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The aim of the paper is to advocate the use of hybrid reasoning systems for computer-assisted analysis
of physical systems. The paper starts from a critical assessment of classic numerical techniques, with the
problem of sensitivity analysis of fuel rod support spring in a nuclear reactor used as an example. Then, the
significance and some basic issues concerning qualitative physics methods of analysis of physical systems are
discussed. Using the example of the so-called “snap-through” mechanism, the basic principles, advantages
and limitations of qualitative simulation technique are shown. Certain future development possibilities are
indicated, especially the necessity to formalise the order-of-magnitude reasoning. The recently developing
techniques of diagrammatic reasoning are also introduced, with another mechanical example illustrating
sources of their advantages for certain kinds of problems. The significant role of logical (expert-system-like)
reasoning techniques and constraint-satisfaction systems is shown as well. Finally, the hybrid reasoning
system concept is sketched. Such hybrid systems should integrate quantitative (numerical) analysis, various
methods of qualitative analysis as well as diagrammatic and logical reasoning techniques.

1. INTRODUCTION

Lots of widely used science and engineering software systems are now capable of solving quantita-
tively problems that once occupied researchers and engineers. They address a significant portion of
current research and engineering needs, are applicable to a wide variety of realistic problems in a
wide variety of computing environments, and are based on frequently very robust and reliable nu-
merical algorithms. A sophisticated computer-aided sensitivity analysis of fuel rod support spring
in a nuclear reactor will serve us as a good example of such a problem. The discrete model used
contained nearly 5000 primary unknowns. 2

Even though such numerical (or quantitative) simulation techniques may provide crucial in-
formation about the system behaviour, they as a rule prove insufficient for addressing problems
involving incomplete knowledge about system parameters. If extensive data on parameter variabil-
ity are available, then a stochastic process theory could be applied. Otherwise, as is the case in
most practical situations, a new methodology is needed. A promising new developments emerge in
the field of so-called Qualitative Physics which introduced the techniques of qualitative simulation,
order-of-magnitude reasoning, and the like. These techniques, and also other new developments
like diagrammatic reasoning and constraint satisfaction systems, together with knowledge-based
approaches, are opening new possibilities for analysis of complex systems with incomplete informa-
tion or for simplification of analysis when exact numerical solution is not needed. Another important
aim of these new methodologies, usually not addressed by traditional numerical techniques, is au-
tomating the intelligent selection of appropriate technique and mathematical model to the given
problem, as well as controlling the solution process in a fashion transparent to the human user.

The purpose of this paper is to demonstrate that no single approach is able to solve all needs
of computer simulation and analysis of practical, complex systems. To support the thesis, we first
explore the basic principles of major approaches, concentrating on their advantages and limita-
tions. To facilitate this task, we use a series of examples, some of them taken from the literature



166 M. Kleiber and Z. Kulpa

(often considerably modified and extended), some our own. Gathering together the examples, other-
wise scattered among disparate literature sources, provides new insights into relationships between
various approaches and techniques, highlighting their potential advantages and limitations. As a
result, we come to the conclusion that the future belongs to hybrid reasoning systems, combin-
ing various techniques, especially quantitative and qualitative analysis, diagrammatic reasoning,
expert-system-like logical reasoning and constraint satisfaction systems into integrated, versatile
analysis tools for analysis of complex physical systems.

The paper is a considerably extended and reworked version of the earlier short article presented
at the Japanese-Polish Joint Seminar on Advanced Computer Simulation in Tokyo [18].

2. NUMERICAL SIMULATION

For all the unquestionable successes and significance of the quantitative computational methods of
solving engineering problems, some limitations of them recently became obvious. Let us start the
discussion from an example of a typical numerical simulation which will clearly illustrate the power
of the classic approach and will serve as a model problem for discussing its limitations.

The example, taken from [5], concerns sensitivity analysis of a grid spring. Figure 1 shows one of
two identical grid springs from a supporting assembly of a fuel rod in a Pressurised Water nuclear
Reactor (PWR). There are hundreds of such springs in a fuel assembly of a typical PWR. To
simulate the insertion of the fuel rod between the supporting springs, a prescribed displacement
history of the spring’s centre A is given. The problem is to evaluate first-order sensitivities (i.e.
gradients) of the reaction R at the point A with respect to changes of the spring thickness along
the spring. The problem is of great practical importance, as the spring dimensions will always
vary because of unavoidable manufacturing imperfections while the constancy of the contact force
between the spring and the fuel rod is essential for reliable performance of the reactor.

Using the terminology of traditional computational mechanics, the problem can be, and has
been, analysed within the framework of the so-called shape structural sensitivity analysis [15].
Many complicating factors influence the numerical analysis, making it highly complex. Non-linear
clastic-plastic material behaviour and potentially large deformations imply highly non-linear be-
haviour of the system. Varying thickness results in a necessity to formulate the appropriate partial
differential equations boundary-value problem in accordingly modified spatial domains. That in
turn hampers systematic solution of comparisons required by any sensitivity study. Solving the
problem involves looking for values of the gradients g}% , where h;, i = 1,2,...is the spring thick-
ness at subsequent spring cross-sections. The finite element method was used with a discretization
mesh of 164 three-dimensional elements resulting in 4473 degrees of freedom, see Fig. 1. The mate-
rial data for the spring are given by Young modulus (186.2 GPa in this case), Poisson’s ratio (equal
to 0.27 here), and a multi-linear constitutive law ¢, = f(ay).

Numerical programs typically employed for solving problems of this type are very complex.
Due to complicated geometry of real-life specimens, the use of automatic input data generators is
of limited assistance. Assuring accuracy of huge amounts of numerical input data and confidence
in correctness of the program execution and output is also a serious problem, to a large extent
because the (intuitive) assessment of the physical feasibility of the results is seriously hampered by
great amounts of unstructured numerical data produced and deceptive nature of physical intuition
for highly non-linear, novel problems like that presented here. The amount of resulting data is
quite overwhelming — for every time step (of which typically there may be as many as 103 to
10%), the programs may produce also tens of thousands real numbers. Sorting them out effectively
requires a lot of experience and tedious, error-prone work, even with the help of graphical data
visualisation tools. Not surprisingly, the total cost of the analysis — which should include the
costs of the development of the analysis package, formulating the FEM model, preparing and
checking large amounts of input data, running the program and analysing the results — is quite
substantial.
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Fig. 1. The fuel rod support spring and its finite Fig. 2. Some results of analysis of the spring:
element model (adapted from [5]) sensitivity gradients at different cross-sections

The analysis, briefly reported here, has been done with the in-house finite element analysis
package at the University of Tokyo [5], by a team of researchers including one of the authors of this
paper (M. Kleiber). About 5000 real numbers had to be supplied as the program input. Some of
the significant results of the analysis are shown in Fig. 2 which displays values of g% at different
cross-sections for a certain value of the prescribed displacement. Other results obtained concerned
variations of the sensitivity gradients g—,ﬁ (at the series of particular cross-sections i) with varying
prescribed displacement. From the practical point of view, the most important general result of all
this complex analysis is the conclusion that the critical areas in the spring (with high sensitivity to
manufacturing imperfections, see Fig. 2) occur around sections no. 15 and 30, that is at the two of
several bends in the spring. For certain purposes such a qualitative answer would be fully sufficient;
at least knowing it in advance may be of great help in formulation, checking, running and assessment
of results of the full quantitative numerical analysis. Unfortunately, the new problem appears: how
to find methods of obtaining such qualitative answers quickly, cheaply, and automatically?

