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In this paper a fast multipole boundary element method (FMBEM) analysis of internal stress in two-
dimensional linear elastic structures is presented. The expansions of the potentials occurring in the stress
integral equation are obtained by the differentiation of local series built for the displacement equation
potentials, and application of the strain-displacement and stress-strain relations. Results of the analysis
are presented. To illustrate the accuracy of the method a stress concentration problems are considered,
which are a square plate with a circular hole under tension, and a gear. The application of the FMBEM can
reduce the analysis time in relation to the conventional BEM case, providing similar accuracy. Presented
method can be applied in the BEM analysis of non-linear structures, which requires the evaluation of
internal strains or stresses.
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1. INTRODUCTION

The fast multipole method (FMM) by Greengard and Rokhlin [4] has been succesfully applied by
many authors to the boundary element method (BEM) analysis of elastic structures. The application
of the method overcomes the main drawback of the BEM, namely unsymmetric and fully populated
matrices of the system of equations causing at least quadratic computational complexity of the
conventional BEM. The fast multipole BEM (FMBEM) does not operate implicitly with the whole
matrices, but with matrix-vector products. Therefore, the complexity is reduced to the linear one
for structures with a large number of degrees of freedom (DOF). Before the FMM was developed
the BEM application was usually limited to the analysis of structures of at most several thousands
of degrees of freedom. Presently, structures with millions of DOF can be analysed using ordinary
PC desktop computers.

A number of publications concerning the FMBEM analysis of elastostatic problems can be found.
A survey of the applications in the years 1996-2001 is presented in Nishimura [10]. Here a short
review of articles published in the recent years will be given. Englund and Helsing [3] analysed
2-D stress problems of perforated finite domains. They applied Fredholm equation of the second
kind with the use of the FMM. Results for a loaded single edge notched specimen with many holes
were presented. Of, Steinbach and Wendland [11] developed a fast multipole Galerkin BEM. They
applied the method in certain engineering and industrial applications, i. e. the stress analysis of a
press equipment part and a metallic foam. In Yao et al. [20] an analysis of 2-D composite materials
was presented. The approach of repeated subdomain was applied to the determination of effective
elastic properties of solids containing many inclusions of different shapes. Structures with the ideal
interface between the matrix and inclusions, and with interlayers were analysed. Wang and Yao [17]
developed a version of the FMBEM with additional exponential expansions of the kernels and
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their translations. The local-to-moment translation, which was the most time consuming step in the
original FMM algorithm, was replaced by additional operations reducing the computation time. The
authors applied their code in combination with the similar subregion approach to the analysis of 2-D
elastic solid containing many inclusions and to the determination of their effective elastic constants.
Wang and Yao [15] presented also the FMBEM analysis of 3-D representative volume elements
(RVEs) of composites modeled as elastic solids containing spherical inclusions. The efficiency of the
method was further improved by parallelizing the computations (Lei et al. [5]). Liu et al. [9] applied
the FMBEM to the analysis of 3-D fiber reinforced composites. The stiffeners were modeled as rigid
inclusions. Thus the integral equations of elasticity was simplified. The application of the method
to the analysis of carbon-nanotube composites was presented by Liu, Nishimura and Otani in [8].
Wang, Yao and Wang [19] investigated different preconditioner sparsity patterns for the iterative
solution of the system of equation in the FMBEM for 2-D structures with many inclusions and
cracks. The same group of authors in [14] applied the FMM to solve the traction boundary integral
equation for 2-D structures containing many cracks. New preconditioner and initial vector for an
effective iterative solution of the system of equations, were introduced. The application area of the
method was later extended to the analysis of fatique crack growth by Wang and Yao [18]. Zhao
and Yao [22] developed a fast multipole accelerated BEM for the analysis of 3-D thin structures
– plates and shells. Liu [6] presented new multipole and local expansions of 2-D linear elasticity
fundamental solution in a complex form. The translations of the expansions of this formulation are
exactly the same as for the 2-D potential problem case. The presented examples included analysis of
plates with many circular holes. The formulation was further extended for the dual BEM, involving
the traction boundary integral equation [7]. The method was applied to analysis of certain simple
geometry structures, and of structures with many circular and crack-like inclusions. Ptaszny and
Fedeliński [12] implemented the original FMM for the analysis of 2-D elastic structures with the
use of the isoparametric quadratic boundary elements. It was shown that the discretization with
the higher order elements allows to discretize structures using lower numbers of degrees of freedom
(DOF), and to use expansions of lower degree in relation to the commonly used constant boundary
element case. The code was further extended by the procedure of fast multipole evaluation of volume
terms of the integral equation [13].

