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Numerical solutions by means of the space-time finite element method to initial-boundary value problems
for a hyperbolic model of heat conduction, are obtained. The heat conduction description is based on a
concept a rigid conductor with a scalar internal state variable, that leads to a modified Fourier law. The
obtained results are compared with existing experimental data know for semi-conductor crystals at low
temperature.

1. INTRODUCTION

It is well known that the simple dependence of energy ¥* on thermodynamic (absolute) temperature
Y and the classical Fourier law combined with the first and second laws of thermodynamics lead
to the heat conduction equation of the parabolic (nonlinear) type. Unfortunately, the same result
will be obtained if under the function symbol ¥* the temperature gradient Vo appears.

To modify heat conduction equation and to get a finite speed of propagation of any thermal
disturbances, the constitutive equation for the energy must be changed.

Various types of hyperbolic heat conduction equations leading to finite speed of thermal wave
propagation were postulated for rigid and deformable heat conductors in the last four decades.
After Maxwell [35] and Landau’s model for fluids, Cattaneo [15, 16], Vernotte [41] and Chester [17]
for rigid conductors, one can find dozens of papers in which different approaches have been used
to model second sound effect observed in solids (cf. [37, 39)).

In the paper the concept of a scalar internal state variable, playing a role of the so-called
semi-empirical temperature scale, different from the absolute, is introduced. Then its gradient gives
the direction of the heat flux vector, while the proportionality coefficient depends on the absolute
temperature. In the constructed model one requires three experimental curves, namely the spe-
cific heat, thermal conductivity coefficient (called here the equilibrium heat conduction coefficient)
and second sound speed (i.e. speed of thermal disturbances), all given in terms of the absolute
temperature, determine the model. In this respect the present model has a common part with
the model developed independently by Morro and Ruggeri [36] in the framework of the extended
thermodynamics.

The model of heat conduction developed leads to a system of two scalar equations: one is
of the second order in the scalar internal state variable and of the first order in the absolute
temperature. The second equation is of the first order. The system is of the hyperbolic type with
two non-vanishing characteristic velocities, giving a finite thermal wave speeds. The main aim of
the paper is to model numerically the derived system of equations.

Conventional numerical methods applied to date imply separate discretization of the differential
equation in space and in time. Finite differences or finite elements are applied to spatial derivatives
while Runge-Kutta, Newmark or simply — central differences are commonly used in the time
integration of time derivatives. However, in such an approach, when interpolation over space and
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time is carried out by using decoupled interpolation formulas, all the equations of equilibrium
are fulfilled only in discrete time ¢;. Thus discontinuous in time distribution of parameters is
implemented. It disables sufficiently accurate investigation of quantities that vary considerably
between time levels.

Our formulation of the problem leads to a non-linear equation, in which certain parameters
strongly depend on the temperature. In such a case numerical solution obtained can be disturbed
by numerical errors (mainly approximation errors). That is why our wish is to use the method
which would enable mesh modification in order to reduce the discretization error. In classical
approaches spatial mesh modification can only be done by re-meshing techniques. Here we would
like to propose the approximation continuous in space and time of unknown parameters by using
the space-time finite element method. The numerical method was especially chosen for the solution
to enable further applications with non-stationary spatial partition, i.e. domain evolution, phase
change, mesh adaptation with discretization error reduction. In the present paper only the simplest
particular case with constant mesh will be applied. In such a case the approach is similar to the
group of classical time integration schemes.

First attempts of the space-time modelling of physical problems were published in [23, 24]. The
definition of the minimized functional allowed to derive the relation between the time variable and
spatial variables in space-time subdomains. Oden [38] proposed a general approach to the finite
element method. He extended the image of the discretized structure on time variable. Unfortunately,
this interesting idea of the non-stationary partition of the structure on subspaces proposed has not
been continued. Argyris, Scharpf, Chan and Fried [1, 2, 3, 21] have formulated problems with space
and time treated equally. However, in the papers of Kuang and Atluri, for example [34], the final
discretization was carried on separately for time and space.