In summary, we may reasonably say that complex and costly numerical analysis may not always
be just the thing (or the only thing) we need — in many cases, less precise, qualitative answers
might suffice, or at least they might help us in effective planning and controlling of the more
precise numerical analysis. Moreover, by their nature the numerical analysis methods address only
that part of engineering which involves numerical manipulation and data management. Engineering
knowledge is, however, not mere numbers and most of it cannot be modelled adequately using purely
numerical means. Configuring aeroplanes, predicting avalanches and automating factories requires
intuitive judgement and qualitative assessment, i.e., processes of reasoning that cannot be precisely
quantified. But we would like to see computers capable of helping us with this non-numerical
analysis to a similar extent as they are good at intensive number-crunching.

Thus, while current numerical techniques and their computer implementations are powerful and
useful, they have, nevertheless, certain limitations:
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e require complete numerical specification of the model — cannot be applied in the conditions of
incomplete or imprecise knowledge;

e produce the results that are usually far more quantitatively detailed (and bulky) than necessary
for their everyday or engineering use;

e are unable to explain the behaviour they predict, while it is often very difficult to extract, from
the great volume of “exact” numerical data produced, the intuitively simple properties of their
predictions;

e do not have inherent means to detect even gross data errors and inconsistencies;
e are often difficult to use and costly, with respect to both run-time and development time;

e do not easily reveal the assumptions underlying their construction and applicability conditions
— the algorithms are often written for narrow range of behaviours with their many limitations
recorded in the mind of the developer only;

e the tasks of selection of appropriate analysis method and parameters, and control of often
complex application scheduling of various analysis modules and sets of intermediate data is
almost entirely left to the human user.

3. QUALITATIVE ANALYSIS

Let us start our introduction to methods of qualitative analysis and reasoning with the already
classic example introduced by Forbus [12]. It is a steam production subsystem of a propulsion
system used, e.g., on warships, see Fig. 3.

Water is fed into the boiler, heated by oil-fired burners, and turned to steam. The steam is
additionally heated in the superheater, and leaves it through the steam outlet. The question is:
what will happen to the temperature Tou, of the produced steam when the water temperature T
increases?

Note that neither numerical values nor exact quantitative equations describing the behaviour
of the system were given. Also, the solution is not straightforward — e.g., the immediate answer
that ‘when inlet temperature rises, so will the outlet temperature’, though sounds plausible, yet
somehow feels in need of more thorough justification. But an engineering student is quite able to
answer it, after some consideration. The reasoning goes as follows. The boiling occurs at the same
temperature, so when the water coming into the boiler becomes hotter, the amount of heat that
must be added to boil a piece of water is reduced. That is, the water will boil sooner which means
the rate of steam production increases. Larger amounts of produced steam must now flow through
the superheater, that is, the steam must flow faster, thus spending less time in the superheater.
Less time spent in the superheater means less heat is transferred to the steam, and as the starting
temperature of the steam is the same, the final temperature at the outlet will fall when the feedwater
temperature increases!

This was an example of the kind of reasoning called qualitative reasoning — reasoning that often
suffices to solve quite sophisticated physical problems, and in many cases is the only method we have
(when quantitative data are missing or unreliable) or can afford (when time presses or formulating
and solving complex numerical model is too costly). Engineers and scientists are quite apt in such
kind of “inexact” reasoning — in fact, it is an indispensable ingredient underlying the quantitative
knowledge needed to build, understand and solve the complex analytical and numerical models
of real physical systems. The challenge before the field is thus how to formulate the more or less
formalised descriptions of qualitative reasoning processes so as to be able to program computers
capable to demonstrate the human ability to reason in this way.
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Fig. 3. The steam production system (adapted from Fig. 4. A qualitative description of a “reasonable”
Forbus [12]) function

3.1. Qualitative simulation: Basics

Many specific techniques of qualitative reasoning and analysis were already developed and applied
to diverse exemplary physical problems and systems (see, e.g., the state-of-the-art collections of
papers [8,9,10,40]). There are three main qualitative models of physical systems with corresponding
qualitative analysis methods:

e Component-connection or qualitative physics based on confluences approach of de Kleer and
Brown [7]. Here the model consists of active objects (components) transforming attributes of
matter, energy and information that are exchanged between objects along their passive connec-
tions.

e Qualitative Process Theory (QPT) of Forbus [11]. The QPT model consists of a set of passive
objects and relations between their attributes, and a set of active processes describing possible
changes of the attributes of objects.

e Qualitative simulation (QSIM) of Kuipers [20-22]. The model resembles traditional mathemat-
ical modelling techniques, as it describes the system as a set of qualitative variables subject to
constraints defined by a set of qualitative differential equations.

The third of the above approaches seems now to be the most popular. It is considered to
be well understood as to its formal properties [21,36,37] and comparatively easy to implement.
Translators from descriptions using the other two models into QSIM were constructed as well. To
spare the reader the trouble of searching for appropriate literature in order to understand the next
two examples and further discussion, below we will briefly introduce the basic principles of the
qualitative simulation technique, as described in main papers [20,21] and the recent book [22] by
Kuipers.

In QSIM, the parameters of a physical system are modelled by a set of functions {f(¢)} over the
extended real number domain R* = [—00, +00]. It is assumed that these functions are “reasonable”
(which means, briefly, that they are continuous, continuously differentiable, have finite number of
critical points within any bounded interval, and values of their derivatives at the ends of any
such interval are equal to appropriate limits). Such functions can be described qualitatively by
dividing them into monotonic segments, see Fig. 4. The values of f at the joints of the segments
are called landmark values; the (possibly partially) ordered set of such values is called a quantity
space of the function. A set of distinguished points to < t; < ... < t, marks points at which
something interesting happens to the value of f, such as passing a landmark value or reaching
an extremum. A qualitative state QS(f,t) or QS(f,(ti,tit1)) of a function f at a point ¢ or in
an interval (t;,t;41) is a pair (qval,qdir), where qval is a landmark value [ or an interval (is d341)
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between such values, and qdir is the qualitative derivative, taking on one of the symbolic values inc,
std or dec, depending on the sign — positive, zero or negative, respectively — of the value of da%
at t or over the interval (t;,t;41). The qualitative behaviour of a function is then considered to be
a sequence of adjacent qualitative states QS(f,t0), @S(f, (to,t1)), QS(f,t1), -- -, QSEF, (hirstn)),
QS(f,tn). The behaviour of a physical system is described by the set of qualitative behaviours
of all its parameters. The interactions between the parameters are specified by (quantitative or
qualitative) constraints which are derived from equations describing the system. The qualitative
simulation algorithm uses these constraints to derive, step by step, the subsequent qualitative states
of the parameters on the basis of previous states.