It is well known that the FMM can be applied to an efficient analysis of internal quantities,
like displacements, strains and stresses. Still, there are not many examples of such analysis in the
literature. Reference [20] contains stress isochromatic figures for plates with inclusions. However the
authors did not mentioned by which method the stress fields were obtained. Wang and Yao [16]
performed the 2-D elasto-plastic structure analysis including the FMM evaluation of the interior
strains.

This work is to present authors’ results of the FMBEM stress analysis of 2-D linear elastic
structures. Two cases are considered: a square plate with a hole under tension, and a gear. The
article is organized as follows. Section 2 contains a short introduction to the boundary element
method for 2-D elastic structures. In Section 3 a basic description of the FMBEM algorithm is
given. Section 4 deals with the aspects of BEM and FMBEM internal stress analysis. In section 6 a
short characterization of the developed computer code is given. In Section 6 results of the internal
stress analysis are presented. Section 7 contains conclusions.

2. BOUNDARY ELEMENT METHOD

An equilibrium state of a two-dimensional, statically loaded, linear elastic body Ω (Fig. 1), with
boundary Γ = Γ1∪Γ2, is described by the integral equation derived from Somigliana’s identity (e.g.
Brebbia and Dominguez [2]):

Cijuj(x
′) +

∫

Γ

Tij(x
′, x)uj(x) dΓ(x) =

∫

Γ

Uij(x
′, x) tj(x) dΓ(x). (1)
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Fig. 1. Two-dimensional body Ω

In this equation uj and tj are displacements and tractions respectively, Cij is a coefficient depending
on the location of the collocation point x′, x is the integration point, and finally Tij(x

′, x) and
Uij(x

′, x) are the fundamental solutions of linear elasticity:

Uij(x
′, x) =

1

8πµ(1− ν)
[(4ν − 3)δij ln(r) + r, ir, j] , (2)

Tij(x
′, x) =

−1
4π(1− ν)r

{

∂r

∂n

[

(1− 2ν)δij + 2r, ir, j

]

−(1− 2ν)(r, inj − r, jni)

}

.

(3)

In the solutions, µ and ν are the shear modulus and Poisson’s ratio respectively, ni denotes compo-
nents of the unit vector normal to the boundary and r is the distance between the collocation point
and the integration point (Fig. 1). The symbol r,i denotes the derivative of r with respect to the
i−th coordinate. The boundary of the body is discretized by using boundary elements. Equation
(1) is used for each boundary node as the collocation point, boundary quantites are interpolated by
using boundary element shape functions and thus a system of equations is formed. The system can
be written in the matrix form:

[H]{U} = [G]{T}. (4)

The matrices [H] and [G] depend on the fundamental solutions while {U} and {T} are vectors of
boundary displacements and tractions. Taking into consideration boundary conditions, i.e. known
displacements ū on the boundary Γ1, and known tractions t̄ on the boundary Γ2 (Fig. 1), the system
of equations can be transformed into the form:

[A]{X} = [D]{Y}, (5)

where {X} and {Y} are vectors of the unknown and known boundary quantities. The matrices [A]
and [D] consist of appropriate columns of the matrices [H] and [G]. The system of equations is
solved for the unknown quantities by using direct or iterative methods.