Independently of the researches mentioned above Kaczkowski in his papers [27, 28] introduced for
the first time some abstract physical terms to mechanics: an equation of time-work, mass as a vector
quantity or a space-time rigidity. A synthesis of the space-time element method can be found in [29,
11] while stability considerations in [5]. Space-time elements which lead to unconditionally stable
solution schemes were described in [26]. Unfortunately they could be only applied for space-time
forms rectangular in time, obtained as a vector product of a spatial domain and a time interval.
In next papers some authors turned to non-rectangular shapes of elements. Then a non-stationary
partition of the structure and non-rectangular space-time elements [4, 5, 13] enabled to solve a
quite new group of problems by the space-time element method: contact problems [10], problems
with adaptive mesh [4, 6, 9], problems of evolution [7, 8, 14].

In our approach we assume that in the time interval [¢;; ¢; 4+ h] both the investigated parameters
and the geometry of the discrete mesh can vary continuously in time. The technique is similar to
the moving mesh technique, that was successfully applied to parabolic problems (for example [42]).
Unfortunately, hyperbolic problems were rarely treated in that way. We will try to apply a full
space-time discretization to our hyperbolic problem.

2. MODEL WITH SEMI-EMPIRICAL TEMPERATURE

Recently in a series of papers [18,19,30-32] a thermodynamic, phenomenological theory of heat
conduction with finite wave speed has been developed and applied to thermal wave propagation
problems (mostly 1D); the well-posedness of a Cauchy problem has been demonstrated also [20].
The theory is based on the concept of a gradient generalization of the internal state variable
approach [33], in which the gradient of a scalar internal state variable (called a semi-empirical
temperature) (3 influences the response of the material at hand. 3 represents the history of the
temperature. It cannot be directly measured. Here it can be considered as a potential, with the
analogy to the classical heat conduction Fourier law. There the heat flux is proportional to the
temperature gradient, here the heat flux is proportional to the gradient of 3. At a typical particle X
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of a medium under consideration the internal state variable is a solution of an initial value problem

B=F(9,8), B(to) = Bo, (1)

where ¥ is the absolute (thermodynamic) temperature at X and the superposed dot denotes the
differentiation with respect to time ¢. The material function F depends on thermal properties of
the medium at hand, e.g. conductivity, and on some time interval 7 characteristic for the thermal
inertia.

In further constitutive modelling one assumes, after Cattaneo [15, 16], that both relations: the
classical Fourier law of heat conduction

q:= ~kV?9, (2)

with k() as an equilibrium heat conduction coefficient and the temperature gradient V4, as well
as the differential relation derived for the heat flux q from Eq. (1) (due to a particular constitutive
equations for the free energy) play the role of balance equations, however, with different approxi-
mations of the mean kinetic energy of molecules of the medium. This point of view, together with
the statistical arguments given in [18], implies that instead of the temperature gradient the spatial
gradient of the semi-empirical temperature, i.e. V3, appears in the following constitutive relations,
for the Helmholtz free energy 1, specific entropy n and heat flux q,

Y = P*(9,Vp),
n = n"(4,Vp), (3)
q.= q*(ﬂ? Vﬂ)

Moreover, it is assumed that the Fourier law is to obtain if the thermal relaxation time vanishes;
then 3 becomes a function of 9. This assumption is used in the derivation of the relations between
material functions and the heat conduction coefficient k() measured in classical experiments on
heat conduction.

Since T represents the time dimension parameter in F, and the both variables B and 9 have the
dimension of temperature (kelvin), the dimensional analysis implies the existence of a function f
(of B and 9¥) of the dimension of temperature, such that

F(9,8) =71 f(9,6). (4)
Then the kinetic equation (1) takes the form

6 = f(9,8) (5)

and the limit case of vanishing 7 corresponds to f(9,8) = 0, identically in ¥ and 3. Hence in this
case an algebraic relation between the both scales follows, provided the derivative g—f is different
from zero. Note that in the general case if that derivative is negative, for positive 7, then the
stability of solutions of Eq. (5) is guaranteed.