From the formal point of view, the computational model underlying the qualitative simulation
method is the interval algebra (handling of intervals between landmarks and distinguished points),
and its special case, the sign algebra (handling of signs of derivatives). Many other qualitative
reasoning approaches are based on these algebras [36,37]. The consequences of this fact will be
discussed in Section 3.3.

3.2. The snap-through problem

Although the meaning of the (control) variable ¢ in the above exposition of the qualitative simulation
technique is typically considered to be time, it has not necessarily to be so. Let us illustrate the
technique with an (untypical in this respect) example from structural mechanics, adapted from
Kleiber [17].

It is a so-called snap-through mechanism with geometric nonlinearity and one degree of freedom.
The mechanism, see Fig. 5a, consists of one bar of cross-sectional area A and Young modulus £
which is subject to a load P enforcing its tip to move a distance u. We consider u as a control
variable and ask for the (quasi-static) behaviour of other system parameters (especially the force P)
as a function of u.

From the geometry of the mechanism (see Fig. 5a), we have 12 — h? = (I + Al)?> — (h — u)*.
Solving the above equation for € = % (the axial strain in the bar), we get

u(2h — u)

e=—-14+1/1- B

For small 9, we have u < [ and h < [, and thus ﬂz—ﬁﬂl is small; therefore the square root can be
eliminated according to the standard approximation formula v/1 —z = 1 — . As a result, we get

the approximate formula € =~ ﬂ%ﬁ—hz

From the equilibrium condition, the axial force N is related to the load P as P = —N sin 9.
Again, for small values of 9, it can be adequately approximated as P ~ —N9J ~ N #

In a linear case, the force N and strain ¢ would be related by the equation N = AFEe. Let
us assume, however, the more loose, possibly non-linear, qualitative relation — that N can be
any monotonically increasing function of ¢, i.e. N = M (g). The subscript 0 means here that
Mg (0) = 0. In summary, we have the following set of (partially qualitative) constraints relating
the set {u, P,e, N} of parameters describing our system:

u—nh

P~ N T (1)
e~ ﬁ(ﬁ%@ 2)
N = MF(€). (3)

There is no general, quantitative method of solving such kind of equations. How can we find the
qualitative behaviour of the mechanism on the basis of such a description?
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Fig. 5. The snap-through mechanism (a) and its qualitative (b) and quantitative (c) solutions

The qualitative simulation algorithm starts from establishing the first approximation to quantity
spaces of the parameters. Without going into details (see [17] for them), we may safely assume the
following ordered sets of landmarks for our parameters:

v: 0<+4o00,

P: Ppn<0< +4oo,
€: Emin<0< 400,
N: Npin<0< +00.

In the above we do not assume yet any correspondence between (landmark) values taken on by
different parameters.

The next step is to establish the qualitative state of the system at the start of the simulation. As
the displacement w is the control variable, with values between 0 and +oo, its initial state should
obviously be u : (0,inc). From Eq. (2) we have S—Z R~ %l_ﬁ, so that at v = 0 we get g—z < 0, thus
the initial state of € : (0,dec). Similarly, using Eqs. (3) and (1), we may complete the description
of initial state, getting:

u : (0,inc) ; P :(0,inc) ; € :(0,dec) ; N : (0, dec) .

What will be the next state of the mechanism? The displacement u simply grows indefinitely —
nothing interesting here. The load P depends on both N and u, changing in opposite directions —
hard to predict now which prevails. Let us consider ¢, then. It decreases from 0, and its quantity
space is bounded from below by min , so there should be a situation when ¢ = £, . This is possible
only if $¢ = 422 = 0 which implies = h and by Egs. (1) and (3), P =0and N < 0. Since, however,
P : (0,inc) initially, the just discovered condition P = 0 at a later time means that P must attain
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a local maximum at some P = Pnax along the way (note how the above reasoning steps crucially
depend on the assumptions about “reasonableness” of the functions involved). As a result, we
have established a new landmark value Ppax of the parameter P, with corresponding distinguished
point of the control variable u; let us call it u; . We should also add appropriate landmark values
Ny and £; at w = uy, and the distinguished point u = h. Using that, and checking again the
constraints of Eqs. (1-3) for points and intervals of u between 0, u; and h, we are able to extend
further the qualitative behaviour of the mechanism, obtaining the sequences of qualitative states
as shown below. The correspondences between states of different parameters are now intentional
and constitute the significant element of the description:

w: (0,inc), ((0,u1),inc), (uq,inc), ((u1,h),inc), (h,inc) ;
P: (0,inc), {(0,Pmax),inc), {Pmax,std), ((Pmax 0),dec), (0,dec);
e: (0,dec), ((0,e1),dec), (€1, dec), {(e15Emin), dec) ;-
N: (0,dec), ((0,Ny),dec), (Ny,dec), ((Ni, Nmin),dec), (Nmin,std).

With the same kind of reasoning we can extend the simulation still further. The whole range
of qualitative behaviour of the most interesting for us parameter P can be seen in semi-graphical
form in Fig. 5b.

Figure 5¢ shows the quantitative solution for P = P(u) for comparison. It was obtained under
the assumption of linear material law N = AFE¢; solving Eqgs. (1-3), we will get in this case

AFE

P = ﬁ( 3 — 3u’h + 2uh?).

From the qualitative solution (Fig. 5b) we may easily draw a graph for P very similar in appear-
ance to the quantitative solution (Fig. 5¢), though we will not be able to establish exact positions of
the extrema and values Ppin and Pmax . Note, however, that the qualitative solution is valid for the
whole range of models of the mechanism — namely, all in which NV is a monotonically increasing
function of ¢ — not only for the linear material law. The qualitative solution is less ezact, but
more general. It may sound trivial, but note that using the qualitative analysis method we were
able to establish quite precisely both the level of precision (by the formal qualitative behaviour
description) and the level of generality (by the allowed class of functions relating N and ¢) of the
solution.

Emin, Std> A

3.3. Qualitative simulation: Incompleteness

The technique of qualitative simulation and other qualitative analysis approaches, though capable
to solve great many qualitative analysis problems, are not without some serious limitations. Quan-
titative techniques usually under-abstract, i.e., give us too specific answers, requiring at the same
time to be fed with too specific data, often unavailable and in fact not necessary to produce the
general, qualitative answers we are interested in. On the other hand, qualitative techniques which,
like qualitative simulation, are based on sign and interval arithmetic, have the pronounced tendency
to over-abstract, i.e., to give us answers too imprecise or too general. Even more alarming, that
limitation has been shown to be an inherent feature of the method itself. Thus, easy remedies like,
say, increasing precision of initial data or multiplying landmarks and narrowing value resolution
intervals will not work (see, e.g., [36], together with Kuipers’ reply in the same issue, and several
papers in [40], especially [37]).