The matrices of the system of equations are fully populated and nonsymmetric. The complexity
of preparation of the system is O(N2), where N is the number of boundary elements, which is
proportional to the number of degrees of freedom (DOF). The properties of the system of equations
make the conventional BEM inefficient in large scale analysis with respect to the computation time
and required computer memory.
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3. FAST MULTIPOLE BOUNDARY ELEMENT METHOD

3.1. General description of the algorithm

In this section a general idea of the fast multipole boundary element method will be introduced.
For a detailed description of the method we refer the reader to the literature (e.g. [10]).

In the FMM for each collocation points near and far fields are determined. In the near field all
the boundary integrals are calculated directly. In the far field expansions are used. The fields are
determined by clustering of the boundary elements. The domain of the body is enclosed within
a square, which is divided recursively into smaller clusters, until they contain a fixed number of
boundary elements. The clusters form a hierarchical tree structure consisting of nodes, their children
and ancestors, corresponding to the clusters. The clustering scheme and the tree structure are shown
in Fig. 2.
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Fig. 2. (a) Clustering of the boundary elements, and (b) formation of the tree structure

The FMM uses multipole expansions of the integrals (potentials) at points located near to the
integration points (Fig. 3). The expansion terms are products of multipole moments and functions.
The moments depend on the locations of the expansion point and integration points, and on densities
of the potentials. The functions depend on the locations of the expansion point and collocation
point. Respective moments calculated for many boundary elements are added together and thus
an influence of many integration points is reduced to the single point. The multipole functions are
expanded further around points near to the collocation points. The series terms are products of
local moments and local functions. The local moments depend on the location of the multipole and
local expansion points, and are calculated by translation of the local moments (multipole-to-local
translation, M2L). The local functions depend on the location of the local expansion points and
the collocation points. Thus, the reduced influence is distributed to many points. The number of
potential term calculations is reduced significantly in relation to the conventional BEM, where for
each collocation point all the potentials coming from all integration points have to be calculated.
The series of a finite number of terms are convergent when the integration points are far enough
from the collocation points.

Important steps of the algorithm are translations of the multipole and local moments. The first
translation is performed by shifting the multipole expansion points. The method is applied for eval-
uation of the moments for larger clusters, without necessity of integration along the same boundary



Stress analysis of linear elastic structures by the fast multipole boundary element method 227

W

G

Integration points

Multipole expansion points

Local expansion points

Collocation points

M2M translation

M2L translation

L2L translation

Fig. 3. General scheme of the fast multipole method

elements and internal cells. The operation is called multipole-to-multipole (M2M) translation. Sim-
ilarly the local moments are transformed by shifting the local expansion point. Thus, new moments
for smaller clusters are calculated which are applied to the evaluation of the far-field terms of the
potentials. As the result of all the operations, products of the matrices and the boundary quan-
tities vectors are obtained and elements of the volume potential vector as well. Summarizing, the
algorithm consists of the following steps:

• Clustering of the boundary elements.

• Calculation of the multipole moments for leaves of the tree (the smallest clusters).

• Multipole-to-multipole (M2M) translation of the moments.

• Multipole-to-local (M2L) translation.

• Local-to-local (L2L) translation.

• Evaluation of the potential terms by using the local expansion of leaves.

Figure 4 shows the sequence of translations of the moments.

M2L

L2L

A kia( )( )

M2M

Evaluation of the potentials
by using the local series

Fig. 4. Translations of the multipole and local moments

The system of equations (5) can now be written in the following form:

[A]near{X}+ {AX}far = [D]near{Y} + {DY}far. (6)
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The ’near’ matrices and vectors include the near field terms of the potentials calculated directly,
whilst the ’far’ ones correspond to the far-field influence, coming from so-called interaction sets of
clusters, and are computed by using expansions. The system of equations can be solved only by
using an iterative solver as the matrices are not calculated explicitly. The complexity of the method
is O(N).