In the case of an isotropic medium the second law of thermodynamics is satisfied (18, 19] if

q=—a*Vﬁ,
oY*
T 90 (6)
LOF (0F\7
98 (619> oy
where
pvaof oyv* 1

L "




310 C. Bajer and W. Kosinski

has the dimension of a thermal conductivity coefficient. Let us first notice that the coefficient o*
cannot depend on S, for the form of Eq. (3), and consequently the function f is governed by the
equation
0% f _
0908
Thus the general form of f is

0

f(9,8) = i(F) + f2(B) .. (8)

If one assumes that the relation between q and Vg in Egs. (6) is linear, then a* = a*(¥) and
Eq. (7) can be regarded as a differential equation for %* ; integrating it one gets

¥ = ¥i(9) + 0.595(9)| VA, ‘ (9)
where 97 (9) plays the role of the classical free energy function and
To* (1)
*(9) = : 10

Here the prime denotes the differentiation with respect to the argument. Note that 13(«) vanishes
when 7 tends to zero. The last relation plays the role of a compatibility condition in the theory.
From Egs. (6) the form of the entropy function n* follows. Its form we shall write down after
making the following simplified assumption, namely, the internal energy ¢ = ¥ + nd is a function
of ¥ only (i.e. independent of grad #). This assumption is compatible with several classical theories
(e.g. the Debeye theory) and secures the specific heat to be a function of the absolute temperature
only. Then, in view of Eqgs. (6) and (9), necessarily 13 () is a linear function of temperature

¥3(9) = oo . (1)

The material coefficient 129 can be expressed in terms of the mass density p, the relaxation
time 7 and two other dimensional material constants: ko of the dimension of thermal conductivity
coefficient and Yo of the dimension of temperature, with the help of the dimensional analysis [30]
as follows

Tko
oo = —r . 12
20 P'ﬂ% ( )

The expression for the entropy follows from Eqgs. (6), (9)-(11) as
n"(9, VB) = ne(¥) - 0.5¢20|VB*, (13)

where the term ng(1¥) = —9/(9) represents the so-called conservative (equilibrium) entropy , while
the second term — the non-equilibrium part. The later can be expressed as a second order term in
a—,‘}m if the constitutive equation (6) will be used. Let us notice, that such a form of the entropy
function is compatible with the principle of maximum at equilibrium (i.e. when q vanishes) provided
120 is non-negative [12]. However, due to the last inequality in (6) this requirement is equivalent
to the non-positive derivative gl, the later is related to the stability of solutions of the kinetic
equation (5). Hence, we assume that the dimensional constant kg is positive.

It is worthwhile to mention, that the present model and the model developed by Morro and
Ruggeri [36] will lead to the same solutions of field equations if the function f,(f3) is linear, and the
following identifications are made:

and v = fi(9), (14)
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where the material functions o(¥) and v(?) are those appearing in the extended thermodynamics
model of Morro and Ruggeri [36], and provided initial conditions (9(0), q(0)) of the second model
will be adjusted to initial condition (8(0),%9(0)) of the first model.

It should be pointed out that in the semi-empirical temperature model the identification of
the function fo(4) can be made with the help of the equilibrium heat conduction coefficient & (cf.
Eq. (19) in [19]).

Finally, let us notice that in the shock wave analysis performed in the second model [40] the
form of the function k(¥), and consequently of f5(8) — for the first model — does not influence
the results. '

3. HEAT WAVE EQUATION

In this section we shall derive 3D equation that govern propagation of thermal waves in the model
with the semi-empirical temperature. Let us substitute the constitutive equations (6-10) into the
energy balance equation

pé+divg=r, (15)

where

9y*(9,Vp)
09
is the specific internal energy and r denotes the rate of heat supply. Let us differentiate the kinetic

equation (5) with respect to X and use the resulting prolongated equation to express all derivatives
of ¥ in terms of the corresponding derivatives of 3. Then we get

€= &(9) = Y9, VB) - ¥

Tpey(9)f — e (9 - VB — o (D) (9)AB — peu(9)f3(B)8 + ™ ()5 (B)VS - VB = 1f{(¥).
(16)

Here we have put c,(9) = €*/(+#) for the specific heat of the material at hand.

4. NUMERICAL APPROACH

The domain of observation is defined by
a=4{(e,1)r 25(t) <2 <zrll), 1651 < 00} (17)

z1(t) and zg(t) are functions that limit the spatial domain, for example moving boundary. They
can be given explicitly or in a general case can depend on the solution. The domain § is divided
into finite space-time elements. It cannot be done arbitrary. Some indications can be found in [5].
For each element characteristic matrices are calculated and a resulting matrix equation allows to
solve the problem step-by-step.