Another problem with the classic qualitative simulation method can be illustrated by the analysis
of a little more complicated snap-through mechanism. Let us add a spring k to it, as shown in
Fig. 6a. With this spring, the equation (1) will take the form

u—nh
l

P~ N + M (u) (1)
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Fig. 6. The snap-through mechanism with spring (a) and its qualitative (b) and quantitative (c) solutions

where the term My (u), responsible for the reaction of this spring, denotes again some monotonically
increasing function of u, though generally different than the function M (¢) occurring in Eq. (3).
Applying the same reasoning method as before, we find that for u = h we have P = P; > 0 (instead
of P = 0),and N < 0 and decreasing, but we will not be able to determine the sign of the derivative
of P and, as a result, also the direction of its change. There is not enough information to decide
which of the additive terms in Eq. (1’) prevails. The only thing we can do is to consider several
possible cases — it leads to several possible qualitative solutions, among them one very similar as
in the non-spring case (compare Figs. 5b and 6b — only now the zeros of P are moved inside the
interval [h,2h]), and another one quite different, with P increasing all the time, see Fig. 6b.

Again, assuming linear spring with stiffness K we may calculate the quantitative solution (whose
exactness, however, crucially depends on our simplifying approximations during formulation of the
mathematical model of the mechanism, Egs. (1-3)):

AF 3
P=4ud —3uth +2u t b2 —K :
Ve [u 3u“h + u( -+ AER

and check that indeed it leads to both qualitative behaviours found above, for different relative
magnitudes of the spring stiffness K as compared with the value of the term Af’;’ﬁ , see Fig. 6c.

It turned out rather well in this case, but it might not in others. Indeed, it has been found that
the direct qualitative history generation used in the qualitative simulation method may lead to
“intractable branching”, i.e., a great number of uninteresting qualitative behaviours, including also
spurious, physically impossible predictions. To avoid them, additional constraints are necessary [23].

One of the ways to introduce them is to integrate the simulation with a more generic description
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of analysed processes by resorting to the so-called “first principles”. For instance, the direct use of
energy and momentum conservation laws is able to prune at least some of the physically impossible
paths [13]. Another possibility is to use more extensively additional representation and reason-
ing tools, especially the so-called analogical representations that are able to model more directly
the physical reality, avoiding thus the “false roots” effects intrinsic in descriptive, propositional
formalisms ([6,24], see Section 4 below).

3.4. Order of magnitude reasoning

Humans commonly use another qualitative reasoning device, not accounted for in the qualitative
simulation technique described above. It consists in the use of available information about relative
orders of magnitude of quantities describing the analysed system. It often leads to great simpli-
fication of the model by neglecting factors whose influence on the solution is considered to be
sufficiently small.

First, let us return briefly to our introductory propulsion system example (see Fig. 3). In the qual-
itative reasoning leading to the answer we assumed that the boiling occurs at the same temperature.
Yet, when the rate of steam production increases, the pressure of steam in the boiler also increases
(this increase of pressure is in fact the primary cause of faster steam flow through the superheater).
The pressure increase is likely to increase the boiling temperature which may compensate for the
rising feedwater temperature (possibly partially stabilising the rate of steam production). Rising
boiling temperature means also rising temperature of the produced steam which may compensate
for shorter time the steam spends in the superheater... As we see, besides the linear cause-effect
chain there are also some feedback effects that may well compensate for the main ones. How to
estimate their contributions and decide whether they are negligible in this case? We do such esti-
mating, as a part of our qualitative reasoning expertise, also taking into account some additional
information about our system (e.g., that it works in conditions of high pressure in the boiler and
that most of the heating of the steam is done in the superheater, see [12]). To conduct such kinds
of reasoning, however, additional formal tools are needed, besides interval and sign arithmetic.

Second, in our snap-through example we decided that “for small ¥” we may derive simpler,
approximate formulas for ¢ and P, respectively. That is, we conducted some informal qualitative
reasoning already in the process of formulating the model of the system, before we even started
the proper qualitative analysis of it. The same remark applies also to the problem of defining
proper quantity spaces for the parameters — e.g., certain amount of qualitative reasoning is already
required to decide that the minimal force Py, can be negative. This informal qualitative reasoning
should also be moved into the (formalised) qualitative analysis process if we aim at automatization
of the qualitative analysis technique and want to avoid some gross errors. The errors may arise, e.g.,
due to improper estimation of which quantities can be safely neglected, or due to intransitivity of
approximate equality that precludes indiscriminate substitution of only approximately equal terms
— something we have freely done for ¢ and P in the example (see [34, 36,37]).

a) b) my >> n,

V, V. V=V Vv, =y
before @ 1 @_z_’ before 1-v " @
collision @@ collision
aﬂer U U U

()o@ er ot @—" s i

Fig. 7. Two colliding masses (a) and an example qualitative problem (b)




Hybrid reasoning in analysis of physical systems 175

The point is excellently illustrated by the following example, adapted from Raiman [34]. Consider
two elastic balls with masses m; and m, moving along a straight line, with velocities v; and vy,
respectively, see Fig. 7a. Let them collide — what will be their velocities u; and wuy after the
collision? Assuming no energy loss in the collision, the resulting velocities may be calculated from
the following “first-principle” equations, stating momentum and energy conservation laws for the
two balls: -

M = myvy + mavy = myug + mauy,

1 1 1 1
E = imlvf + §m2v§ = §m1uf + §m2u% :

Solving the above equations for u; and uy, we get:
(m1 — mg)vy + 2mavy

up = ’
my + My

(4)

(mg — mqy)vg + 2myvy

Uy =

my + my

Now consider an actual problem in which we do not know exact values for masses and velocities
of the balls, only some qualitative relations between them, namely that ms is negligible compared to
my (mg < my), and the balls move in opposite directions with approximately equal velocities (v =
v1 & —vy), see Fig. 7Tb. What can be done in this case? Again, the primary tools of the qualitative
simulation technique — sign and interval algebras — are of no use here. Another technique — some
sort of an order-of-magnitude calculus — is necessary.

Human engineers can resort to a kind of common sense reasoning without reference to the
equations above (see [34] for details), and conclude that the first (large) mass will continue moving
at about the same velocity, i.e., u; &~ v; = v, whereas the second (small) mass will bounce back
with much larger velocity us ~ 3v & —3v, .

Alternatively, when the exact formulas (4) for u; and uy are given, a human may conduct the
following approximate derivation:

(m1 — ma)vy + 2mav,

U = ~ vy =v, vam—v
my + mg
m1—3m2
N ———— = | mg € my
my + my
v,
(mg — mq)vg + 2myvy
Uy = ~ |vi =v, ve= —v
my + my
3m1—m2
NY)— & | me < my
my + Mo

~ 3v,

arriving at the same values, but with the conviction that they are more reliable, being derived more
formally.