3.2. Multipole and local series of the potentials

In Eq. (1) the integrals are:

• single layer potential:

∑

j

IUij (x
′) =

∫

Γ

Uij(x
′, x) tj(x) dΓ(x), x ′ ∈ Ω, x ∈ Γ, (7)

• double layer potential:

∑

j

ITij(x
′) =

∫

Γ

Tij(x
′, x)uj(x) dΓ(x), x ′ ∈ Ω, x ∈ Γ. (8)

In the multipole methods the far-field potentials are expanded into a series around a point close
to the integration points. An expansion of a single term of the single layer potential around the
point c (Fig. 5) will be considered. The term corresponds to the influence of integration points
located at boundary elements β clustered in the cluster α.
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Fig. 5. Scheme of the multipole expansion

By using the formulation given in [21] the series can be written as:

IU11α(x
′) =

1

8πµ(1− ν)
Re

∞
∑

k=0

[

(4ν − 3)A0
1α(k)f(z, k)

+A1α(k)f
Re(z, k + 1)−ARe

1α(k)f(z, k + 1)
]

,

(9)

with the multipole moments:

Aiα(k) =
∑

β

∫

Γβ

y
k tiβ dΓ(x), (10)

ARe
iα (k) =

∑

β

∫

Γβ

Rey y
k tiβ dΓ(x), (11)

for k = 0, 1, . . . ,∞; and

A0
iα(k) =

{

Aiα(k) for k = 0,

− 1
k
Aiα(k) for k = 1, 2, . . . ,∞.

(12)
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We assume that the expansions are convergent if

|y| ≤ 1

2
|z|. (13)

The vectors y and z connect the expansion point c to the integration point x, and the expansion
point c to the collocation point x′ respectively (Fig. 5). The multipole functions are:

f(z, k) =

{

ln z for k = 0,

z
−k for k = 1, 2, . . . ,∞.

(14)

fRe(z, k) = Re z z
−k. (15)

The multipole moments, which include the influence of the integration points, are transformed
by the translation of the expansion point (M2M translation). Appropriate formulas can be found
in the literature (e.g. [1, 20]). Next, the M2L translation is performed resulting in the local series
(Fig. 6):

IU11α(x
′) =

1

8πµ(1− ν)
Re

∞
∑

k=0

[

(4ν − 3)E0
1α ′(α, k)g(y ′, k)

+ ERe
1α ′(α, k)g(y ′, k)− E1α ′(α, k)gRe(y ′, k)

]

(16)

for

|y′| ≤ 1

2
|z′|. (17)
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Fig. 6. Scheme of the local expansion

The local moments are obtained by the application of the M2L formulas:

E0
iα ′(α, l) =







ln z ′A0
iα(0) +

∑

∞

k=1

(

l+k−1
k−1

)

(z ′)−k−lAiα(k), for l = 0,

−1
l
(z ′)−lA0

iα(0) +
∑

∞

k=1

(

l+k−1
k−1

)

(z ′)−k−lAiα(k) for l = 1, 2, . . . ,∞,
(18)

Eiα ′(α, l) =
∞
∑

k=0

(

l + k

k

)

(z ′)−k−l−1Aiα(k), (19)

ERe
iα ′(α, l) =

∞
∑

k=0

(

l + k

k

)

(z ′)−k−l−1
[

Re z ′Aiα(k)−ARe
iα (k)

]

, (20)

The local functions are defined as follows:

g(y ′, k) = (y ′)k, (21)

gRe(y ′, k) = (y ′)k Re y′. (22)
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The translation was constructed by application of the following expansions:

ln(z ′ − y
′) = ln z ′ +

∞
∑

l=1

−1
l

(

y
′

z ′

)l

, (23)

(z ′ − y
′)−k = (z ′)−k

∞
∑

l=0

(

l + k − 1

k − 1

)(

y
′

z ′

)l

, (24)

with the condition (17) satisfied.