We assume the rate 3 of the internal state variable 3, called the semi-empirical temperature as an
unknown quantity. In further considerations we take = and t as local variables in each subdomain.

Let us consider a time interval [0, h]. The distribution of the temperature within [0, 4] is described
by the integral

BO)=fot | gt (18)

Second derivative 3 and spatial derivative 22 can be simply computed

oz
ap

ﬂ=a ’ (19)



312 C. Bajer and W. Kosiniski

5= Lol 2 ([ gat) (20)

Let us multiply the governing equation (16) by virtual distribution of the semi-empirical tempera-
ture rate 8" and let us integrate the product over space and time Q. = {(z,1):0< 2 <b,0<t <
h}. We assume here rectangular subdomains, for simplicity. In the other case we should integrate

over trapezoidal domains 2. Thus the equation of the virtual power is conduced to the equation

. . 2
of virtual work. Integration by parts will reduce the second derivative g;g.

Now we can apply the interpolation formula for 8 in a form
B(e,t) = N(z,t) V (21)

The vector V is a set of nodal parameters and contains subvectors V; and V,;;, i.e. solution
vectors in two successive instants:

V;
V= { -9 } . (22)

N are interpolation functions in Q.. Relations (18), (19) and (20) can now be rewritten:

t
Bt) = fo+ [ Nat-v, (23)
i =aa—1j-v, (24)
08 _ 9B(z,0) 0 ([t
% = T+a_$(/0 th)V. (25)

Identical formulas can be written for 8*, ,@*, ﬁ* and aa—ﬁ;. In this case we use virtual interpolation
functions N* instead of N. In the simplest case, as we mentioned before, we assume constant limits
of 2. and then interpolation functions N are linear

a-pa-H
] sa-p
S a-pt e
FE

Our interpolation functions allow to fulfil the Neumann homogeneous conditions on the free end,
if h — 0.

Here the proper choice of distribution of the virtual velocity 8* = N*V* is the fundamental
problem of the method on this stage. Convergence, efficiency, accuracy of the time integration and
accuracy of the solution in the case of nonlinearities depend on the form of 3*. The simplest one is
the Dirac distribution with V* = V.

ﬂ'*(z,t)=N*V*=N(z,h)6(%—£)v, 0<E<T. (27)

The product of the spatial interpolation function N determined for ¢ = ti+1 and the Dirac é defines
our virtual interpolation function N*. The form (27) is convenient for our purpose since it reduces
the integration over the space and time to the integration over the space only. Moreover, it allows
us to select the parameter ¢ according to the stability condition. Other forms of virtual distribution
are also possible [8]. However, we will reduce our consideration to the simplest single Dirac peak
only.
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Omitting V on the left hand side of each term we can write the discrete weak form of our
equation (16)

/ (N* )T'rpc,,(ﬂ)a—NV dzdt
0 ot

e

a AE(N*)TTa*’(ﬂ)%gv [(% (/Otth) V4 __8[?;9;,0)] dzdt

L) oo () v+ 2

oz

+ [ ) g @) [ ([ vat) v+ 200 g,

- [ NV peu D) HONV dad

- [ ovra @) [2 ([ a) v+ PO g k. 28)

R is the vector of the external heat impulses. In further considerations we assume it as equal to
zero. We can apply our simple form of N* to (28). Integration of (28) over time interval [0, A] is
simple since it is reduced to calculation of intermediate values. The resulting formula representing
a weak form of the energy balance equation written for a single element has the form

(K11 + K1 + Koz + K31 + K3y + Ky + K1 + Ks2) V+ Lay + Lgg + Ls; = 0. (29)

The first index corresponds to the place of the corresponding term in the differential equation (16).
After assembling elemental matrices into a global one K and vectors into L for a whole domain,
we have:

KV+L=0. (30)

Here K has a dimension N x2N, where N is a number of degrees of freedom. Let us notice that
K depends on the 8 and 3 through 9. The non-linear equation (30) is solved in each time interval
iteratively. For this we need both § and § evaluated in ¢ = h. Equation (30) can be expanded with
respect to subvectors V; and V4. For this let us split the matrix K (which is computed for a
time interval [t;,%;11] and has the dimension N x2N) into square matrices KX and KN,

KMV, + KRV, +L; = 0. (31)
Now we have V in the step-by-step procedure
Vipr = —[KF7Y(Li + KEVy). (32)