However, what if someone attempts to derive the approximate result directly from the initial
momentum and energy conservation laws? The derivation can be conducted as follows:

mivy + Mmovy = myul + Mmausg , | me K my, v=u1 = |vg

miv R miuy + moug,

mo !
v—ulz-r—n-l—uz, | me € my (5)

v—u = 0,

U = 0.
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So far so good, but let us try that for uz , now starting from the energy conservation law:

1 2 1 2 1 2 1 2
§m1v1 + 57712?)2 = §m1u1 + —2—m2u2 i l me<Lmy, V=0~ |U2‘

m1v2 = mluf i m2u§ i
my(v—u)(v+u) = mous | mi(v — u1) & maug  from Eq. (5)
maug(v + u) & maus ,

v+ U R ug, | uy ~ v as found already, thus:

and that is grossly wrong!

What happened? We substituted indiscriminately approximately equal (=) terms, not taking
into account that approximate equality is an intransitive relation. Note that the result is not due
to some obvious error in handling approximate reasoning, as it would be, e.g., to infer from Eq. (5)
that uy ~ 0 (just because ug ~ 71(v — u1) and v = Uy).

As we see, the common and innocent-looking practice of treating approximate equality in the
same way as strict equality (we did that without hesitation during formulation of the mathematical
model of the snap-through mechanism above!) may produce grossly wrong results in some cases.
Therefore, incorporating the approximate order-of-magnitude reasoning into the qualitative analysis
system needs proper formalisation of the operations and relations involved. The formalisms like that
devised in [31,34] address this problem, leading to correct formal solutions of qualitative problems
like the one above. Incorporation of such a formalism as an ingredient of practical qualitative

analysis systems seems therefore essential for their proper functioning.

4. DIAGRAMMATIC REASONING

The field of diagrammatic data and knowledge representation and diagrammatic reasoning has re-
cently become one of the most rapidly growing areas of research in artificial intelligence and related
fields [24, 32]. Human problem-solvers use diagrams constantly to formulate and communicate prob-
lems and as, often indispensable, aids to solve them. Thus, it seems obvious that any computer
system which aims at modelling human reasoning ability should be able to use diagrams also. Imag-
ine how it would be like if we had not used any diagrams in exposition and solving of the examples
in this paper.

Diagrammatic representation uses diagrams to represent data and knowledge, and diagrammatic
reasoning uses direct manipulation and inspection of a diagram as primary means of inference. Dia-
grams are a kind of analogical (or direct) knowledge representation mechanism that is characterised
by a parallel (though not necessarily isomorphic) correspondence between the structure of the rep-
resentation and the structure of the represented. E.g., relative positions and distances of certain
marks on a map are in direct correspondence to relative positions and distances of the cities they
represent, whereas in a propositional representation (e.g., in a set of mathematical expressions,
or formulas of predicate calculus), the parts of the representation or relationships between them
need not correspond explicitly to any parts and relations within the thing denoted. The analogical
representation can be said to model or depict the thing represented, whereas the propositional rep-
resentation rather describesit. A similar distinction can be made regarding the method of retrieving
information from the representation. The needed information can usually be simply observed (or
measured) in the diagram, whereas it must be inferred from the descriptions of the facts and axioms
comprising the propositional representation.

It should be added that analogical representations, including diagrams, do not provide any ex-
ceptional means for representing information that cannot be represented in other ways, e.g., by
propositional schemes (say, logical formulas). They usually represent the same information, only
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differently organised — in the way facilitating its use for certain tasks (e.g., for modelling or reason-
ing). These representations permit explicit representation and direct retrieval of information that
can be represented only implicitly in other types of representations and then has to be computed
(or inferred), sometimes at great cost, to make it explicit for use. They also permit effective control
of the reasoning process, facilitating search both in data and solution spaces, as it may be guided
by explicit proximity or adjacency relations between elements of the representation. Moreover, the
diagrammatic encoding of necessary information, its transformations during reasoning, and the
reasoning results, are more natural and understandable to human users, especially in applications
where already the use of drawings and diagrams is essential and widely practised.
Diagrammatic reasoning approach appears

more and more often in recent literature on }
(especially qualitative) analysis of physical sys- T XN

tems. It is used for problems involving spatial t
relationships, like kinematics [16] or analysis of
beam structures [38]. But it may also be used
to handle abstract structures of formal mod-
W
S

Ay

els, like diagrammatic analysis of phase por-

traits [42], or diagrammatic representations of

parameter influence graphs or constraint sys- r
tems to control the reasoning process [20,21].
Diagrammatic reasoning seems especially useful

for qualitative analysis because, being qualita- /\
tive by its very nature, it can be nevertheless ‘
developed into a completely strict and formal w
method of reasoning (2, 14, 39].

A good illustration of the basic ideas and p q
advantages of diagrammatic representation and
reasoning may be provided by a simple mechani-
cal problem (Fig. 8). Similar, though more com- / P \ / Q \
plicated example was used by Larkin and Simon
in their seminal paper [26]. Note that the dia-
gram is an essential part of the problem state- What is the ratio Q/P of the weights
ment: try to imagine how the problem descrip- if the system is in equilibrium?
tion might look like without a diagram — and
then see Section 5 for a continuation of this
example.

With such a representation, the solution is straightforward, and is guided directly by the diagram.
That is, one may obtain it using diagrammatic reasoning. First, the “laws of nature” of the pulleys
world are stated diagrammatically (Fig. 9a). There are four of them, listing the basic structural
configurations occurring in pulley diagrams with the constraints they impose on values of weights
and forces along ropes for every configuration. Then, one moves with a finger (real or imaginary)
along the diagram (Fig. 9b), inspecting the (local!) configuration encountered, filling in the missing
parameter value according to the matching constraint (Fig. 9a), and moving again to the next
(adjacent!) configuration. Numbers in circles denote subsequent steps of this process, while the
constraints matching appropriate diagram configurations, together with the inference conducted at
each step, are listed to the right of the diagram (Fig. 9b). More detailed (and formalized) account
of the diagrammatic reasoning process involved, as it may be conducted by a computer, can be
found in [26] (see also [24]).

The above solution process, based on the diagrammatic representation and reasoning, has some
characteristic features that are worth to enumerate here. First, it is inherently local. At every step,

we inspected only a few adjacent diagram elements and matched their local configuration against
the set of basic configurations. Second, it is directly guided and controlled by the structure of the

Fig. 8. The example of a simple pulley system
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a)
n  Constraint1: m| |m,  Constraint2:
Weightona rope Weight on two ropes n(t)
netn,
Constraint 3: Constraint4:
n n Ropeoverapulley — n, n, Pulleysystem 4
-
b) AL n(r) : —{ n(s)
3
4
[ T
@ =)@
1-2: Constraint 1
2—3: Constraint 3 3
2+3—4: Constraint 4 1 + 2
4-5: Constraint 3
3+5—6: Constraint 2
n(P) n(Q)
n+2n=3n
Fig. 9. The diagrammatic laws of the “pulleys world” (a) Fig. 10. A constraint-satisfaction graph of
and the diagrammatic reasoning leading to the solution of the simple pulley system (numbers denote
the example (b) configuration types according to Fig. 9a)

diagram. A move to the next step of inference proceeded to the element of the diagram immediately
adjacent to the current one. In both cases, no extensive search for the matching data or appropriate
new “attention point” was necessary. Third, the names (textual labels) of ropes and pulleys are
not needed, as is the case with explicit naming of relations between them, like “hangs from” or
“pulley system”. These features stand in marked contrast to those of propositional (e.g., logical)
representations, see the discussion in Section 5 of the propositional calculus version of the problem.

