is to produce software in regular and modular
way. Within the object-oriented programming paradigm that postulate is realised through for-
mation of program layers, of which the upper ones describe the most abstract aspect of a given
program element, and the lower ones realise the specialised particulars. The object-oriented pro-
gramming languages, including Smalltalk-80, supply tools to express such stratification. They in-
clude classes (to describe objects of identical internal structure and functionality), and inheri-
tance mechanism (to specify functional specialisation). These tools are so general that they can
be applied to seemingly different aspects of the software system, like the internal representa-
tion of data and the mechanisms of user interaction. This can be illustrated by two examples
below.

5.2. Atoms, facts, hypotheses

For the needs of the deductive diagnostic subsystem the following structure of classes was created
(the indentation denotes the “subclassing” relation).

Atom

It implements the general scheme of data representation: it is a collection of attribute/value pairs.
Thus the atoms are the objects describing arbitrary sets of attributes, possibly taking on different
types of values. In particular, such elements of the dam model as gauges contain an attribute
“current value”, whose values are numbers, and an attribute “state” which takes symbolic values
denoting qualitative descriptors.

Fact

It implements the general representation of the inference graph node. The attributes are
“predecessor” and “successor”, whose values point to other nodes of the graph. Such a graph
describes the set of implications (if the node holds, then its successor holds as well; the
attribute “predecessor” is used for technical purposes). The disjunction is represented in a
natural way: if a given node has some predecessors, it is confirmed when any of them has been
confirmed.

And
It is a special form of fact representing the conjunction. Such a node will confirm its successors
if and only if all its predecessors are confirmed.

FactFromPast

It is the result of inference done in the past. Such results are stored in the dam history
database, because in the future a fact may occur which will have to be differently interpreted
due to the suspicion of possible malfunction inferred in the past.

The scheme of inference used in the systems of earth dam monitoring takes into consideration
the facts which took place in the past (before the moment when the inference is performed). Still, it
is easy to imagine the application of layers containing classes Atom, Fact and And to an inference
scheme “without memory”: the appropriate fragments of the code can be cut out from the system
and used in another application practically without modification.

The knowledge base consisting of the inference graph will be discussed, from another point of
view, in Section 6, in connection with knowledge acquisition.
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5.3. Views of the world, dam, and dam cross-sections

An important element of the user interaction with system are the views through which he can
access the elements of the dam (represented in the model) which interest him at the moment,
down to individual gauges. In the system, a hierarchy of classes supporting such interaction was
implemented.

WorldView

This class implements scaleable diagrams, keeping proportions when enlarged or contracted. The
objects of this class can also perform one of four operations specified by a mouse button: select, zoom
in, zoom out and pan. At this level only the last three are implemented (as they are independent
of the contents of the diagram). The operation select is implemented in subclasses (as it depends
on the particular type of displayed diagram).

DamView

It is a general representation of views of different aspects of the dam, with a possibility of
interaction specified by mouse movements and buttons. On this level, the idea of a diagram
element reacting to the select operation appears. Still, the realisation of this operation requires
further specialisation in subclasses.

LandscapeView

It is a topographic (planar) map of the dam with a possibility for interactive opening of
measurement cross-section views and windows presenting collected information for particular
gauges. In this view, the symbols of cross-sections (lines) and the symbols of gauges (small
circles) react to the select operation.

CrossSectionView

It displays a measurement cross-section of the dam with a possibility for interactive opening
of windows describing particular gauges. The symbols of gauges (e.g., an open piezometer,
represented by a partially filled thin rectangle, with degree of filling corresponding to current
value of the piezometer) react to the select operation.

The design of graphic display of views capable of proportion-preserving scale change (i.e. the
functional contents of the World View layer) is not a trivial task. This layer should work properly
in different systems used in entirely different application areas. As an example, we may consider a
system displaying the shortest path between two points on a town map at the user’s request (which
requires quite another specialisation of the select operation).

6. KNOWLEDGE ACQUISITION

The central problem of expert system construction is the problem of acquisition and formulation
of knowledge. The literature on the subject [5, 12] clearly demonstrates that knowledge acquisition
constitutes the most difficult phase of design. A general methodology of interviewing experts has
not yet been elaborated, although a number of recommendations or general methods of procedure
are proposed [9]. However, it is difficult to apply algorithmic approach to the process of knowledge
formulation, especially as at the very beginning an essential difficulty appears — that of fixing
common concepts and terminology among system implementors and domain experts.