4. CALCULATION OF STRESSES

Somigliana’s identity can be applied to the evaluation of displacements at any point of the body Ω,
when all boundary displacements and tractions are known. A stress integral equation can be obtained
by the differentiation of equation (1) with respect to x′, and applying the strain-displacement and
the stress-strain relationships. The stress integral equation has the form:

σij(x
′) =

∫

Γ

Uijk(x
′, x) tk(x) dΓ(x)−

∫

Γ

Tijk(x
′, x)uk(x) dΓ(x). (25)

The new fundamental solutions are:

Uijk(x
′, x) =

1

4π(1 − ν)r

[

2r,ir,jr,k + (1− 2ν)(δkjr,i + δkir,j − δijr,k)
]

, (26)

Tijk(x
′, x) =

2µ

4π(1 − ν)r2

{

2
∂r

∂n

[

(1− 2ν)δijr,k + ν(δjkr,i + δkir,j)− 4r,ir,jr,k
]

+ 2ν(nir,jr,k + njr,kr,i) + (1− 2ν)(δkjn,i+δkinj + 2r,ir,jnk)− (1− 4ν)δijnk

}

.

(27)

By using this equation one can calculate stress components at any point of the body.
The boundary stress components are usually evaluated by means of the boundary quantities.

The derivatives of shape functions are used to calculate strain components. The boundary strains
and traction forces allow to calculate all boundary stress components. This method is convenient
due to reduced computation time in comparison with the application of the stress integral equation.
However stress evaluation at internal points requires the usage of the stress integral equation, which
can result in a significant time cost in the case of a large number of the internal points, due to
time consuming integration operations. In order to reduce the computation time one can apply the
FMM, which requires an expansion of the potentials.

The direct expansion of the fundamental solutions (26) and (27) is complicated as the formulas
have relatively complex form. Therefore a common choice for the derivation of expansions of the
potentials occurring in the equation (25) is the transformation of the expansions built for the
displacement-equation potentials. For example, by taking the derivative of the potential (7) with
respect to the j-th coordinate of x′ one can obtain:

∂

∂x ′j







∑

β

∫

Γβ

Uik(x
′, x)tkβdΓ(x)







= −
∑

k

IUikα,j(x
′). (28)

A new potential is introduced:

IUijkα(x
′) = IUikα,j(x

′), (29)
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which can be calculated by using the expansion (16), with the local functions replaced by their
derivatives. For a single term we have:

IU1j1α(x
′) =

1

8πµ(1 − ν)
Re

∞
∑

k=0

[

(4ν − 3)E0
1α ′(k)g, j(y

′, k)

+ ERe
1α ′(k)g, j(y

′, k)− E1α ′(k)gRe
, j (y

′, k)
]

,

(30)

with the derivatives of the local functions:

g, j(y
′, k) = k(y ′)k−1

{

1

i

}

, (31)

gRe
, j (y

′, k) = k(y ′)k−1Re (y ′)

{

1

0

}

+ (y ′)k
{

1

i

}

, (32)

where i =
√
−1. The term of the stress integral equation can be calculated by the application of the

constitutive equation:

∑

β

∫

Γβ

Uijk(x
′, x)tkβdΓ(x) =

∑

k

{

2µν

1− 2ν
δijI

U
llkα(x

′) + µ
[

IUijkα(x
′) + IUjikα(x

′)
]

}

. (33)

Consequently all the far-field terms of the stress equation potentials can be obtained. Summariz-
ing, the stress calculations can be performed by using the same multipole and local moments and
their translations as for the displacement equation potentials. The calculations are performed as a
post process step, after the system of equation (4) or (5) is solved and all boundary displacements
and tractions are known.

In order to recover the stress field within the area of the structure or its part internal points
have to be determined. The points can be nodes of cells which can be applied to the interpolation
of the analyzed field. The internal points are treated as collocation points and for each of them the
equation (25) is applied. The points have to be clustered and assigned to appropriate nodes of the
tree. Assuming that the points are nodes of cells, the clustering of cells has to be performed (Fig. 7).