The above problem can be also stated as a constraint satisfaction problem. That is, the con-
straints imposed on the values of parameters by the structure of the system can be depicted using
a constraint graph (Fig. 10), where two kinds of nodes represent parameter values and constraints
imposed on them [21,27]. Such a graph is a diagrammatic representation of a set of simultaneous
equations describing the problem. The graph may then be used as a tool for solving the set of
equations by some diagrammatic method(s). One of such methods, the so-called local propagation
of known states, directly parallels the method used above for solving the pulleys problem. In this
way, the constraint satisfaction formulation constitutes one of possible methods for “diagrammati-
sation” of problems originally not stated in a diagrammatic form. It should be noted here that the
constraint satisfaction mechanism, using constraint graphs, is also used as an essential ingredient
of the QSIM system introduced in Section 3.1, see [21].

What are the possible advantages of using diagrammatic representation and reasoning, as com-
pared to traditional, propositional approaches? Larkin and Simon’s paper [26] was probably the
first one addressing this issue in a systematic manner, from the point of view of cognitive science.
The authors compared diagrammatic and propositional formulations of two example problems —
one similar to that discussed above (Fig. 8), and another one from geometry — and calculated the
number of search steps needed to solve the two problems using both representations. Their main
conclusion has been that the diagram, as an analogical representation of the structure of the prob-
lem, organises the problem description in a way corresponding to the problem’s internal structure
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that should be followed in order to find the path to the solution. Taking also into account further
investigations in this direction (e.g., [19], see also [24]), one may summarise the sources of these
advantages as follows:

e Diagrams are (at least) two-dimensional: richer possibilities of grouping in two dimensions (by
connectivity, adjacency, proximity, etc.), compared to those available in a one-dimensional (lin-
ear) strings of symbols in propositional formulations, lead to the reduction of:

— the size of problem search space, i.e. the amount of data to be considered at the given
inference step, and

— the search costs, due to direct access to related elements eliminating the need of search for,
say, matching symbolic labels.

o Diagrams represent analogically: construction of an analogical representation (e.g. a diagram)
for the given set of facts usually causes the emergence of certain new entities, properties of the
problem elements, and relations between them that follow from the given facts. These so-called
“implicit facts” or “emergent properties” are a kind of ready-made inferences that can be directly
read from the diagram at little or no cost.

o Visual processing is easy: humans possess a well developed apparatus for making easy perceptual
inferences on a diagram. However, this does not yet apply in full to computers which are still
somewhat better at brute-force number crunching, rather than at visual reasoning.

The “emergent properties” phenomenon is an interesting feature, specific for various kinds of
analogical representations, and is the major source of both their power and their weakness. First,
construction of a proper diagrammatic representation for some set of facts is often not too easy. The
system capable to design good diagrams must, to some extent, conduct explicitly the reasoning lead-
ing to insertion into the diagram of the elements that are responsible for further emergence of the
“implicit facts”. Thus, these systems must often employ sophisticated, knowledge-based techniques
to produce proper designs [28, 35]. Second, there is a danger of introducing, during the process, of
such “implicit facts” that do not follow from the set of initial facts. These so-called false implica-
tures [30] may be true only for this particular version of the diagram, but false in general [29], see
also [19,24]. E.g., if asked to construct a diagram containing a right triangle one draws an isosceles
right triangle, the inference process further on could falsely assume that the equality of the sides of
this triangle is the constituent part of the problem conditions, and could use it to draw some false
conclusion. But when one draws a non-isosceles right triangle instead, the inference process might
draw conclusions that are invalid for isosceles triangles. .. This particular problem is sometimes con-
sidered as the impossibility to express “don’t care” conditions in diagrams. That is not true, however
— it is only the question of using proper visual language to express such situations where necessary.

Another problem with computerised diagrammatic reasoning follows from the fact that com-
puters are not very good at handling information in visual form. Thus, implementing diagram-
matic representation and reasoning seems to require, at the first sight, advanced image input and
processing techniques. Fortunately, in most cases that is not necessary — current advances in
graphical interfaces and graphical modeling provide means for successful solution of these prob-
lems. Diagrams are usually implemented as symbolic graph structures or geometric descriptions
(e.g., in [2,14,19,38]), though raster-graphics implementations are also sometimes used (see [24]
for more details). With these advances, one may also expect the return (in part through a side-door
of diagrammatic reasoning), of the long-neglected graphical solution methods, pushed for some time
aside by an exaggerated interest in numerical methods, so seemingly well supported by computers.

5. KNOWLEDGE-BASED (EXPERT) SYSTEMS

Last but not least, the techniques of ezpert systems, using knowledge-based approach and logi-
cal, rule-based reasoning, are also an important ingredient of the computer systems for analysis of
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physical systems. Their important advantage consists in that they permit declarative formulation
of knowledge, which is comparatively easy to formulate and to modify, especially in comparison
to procedural (algorithmic) formulation necessary to construct a computer program solving a given
problem. However, in their classic form, they epitomise the so-called shallow knowledge approach,
characterised by representation of external, phenomenological associations between elements of
the system, not taking into account the underlying laws (or “first principles”) and internal struc-
tural relations governing the interaction of the system elements [3,33]. Unfortunately, this feature
constraints their use to narrow, specialised applications where as yet no sufficiently clear or for-
malised models of the underlying mechanisms are known. An attempt to apply them directly to
handle complex mathematical models (quantitative or qualitative) leads either to an unmanageable
combinatorial explosion of the number of rules, or to a necessity of augmenting their essentially
declarative knowledge representation by a so-called procedural knowledge — that is, in effect, by
calls to external procedures handling the underlying model-based calculations algorithmically.

Fortunately, recent developments suggest that these limitations of expert systems can be over-
come. Such proposals as using multiple levels of rules [3], or restating rule-based inference as a
constraint-satisfaction problem [27], permit also declarative representation of the deep knowledge,
i.e., the functional model of the system, comprising its internal structure and relations governing
its behaviour.