Now when we have the vector Vi1, which is the semi-empirical temperature rate vector received
for time #;41, we can proceed with calculation of semi-empirical temperature vector B;q . It is
now the last unknown value we must determine to enable evaluation of all the coefficients of our
fundamental equation. In the particular case of £ = % we can use the formula (23), in which B,
replaces ((t) for t = h and Sy is replaced by B;. In such a case we have simple central difference
formula for time derivative of 3 (represented by V) written in time ¢t = ¢; + % However, in our
work we use a more general formulation for arbitrary £. That is why we modify the resulting form
which will enable us to compute B;,; .

The average value of the velocity taken at time nh, 0 < 5 < 1 results in the formula

Biy1 =Bi+h[(1-n)Vi+9Vi]. (33)
The energy at the end of the time interval is preserved if n =1—¢&. Then we have finally

Bit1=Bi+h[{Vi+(1-€6)Viy]. (34)
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It was proved in [7] that the unconditional stability of the process (32), (34) occurs for 5@ 5l 7
For £ = 1 we have the explicit formula while for other values (0 < £ < 1) the scheme is implicit
and requires iterations to determine the geometry z; .

Since we cannot precisely choose all the parameters in Eq. (16), especially to coincide the
behavior of the mathematical model with the physical one, we will finally assume the following
relations for fi , fa, 9, ¢, and a* [19]:

H(d) =19, (35)
f2(B) = -8, (36)
0 = TZ—? +4, (37)
Co = Cyp B2, (38)
a* = §¢2002. (39)

The integration of (28) over two dimensions is reduced to the integration over only the variable
z. If we assume the coefficients o*, a*, ¢, , fi, f{, to be constant in the spatial element, we can
derive matrices K and vectors L in the explicit form. They are listed below for completion:

b -2 -1 2 1
K11—TPCv0196h[ 9 1 2},

£€-2) -€(¢-2) ¢ &
(e S (TR M il

8,6’(96,0)[6—1 —(6-1) ¢ E]
oz | €-1 —(6-1) =€ €]’

EE-2) —€(¢-2) -¢€ 52]

K; = —P¢20?9 [5 1; —(5—1);—5;51‘/[

Kj; = —pihyo?

(E-2) £e-2) ¢ -¢
ph 89 {5(5—2) —E(E-2) -¢€ 62}

h
K3z = PT/’20192 [

K3z = 20—

AT 0z | E(E-2) —£(E-2) € ¢
L3 = %’-0-)5%0192 [ _1 ] 5 (40)
L3, = 8ﬁ(8:c ,0) bp —1/)20 - [ 1 ],

B bl -206-1) —(£-1) 2¢ ¢
K —PCvO"Sa[ ~(€-1) -2A6-1) € 25]’

£€-2) —¢(¢E-2) ¢ ¢&
SE—-2) =2 =08

RO, [EE-2) —E-2) -€ &
S SRy le<£—2) —{e-2) & 52]’

T Oz
b 0p(z,0) i
Lsy = —;¢20P'9< oz ) [ 1 ] .

Ks = ¢2019/7—“ [ ] [f(f =20 —E(E~2)y —52;62] L4
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We can notice that Ky; and K5; depend on the solution vector V. Equation (29) is nonlinear and
must be solved iteratively.

5. ARTIFICIAL DISSIPATION

Numerical damping of higher frequencies with zero damping of the basic frequency is the important
question for each time integration method. Especially it can play a significant role in fast varying
non linear problems. Small perturbation of the smooth solution can influence dramatically the
evolution of the process. There are several papers on this subject (for example [25]). The ideal
situation appears when we can control the damping properties of the procedure (in particular cases
the damping should be equal to zero). Lower frequencies should not be damped while higher should
be damped relatively stronger. With respect to the shape of the damping diagram we can divide all
methods in two groups: the first one (Wilson, Houbolt method) with the zero slope of the damping
function for small %, growing with the increase of % , and the second one (Newmark, trapezoidal
rule) with a certain slope of the damping function for % — 0. The practical experiences indicate
that the first group damps higher modes too much, and the second group does the same with lower
modes. Other methods, which use more artificial parameters in their formulations, improve the
damping properties but their use is dangerous since the regular dependence of properties on the
parameters does not exist.
Here, let us modify Eq. (33) by

§
=]1—-— 0 <1 41
n 1+7° G oo (41)
This is the simplest way to introduce a weak numerical dissipation. For 7 = 0 we have the undamped
system and v can grow till 0.05-0.1, depending on requirements. The influence of £ and 4 on the
level of dissipation is shown in [8].