The complexity of the internal stress evaluation stage is O(N +M), where N is the number of
boundary elements, proportional to the number of DOF, and M is the number of cells which is
proportional to the number of internal points.

Fig. 7. Clustering of the boundary elements and cells with internal points
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5. COMPUTER CODE

A FMBEM code for the stress analysis of elastic plates loaded statically is developed [12]. The
boundary of structure is discretized using three-node quadratic boundary elements and the domain
is discretized using six-node internal cells. The regular boundary integrals are calculated using
the Gauss quadrature. The singular boundary integrals are calculated using logarithmic Gauss
quadrature or rigid body movement method, respectively. The system of equations is solved by
using the preconditioned GMRES. The preconditioner sparsity pattern based on leaves of the tree
was used. In the case of the internal stress analysis the cell nodes determine internal points, and
the cells are used for the interpolation of the analyzed field.

6. NUMERICAL EXAMPLES

6.1. Square plate with a hole

In this example stresses in the whole area of a quadratic plate with a circular hole were analyzed.
The plate is loaded by tensile forces, as it is shown in the Fig. 8. The side length is a = 1 m and
the hole radius is r = 0.1 m. The traction force value is p = 100 MPa. The material properties are
as follows: Young’s modulus E = 200 GPa and Poisson’s ratio ν = 0.3. The plate is in plane stress.
Three discretization cases were considered as it is shown in Fig. 9 and Table 1. The same structure
were analysed by Liu [6] and by Ptaszny and Fedeliński [12]. In the cited articles only boundary
stresses were analyzed.

The boundary stress was calculated by using the boundary quantities, evaluated by the conven-
tional BEM. The internal stress was evaluated at internal points by the BEM or the FMBEM (we
will refer to the last scheme as BEM/FMBEM). The points were used as cell-nodes for the visual-

pr

a

a

Fig. 8. Quadratic plate with a circular hole

Fig. 9. Three models of the plate
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Table 1. Parameters of the plate numerical models

Model No. Number of boundary elements Number of internal points

1 56 592

2 120 2220

3 220 10672

ization the stress distribution and calculation of the elastic energy of the structure. The maximum
number of cells in a leaf was equal to 20. Series of w = 5, 10 and 15 terms were applied.

As a result of the analysis a distribution of stress within the whole structure area was obtained.
Figure 10 shows the reduced Huber-Mises stress distribution maps for the finest discretization case.
For the verification of the results the elastic energy of the structure was computed as follows:

U =
1

2

∫

Ω

σTEσ dΩ, (34)

where Ω is the domain of the structure, σ is the matrix of stress components and E is the matrix
of the material elastic coefficients. A relative difference of the energy was calculated:

ε =
||UBEM

3 || − ||U ||
||UBEM

3 || · 100%, (35)

with respect to the energy norm obtained by the BEM for the finest model:

||UBEM

3 || =
√

UBEM

3 . (36)

The elastic energy values obtained by using different methods are shown in Table 2 and Fig. 11. The
values of the relative difference obtained by the BEM and the BEM/FMBEM for all the models
and different numbers of expansion terms are shown in Table 3.
In the case of the BEM/FMBEM analysis with 5 expansion terms the resulting stresses were the

most different from the ones calculated by the BEM. Analyzing the stress plots, Fig. 10, one can see
local stress discontinuities. They are more visible with growing number of internal points and caused
by the truncation error. When at least 10 terms are used the stress field is continuous. The energy
value (Table 2, Fig. 11) and the relative difference value (Table 3) confirm the lower accuracy of the
5-termed expansion analysis results. For such number of terms the energy converges to a different
value from that observed in the case of the BEM analysis. This means that the truncation error
exceeds the discretization error. For both cases of 10 and 15 terms the truncation error gets lower as
the number of internal points grows. For all the cases the relative difference does not exceed 0.15%.