In our system, these difficulties were solved step by step. The first phase was an attempt to
compile a vocabulary of terms used. It was built in a way natural for the domain experts, accord-
ing to a hierarchically structured description of the engineering object, in our case a dam. The
successively introduced terms, denoting elements of dam construction and physical processes oc-
curring both in normal functioning and in malfunction, were precisely defined. The static part of
the vocabulary was transformed into a declarative dam model. Subsequent subclasses of the class
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DamPart (a subclass of Atom) were formed, such as CrossSection, Gauge, etc. Then, first
diagnostic rules were formulated, based on the knowledge of physical processes going on within
the dam. At the beginning, they were formulated as phrases in the natural language, in the im-
plicative form (“if... then...”). In this phase of work, the experts concentrated on the essence of
the physical processes and consequences of anomalies detected by the control and measurement
apparatus, paying less attention to precise formulation and formal correctness of the rules created.
The number of terms with inaccurate meaning increased, which led to the compilation of another
vocabulary — of the terms used in rules. Later on, the rules were transformed into a declarative
notation using instances of classes Fact, And and FactFromPast.

Successively, with the increase of the number of rules, the original form of the notation lost its
value. It became evident that representing the rules graphically, in the form of a “rules graph”, is
more clear and consistent. After a period of adaptation, use of this graphical notation allowed the
experts to formulate a much subtler interdependencies between the premises and conclusions. Soon
the number of rules increased over 100.

The further step, according to the majority of known approaches, would have been a linearization
(into a sequence of textual rules) of the final rules graph, according to some adopted sequencing
convention. However, within the object-oriented software methodology described in this report, it is
enough to modify the definitions of the objects of subclasses of Fact by appropriately setting values
of the attribute “successor”. Completing the graph by setting values of the attribute “predecessor”
was implemented as a (trivial) procedure in the system. It also turned up that it is easy to add
the independently implemented data visualisation module [17] to the development environment of
the system. Among other things, the module was able to visualise trees (hierarchies). Thus, we
obtained immediately a tool for visualisation of the inference graph (see Fig. 3), which also enables
fast verification of the formal correctness of introduced rules.
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7. CONCLUSIONS

The paper discusses usability of traditional technology of software production, as opposed to the
modern object-oriented software methodology, trying to demonstrate that in many contexts the for-
mer one cannot be effectively applied, particularly in the case of dedicated systems for a small group
of users. One example of such a case is the problem of modelling of real-life engineering objects,
illustrated in the paper by a system for dam monitoring, state diagnosis and state visualisation, as
implemented by the team including the authors.

Within the object-oriented programming paradigm, especially with the support of an effective
software development environment (like VisualWorks™ used by the authors), it is possible to
prepare a prototype of the system very fast, and to confront it with the end user before too many
decisions about the structure and functionality of the system become irrevocably fixed. It also
allows to overcome the serious psychological barrier following from a necessity to begin the work
on the system from scratch.

Another important effect, offered by the object-oriented technology, is the possibility to achieve
the substantial aim of the software producers, namely a possibility of real software reusability. Thus,
if proper care is taken to consider that requirement during system design, the work on each new
system dedicated to a similar field or type of modelled objects will not be starting from scratch,
but from still higher and higher development level.

Finally, we would like to present shortly the history of construction, in our Institute, of three
systems dedicated to earth dams, as it seems to confirm the above observations. In fact, the expe-
rience with construction of these systems inspired us to formulate these observations in the first
place.

In the case of the Czorsztyn dam the work was started by a team of three persons. The prepara-
tory study and research on the formulation of such a scheme of knowledge representation which
would ensure effective communication with domain experts lasted for one year. After that, one
person implemented an advanced prototype in only six months.

For the next dam in Klimkéwka (Poland), the work on reformulation of the declarative parts of
the system (topography, distribution of gauges, changed inference rules) was done by two persons
in three months; the rest of the system was taken over from the system for the Czorsztyn dam.
The effect was a prototype with a degree of advancement comparable to the system for Czorsztyn.

The third system for the earth dam at Nysa (Poland) did not include a diagnostic subsystem,
but was much more demanding as to the ways of visualisation of measurement data, because the
object contains over 30 measurement cross-sections and about 300 gauges. The work on changing
the declarative data and reprogramming the visualisation modules was done by two persons in
three months; the result was not a prototype but a complete professional working system.
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