6. EXAMPLES

The measuring of the unitary heat, the heat conductivity coefficient (quasi-static one) and the speed
of heat wave propagation, all as a function of the temperature 1 allowed to derive and confirm the
relation (1) in the form of (37) [19]. Numerical calculation is to demonstrate both the numerical
method and physical behaviour of the elaborated model.

One-dimensional domain was treated for simplicity. The following values of coefficients were
assumed: 7 = 107%s, L = 4mm, 99 = 1K, k = 500 W/mK*. The data were scaled to reduce the
round-off errors. Then the parameters gained non-dimensional values: the length L = 40, mass
density p = 1, material constants c¢,0 = 0.1, 7 = 0.01, 990 = 50. The spatial domain was divided by
a uniform mesh. To the both ends no explicit boundary conditions have been imposed. However,
as it has been already noticed, the assumed interpolation functions N allow to fulfill the Neumann
homogeneous conditions on the free end, if A — 0. The initial uniform temperature was 99 = 1(K),
and the process was initiated by the initial temperature velocity jump B =50 put to the left end.
The procedure parameter £ = 0.8 has been assumed. Total time of observation was 0.05.

The first plot in Fig. 1 shows results obtained without numerical damping (y = 0.0). 40-element
mesh was used. The semi-empirical temperature is related to the initial temperature g, for which
the base of the diagram is plotted. The global solution is qualitatively changed by numerical oscilla-
tions of the solution in each time step, which are then amplified through coefficients (38) and (39).
The second (Fig. 2) plot presents results obtained with damping v = 0.05. In this case the mesh is
composed of 20 spatial elements. Results prove that, while comparing with the next plot, spatial
discretization is sufficient even in the case of our reduced integration of nonlinear coefficients. All
the plots were smoothed by the averaging technique with 3x3 matrix. However, in the original
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Fig. 1. Semi-empirical temperature 3 related to the initial temperature ¥ in time without numerical
damping (40 finite elements)

\

T
=

Fig. 2. Semi-empirical temperature f related to the initial temperature ¥ in time with small numerical
damping (20 elements)

plots we can notice high frequency spurious oscillations, visible on the left hand side of the domain

in the first period of the investigation. They propagate with decreasing amplitude.

The next figure (Fig. 3) shows results obtained for our problem with 40 elements in the mesh
and with numerical damping v = 0.05. The last figure (Fig. 4) presents the shape of the peak in
successive reflections from the ends of the domain. Two lines were plotted which correspond to left

ght end of the domain.

and ri

7. CONCLUSIONS

stationary manner. In

uniform mesh. There is no difficulty to

The presented approach can be developed for problems discretized in a non

the paper, however,

we limit our analysis to a constant,

apply the same technique to problems with moving boundary, phase change or mesh adaptation for
error reduction. The equation is strongly non-linear and the solution is sensible for disturbances of

parameters. The attention should be focused on the reduction of approximation error, especially
with respect to time. The efficient error estimate would be useful in an adaptive technique solution.

The example problem shows that even coarse mesh can be applied to z. The proper integration
in time is essential for the convergence. It is obvious since some parameters depend on the square
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of the temperature rate ﬂ The solution of the numerical example is composed of the diffusive and
wave response.

In [22] the same model equations have been analysed from the numerical point of view. There,
however, different method of calculation was applied that corresponds to the finite difference
method. Moreover, the authors of [22] have used slightly different constitutive function for a™:
they assumed a cubic function of 9. They also assumed 9 = J(t,z ) at one end prescribed and a
homogeneous Neumann conditions at the second end. Our numerical values are very close to those
assumed in [22]. The boundary condition assumed there are less physically justified from those
which arrive from our interpolation functions. Consequently, in the course of the present calcula-
tions more reflections are observed at the free end as well as less attention of the wave amplitude.
It seems that our numerical results are closer to experiments reported in the literature [37, 39, 40].
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