Fig. 10. Huber-Mises stress distribution plots
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Fig. 11. Elastic energy calculated by the BEM and the BEM/FMBEM

Fig. 12. BEM and BEM/FMBEM relative analysis time

Fig. 13. BEM and BEM/FMBEM memory
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Table 2. Elastic energy calculated by the BEM and the BEM/FMBEM

U [J]

BEM/FMBEMModel No.
MEB (BEM)

w = 5 w = 10 w = 15

1 27 564 27 535 27 563 27 564

2 27 505 27 452 27 504 27 505

3 27 511 27 439 27 509 27 510

Table 3. Relative difference of the elastic energy calculated by using the BEM/FMBEM

ε [%]
Model No.

w = 5 w = 10 w = 15

1 -0.044 -0.096 -0.097

2 0.106 0.012 0.010

3 0.130 0.004 0.002

When the expansion degree is at least 10 the BEM/FMBEM results agree with the BEM ones, and
the relative difference error tends to a value of order of 0.01%.
Internal stress analysis time was investigated. Figure 12 shows a normalized stress computation

time, and the time of solution of the system of equations, related to the BEM stress calculation time
for the largest number of internal points. The stress calculation time has a significant influence on
the overall computation time, as it is by almost 100 times longer than the time of the BEM solution
of the system of equations. The analysis time can be shortened by over 5 times using the FMBEM
with 15 expansion terms, by 10 times for 10 expansion terms, or even by 15 times when 5 expansion
terms are used (Fig. 12). The FMBEM analysis time grows less intensely than the BEM one, with
growing number of internal points.
Required memory was also investigated. A comparison of memory for different methods is shown

in Fig. 13. In the case of the BEM/FMBEM analysis the memory is larger than for the BEM. In all
the cases for the evaluation of the boundary values the conventional BEM with fully populated ma-
trices was used. The FMBEM requires also a storage of the clustering tree structure, with multipole
and local moments.

6.2. Gear

Displacements and stresses in a gear of the involute tooth profile were analyzed. The geometry of the
gear is shown in Fig. 14. The dimensions are given in millimeters. The tooth profile parameters are
shown in Table 4. It is assumed that the number of teeth of the mating gear is 80. The axes of both
gears are located on a vertical plane, and the mating gear is located above the analyzed one. The
gears are in position corresponding to the interaction of a single teeth couple. The circumferential
force acting at the contact point of pitch cylinders Fo = 2670 N. It was assumed that a single tooth

Table 4. Parameters of the gear tooth

Parameter Value

No. of teeth 40

Module 2 mm

Angle of action 20◦

Pitch diameter 80 mm

Addendum 4.5 mm

Tooth depth fillet radius 0.4 mm
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Fig. 14. Gear geometry

Fig. 15. Tooth load scheme

is loaded by a traction force of distribution described by the Hertz theorem for two interacting
cylinders of radii dependent on the pitch diameters and the angle of action, as it is commonly
assumed in engineering calculations of gears. The load parameters (Fig. 15) are: pmax = 602.7 MPa
and b = 0.1 mm. The inner boundary of the model was clamped. The gear material is steel of the
parameters: Young’s modulus E = 200 GPa and Poisson ratio ν = 0.3. The model is in plane strain.

The outer boundary was divided into 2 688 quadratic boundary element, each of the length
approximately equal to 2b. The number of DOF was equal to 10 752. Such discretization scheme
allowed to model the load along a single element. The area of the loaded tooth was divided into
cells (Fig. 16).

At the cell node stresses were calculated and the cells were used to visualize the stress field. The
parameters of the BEM model are listed in Table 5.