The simple pulley system example (see Fig. 8 in Section 4) will serve us again, this time as an
aid to introduce basic expert-system techniques, namely the rule-based inference using predicate
calculus as a knowledge representation mechanism. Our example can be stated in predicate calculus

FACTS: structural description and parameters

gD [ceiling]
W(P), W(Q), [weights]
R(p). R(q). R(r). R(s), R(t), [ropes]
P(A), P(B), [pulleys]
S(p, A, q), S(r, B, s), [pulley systems]
H(P, p), H(Q.q), H(Q,s), H(A,r), H(B,t), H(t, T), [hanging]
F(P.1) | [force]
GOAL:

F(Q, ?n)

RULES:

Rule 1:  if W(wy) A R(ri) A H(wy, ) A =H(wy, ) A F(wy,n)
then F(r, m)
Rule 2: if W(wyi) A R(r1) AR(r2) A F(ri,n) AF(ra,n)A
H(wi, i) A H(wy, ) A =H(wy, r3)
then F(wy,n; + np)
Rule 3: if P(p;) A R(r1) AR(r2) AS(r1,py,r2) A F(r1,n)
then F(rp, m)

Rule 4: if P(p;) AR(r1) AR(r2) AR(r3) AS(r1, py,12)A

{H(r3,p;) VH(p1,3)} AF(r1,m) A F(ra, m)
then F(r3, n + n2)

Fig. 11. A simple mechanical problem described with predicate calculus formulas
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formulation in a manner shown in Fig. 11. First, the list of the entities involved, their properties
and relations holding for them is given. It comprises the set of (initial) facts. Then, the solution goal
is stated, i.e., a statement to be proven true with appropriately instantiated variable (denoted ?n).
The “physics” of the system is given by a set of rules for derivation of new facts from the existing
(known) facts. The set of (initial) facts and rules together comprises the knowledge base of the
problem. The rules correspond exactly to the same-numbered constraints listed in Fig. 9a.

Note that in this representation of the problem, in contrast to its diagrammatic representation
(Figs. 8 and 9), one must make extensive search of the whole set of facts any time he/she tries
to match a candidate rule with appropriate facts in the knowledge base, trying various possible
variable instantiations on the way. E.g., in Rule 3 there are 5-5-5-2 = 250 possible instantiations
of the variables py, r1, 79 and r3, with only two of them consistent with the whole store of facts.
Practical problems that must be solved by expert systems involve usually thousands of facts and
rules. To cope with the task, one must spend a large amount of computational effort or appropriately
organise the knowledge base and reasoning procedure. Otherwise, even the simple problem domain
may easily become intractable, especially when it must represent a more substantial amount of the
“deep knowledge” about the underlying functional model. Moreover, this representation is hard to
comprehend and operate with by human users of the system. Note that it would be very hard, if not
impossible, to guess what kind of system is described by the set of formulas in Fig. 11, especially
without the comments provided here (at the right side of the list of facts) for the convenience of
human readers.

Use of an expert system approach to problems of the shallow-versus-deep-knowledge types may
be illustrated by another example — analysis of a simple truss structure. The statically determinate
2-D truss structure is shown in Fig. 12a (bars 1-3 and 24, as well as 4-6 and 3-7, cross each other
without touching). The example nicely illustrates some basic rules of (qualitative) analysis of truss
structures, and thus is of a type commonly used as a textbook exercise or student examination
problem. The problem is stated as follows:

For the bar configuration, boundary conditions and external load vector F given in Fig. 12a,
determine which of the internal azial forces in the bars are compressive and which tensile.

2) 1F | b) lF

2Q {

Fig. 12. A simple truss structure under load (a) and its equivalent simplified version (b)

Solving the problem with the standard algorithm, as given in every textbook on elementary struc-
tural mechanics, would require the complete numerical analysis based on establishing equilibrium
conditions at each node of the structure (two equations for each node). The method would require
setting up and solving a system of N linear algebraic equations with N unknowns (nodal displace-
ments), N being equal to the number of nodes doubled minus the number of reactions at supports:
in our case N = 2-7— (24 1) = 11 (note that there are also 11 bars in the structure, thus the
structure is statically determinate). The numerical analysis might therefore be pretty cumbersome,
requiring solution of 11 simultaneous algebraic equations for so simple a structure.



182 M. Kleiber and Z. Kulpa

However, the problem can be considerably simplified through the use of some general rules
concerning force distribution in truss structures at equilibrium. Specifically, they permit detection
of inactive elements that may be omitted in further analysis of the structure. Two example rules of
this sort may be formulated, in a quasi-natural language form fashionable in some expert system
shells, as follows:

Rule 1: Elimination of noncollinear bar

if number of bars at node is 3
and support is none
and external load is none
and Dbars (by,by) are collinear
and bars (by,b3) are not collinear
then eliminate bar b3 .

Rule 2: FElimination of two bars at angle

if number of bars at node is 2
and support is none
and external load is none
and bars (by,bz) are not collinear
then eliminate bars (by, b2)
and eliminate node.

Symbols by, by, b3 denote variables that should be valuated by the appropriate objects (here, bars)
such that the conditions of a rule are satisfied.

Rule 1 applies at node 5 of our structure (Fig. 12a). The “deep knowledge” reasoning justifying
the rule in this case goes as follows. Equilibrium conditions at node 5 require the force along the
bar 4-5 to vanish, as the only possible forces to counterbalance it can be these in collinear bars 1-5
and 5-7. But then their end result, as pointing also along these two bars, will have no component
in the direction of the bar 4-5 that would be able to compensate the hypothetical force along it.
Thus, the bar 4-5, as carrying no load, can be safely eliminated from the consideration. After that,
Rule 2 applies at node 4, eliminating (with a similar reasoning) the bars 2-4 and 4-6. Then it
can be applied again, now at nodes 2 and 6, leaving the significantly simplified structure shown in
Fig. 12b.

The simplified structure can be solved with the standard algorithm, but again a qualitative
reasoning gives us the required answer much easier. To this end, we may use similar rules as those
shown above. Example rules relevant to our problem might look somewhat like these:

Rule A: Load at two-bar node

if number of bars at node is 2
and support is none
and bars (by, by) are not collinear
and external load is not none
and direction of load is inside (by,b2)
then bar by is compressed
and bar by is compressed.
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Rule B: Fquilibrium at two-bar node with moveable support

if number of bars at node is 2
and external load is none
and support is moveable
and angle of bars (by,b2) is acute
and direction of support is not inside (by, b)
and bar by is compressed
then bar by is stretched.

Rule C: FEquilibrium of two collinear bars

if number of bars at node is 2
and support is none
and external load is none
and bars (b, by) are collinear
and bar by is stretched

then bar b, is stretched.

The phrase “direction of support” in Rule B means direction of the reaction force at the support
(in this case, the normal to the support motion plane).

Using the above rules we may easily conclude that bars 1-3 and 3-7 are compressed (by Rule A
at node 3) and bars 1-5 and 5-7 are stretched (by Rule B at node 7 and then Rule C at node 5).