Table 5. Parameters of the BEM model

No. Value

Boundary elements 2 688

Internal points 1 099

Internal cells 572

Degrees of freedom 10 752

The number of DOF is too large for an effective analysis by using the conventional BEM. The
FMBEM analysis was performed by using sequantly w = 5 and 10 expansion terms. The precondi-
tioner sparsity pattern was based on leaves of the tree. The maximum allowed number of cells in a
leaf was set to 250. The relative tolerance for the GMRES iterative solver was set to 10−6.
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(a) (b)

Fig. 16. Geometry of the BEM model: (a) the tooth numbering, (b) the iscretized region

Fig. 17. Tooth vertice horizontal displacement

The FMBEM analysis results were compared with other results obtained by the MSC Pa-
tran/Nastran commercial FEM software. Two FEM model were developed:

1. A model of the whole gear with the same boundary node distribution as in the BEM model. The
boundary condition were the same as for the BEM model.

2. A model of a single tooth according to the discretized area of the BEM model. The number
of the boundary nodes at the tooth-profile boundary was by 10 times larges than for the first
model. The model was clamped at the artificial boundary, dividing the tooth from the remaining
part of the gear.

Both the FEM models were discretized by using six-node triangle elements with quadratic shape
functions. All parameters of the considered models are shown in Tables 5 and 6, respectively.

Table 6. Parameters of the FEM models

No. Model No. of elements No. of DOF

1 Whole gear 28 278 118 008

2 Single tooth 14 831 15 646

Displacements of the vertice A of the first tooth (Fig. 15) and corresponding vertices of the
remaining teeth were analyzed. The tooth numbering is shown in Fig. 16(a). Figures 17 and 18 show
a comparison of the horizontal and vertical displacements respectively, obtained by the FMBEM
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Fig. 18. Tooth vertice vertical displacement

Fig. 19. Distribution of Huber-Mises stress (MPa) calculated by using the FMBEM

Fig. 20. Distribution of the reduced Huber-Mises stress (MPa) calculated using the FEM: (a) for the
model 1, (b) for the model 2
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for w = 5 and 10 expansion terms, and by the FEM for the 1st model. The number of terms does
not influence significantly the FMBEM results which agree with the FEM ones.
The reduced Huber-Mises stress distribution within the loaded tooth area was investigated. For

the internal stress calculation 10 expansion terms were used, independently on the expansion degree
used for the boundary quantities evaluation. The results obtained by using 5 terms of expansion for
the boundary quantities evaluation are shown in Fig. 19. The results obtained by the FEM for the
two considered models are shown in Fig. 20.
The Huber-Mises stress at the points B, C and D of the 1st tooth profile, where a stress concen-

tration occurs, was evaluated. A comparison of the values computed by using different methods are
listed in Table 7. The FEM analysis results for the 1st model are underrated in comparison with the
2nd FEM model and the FMBEM results, which are consistent (Table 7). The 2nd FEM model was
discretized with a more dense finite element mesh than the 1st model. It can be concluded, that the
FMBEM gives more accurate results than the FEM with the same node density at the boundary.

Table 7. Maximal Huber-Mises stress at the points B, C and D

Method
Reduced stress (MPa) at the point

B C D

FMBEM, w = 5 160.2 137.3 547.0

FMBEM, w = 10 160.4 137.4 547.0

FEM, model 1 152.6 130.3 341.3

FEM, model 2 157.4 137.1 544.1

7. CONCLUSIONS

In this paper the FMBEM analysis of internal stress in 2-D linear elastic structures was presented.
The boundary stress was calculated by the differentiation of the boundary element shape functions
and application of the strain-displacement and stress-strain relations. For the evaluation of internal
stress series were applied. The series of the stress integral equation potentials were obtained by
differentiation of the local functions of displacement equation potentials, and subsequent application
of the same relations as in the case of the boundary stress. In the numerical example a structure with
stress concentration was considered. Accuracy, analysis time and required memory were investigated.
The elastic energy of analyzed structure can be evaluated with accuracy of order of 0.1% or better,
when 5 or more expansion terms are used for the internal stress analysis. It was shown, that the
analysis time can be reduced in relation to the conventional BEM analysis, for structures with
relatively small number of degrees of freedom, when the number of internal points is of order of 102

and larger.
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