So, it might look like the application of rule-based reasoning of this type is well suited for the
qualitative analysis of truss structures. Note, however, that whereas the simplification rules (1-2)
look rather simple and local, indicating that the structural classification of truss configuration
types may be well suited for the shallow-knowledge approach, with the analysis rules (A-C) the
situation is different. First, they are more complicated, testing many parameters, both geometrical
and physical (like load distribution). As a consequence, a great number of variants of these rules,
explicitly enumerating different combinations of parameter values is necessary. E.g., eight variants
of Rule A are needed for eight qualitatively different possible directions of the external load rel-
ative to the bars (inside, outside, toward by, toward by, in-along by, out-along b, , in-along by ,
out-along by). Even more variants of Rule B would be necessary. Second, the situation becomes
much more complicated for more complex trusses, with many bars at nodes, several loads, etc., not
speaking about statically indeterminate trusses. In such cases, analysis becomes non-local and rela-
tions between values and directions of forces and stresses become more numerous and complex. In
these situations, rules can be sometimes greatly simplified with addition of “procedural knowledge”
constituents, i.e., calls to simple computational procedures calculating rather that enumerating ap-
propriate relations between the parameters. All this indicates that the problem requires rather deep
knowledge approach, involving elements of mathematical modelling or simulation.

Again, we should recall the possibilities offered here by current constraint satisfaction sys-
tems [27] that permit declarative knowledge representation of deep knowledge as well, and also
integration of both logical rules and numerical equations.

Nevertheless, the “shallow knowledge” form of an expert system can be very useful as an “in-
telligent encyclopaedia” for selection of proper analysis methods for a given problem [1], and as
an “intelligent controller” for integration of interaction of various methods and approaches during
co-operative solving of the problem [25].

6. HYBRID REASONING SYSTEMS

The general conclusion from the preceding sections is that any single approach is not sufficient to
cover all important cases and problems of analysis of physical systems. Especially, the promising
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and popular qualitative simulation technique is not as universal as it might seem at the first sight.
To make it practical, one must augment it with other methods of reasoning about qualitative mag-
nitudes, and combine it with other kinds of non-qualitative reasoning, including our old companion,
quantitative (numerical) analysis, as well.

Concerning the first avenue, it seems that at least the possibilities of both exact comparison of
(some) quantities and estimation of their orders of magnitude should be added to the toolbox of
qualitative simulation (see [34,41]). Especially, the formalisation of the order-of-magnitude reason-
ing seems indispensable — it is probably the most common mode of qualitative reasoning employed
by humans. Other techniques, e.g. fuzzy sets, may also prove useful (e.g., [4]).

Many problems of analysis of physical systems, especially these involving structural and spatial
relations, may benefit from application of recently developing techniques of diagrammatic represen-
tation and reasoning. They permit explicit representation and direct retrieval of information that
can be represented only implicitly in other types of representations. Moreover, the diagrammatic
encoding is more natural and understandable to human users, especially in applications where al-
ready the use of drawings and diagrams is essential and widely practised. A multitude of graphical
solution methods had been developed in these fields, but then became neglected or forgotten, pushed
aside by an exaggerated interest in numerical methods, so seemingly well supported by computers.
They can be now revived and put on a new footing within the paradigm of diagrammatic reasoning.

Other problems may benefit from the constraint satisfaction formulation, also because it con-
stitutes one of possible methods for “diagrammatisation” of problems originally not stated in a
diagrammatic form. It should be noted here that the constraint satisfaction mechanism is also
used as an essential ingredient of the Kuipers’ qualitative simulation system QSIM introduced in
Section 3.1, see [21,22].

FEzpert systems, based on declarative knowledge approach and rule-based reasoning, are very
useful for the “shallow knowledge” situations, like selection of proper analysis methods for a given
problem [1], or integration of interaction of various methods and approaches during co-operative
solving of the problem [25]. However, they are much less suited for problems requiring extensive
use of “deep knowledge”, i.e., the functional model of the system, comprising its internal structure
and relations governing its behaviour.

Again, some of the limitations of expert systems can be compensated for by possibilities offered
by current constraint satisfaction systems [27] that permit declarative knowledge representation
of deep knowledge and integration of both logical rules and numerical equations, together with
diagrammatic reasoning capable of handling structural and spatial models of systems.

These considerations lead us to the conclusion that the future of computer-assisted analysis
of physical systems belongs to hybrid systems, combining quantitative and qualitative analysis,
diagrams, logic and constraints into an integrated, versatile analysis tool. How to integrate such
seemingly disparate paradigms into a single, united whole seems to be an interesting challenge for
interdisciplinary research involving computer science, physics, and mathematics. Moreover, it seems
that full automation of the analysis and design process is not possible in the near future, and in fact
is neither necessary nor practical. The best results may be achieved with man-machine teams, com-
bining advantages of both components — artificial and human. Thus, cognitive scientists may also
find some challenging problems in this area of activity. With the help of effective man-machine inter-
face, based on both textual and graphical languages adapted to the application domain and human
communication characteristics, the hybrid reasoning systems will be able to co-operate seamlessly
with the engineer or scientist in the task of analysis or design of complex physical systems [18,25].

7. CONCLUSIONS
The paper addressed the question of finding appropriate general paradigm for effective, com-

puter-assisted analysis of physical systems. It started from a critical assessment of classic numerical
(quantitative) techniques. Certain problems with and limitations of computer implementations of
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these techniques were demonstrated, especially difficulty and cost of their use as well as their
‘inability to cope with incomplete or imprecise knowledge about the system parameters.

The promising new developments in the field of the so-called qualitative physics were considered
next. The basic principles and capabilities of qualitative analysis, especially the most well-known
qualitative simulation technique, were shown. Again, certain limitations of these techniques, espe-
cially a tendency for over-abstraction (i.e., producing answers too imprecise or too general) and
producing spurious, physically impossible system behaviours, were pointed out. Other important
technique of qualitative analysis, namely order-of-magnitude reasoning, was also briefly introduced.

A recently developing technique of diagrammatic reasoning was discussed next. Diagrams are a
kind of analogical (or direct) knowledge representation mechanism that is characterised by a parallel
(though not necessarily isomorphic) correspondence between the structure of the representation and
the structure of the represented.

The important role of logical reasoning techniques (as used in expert systems) in the
computer-assisted analysis of physical systems was also pointed out. They seem indispensable as
“intelligent controllers”, selecting proper analysis methods and integrating their interaction during
problem solving.

The importance of constraint satisfaction formulation of many problems was also indicated in
various contexts discussed in the paper, namely qualitative simulation, diagrammatic reasoning,
and declarative representation of the so-called “deep knowledge” in expert systems.

In conclusion, the idea of hybrid reasoning systems was proposed. They should combine quan-
titative and qualitative analysis, diagrammatic reasoning, expert-system-like logical reasoning and
constraint satisfaction systems into integrated, versatile analysis tools. They also need an effective
man-machine interface, based on both textual and graphical languages adapted to the application
domain and human communication characteristics. Thus, their construction needs interdisciplinary
research involving computer science, physics, mathematics, and cognitive science.
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