Computer Assisted Mechanics and Engineering Sciences, 2: 187-206, 1995,
Copyright @ 1995 by Polska Akademia Nauk
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Natural frequencies of a vibrating hollow, elastic sphere are determined using both the 3-D elasticity and
Kirchholff shell theory.

1. INTRODUCTION

The purpose of this paper is twofold:

o Practically the only problem of fluid-structure interaction in underwater acoustic admitting a
closed form solution — vibrations of an elastic spherical shell submerged in water, is solved
based on the linear shell theory [3]. At the same time, the Finite Element / Boundary Element
Method pursued in [2] is based on the generic elasticity formulation. As the vibrating sphere
problem is used for validating the code, it would be very desirable to derive an exact solution
to the coupled problem based on the plane elasticity formulation. Working out the vibrations
in vacuum is just the first step in this direction.

o It has been proved in [2], using asymptotic methods, that under appropriate assumptions, so-
lution of the elasticity problem converges to the related Kirchhoff elastic shell equations, as
thickness approaches zero. The presented study can be viewed therefore as an illustration of
that general result, allowing perhaps for a little more intuition and concrete physical interpre-
tation.

The plan of the paper is as follows. Following [4] we use the Helmholtz potentials to reduce
the original problem to the Helmholtz equation in a spherical domain, which is solved using the
classical separation of variables approach, reviewed in Section 2.2. The transcendental eigenvalue
problem presented in Section 2.3 involves spherical Bessel functions and we take this opportunity
to discuss shortly a stable algorithm for their evaluations in Section 2.4.

Section 3 is devoted to a short review of the shell theory and finally the actual numerical
experiments and the accompanying discussion are summarized in Section 4.

2. 3-D ELASTICITY SOLUTION

The problem of interest — natural vibrations of a spherical elastic hollow sphere in vacuo, consists
of solving the steady state version of the transient linear elasticity equations accompanied by
homogeneous traction boundary conditions imposed on both surfaces of the sphere. All calculations
are done using the spherical coordinates
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r = rsinf cosg, (1)
y = rsinf sing, (2)
z = rcosf. (3)

First, by means of the Helmholtz potentials approach, the original equations are replaced with an
equivalent system of those decoupled Helmholtz equations to be solved for the Helmholtz potentials.
Each of the Helmholtz equations is then solved using the classical separation of variables method.
Finally, imposition of traction boundary conditions leads to a series of 4 by 4 transcendental eigen-
value problems in terms of appropriate coefficients in the final series representation.

Numerical solution of those problems involves evaluation of spherical Bessel functions and a
stable algorithm for their evaluation is reviewed in the last Subsection.

2.1. Helmholtz potential

The motion of an isotropic, homogeneous elastic body is governed by Navier’s equations

d%u
uVia 4+ (A +p)VV -u+ pf = P o (4)

where u = u(x,t) is the unknown displacement field, f are prescribed body forces, p is the density
and A and p are Lame’s constants. Assuming that body force f is sufficiently smooth, we can
represent them in the form.

f=Vf+VXF (5)
where f and F are scalar and vector potentials respectively. Assuming the same form for the solution
u=Ve4+Vxw (6)
with ® and ¥ being the unknown scalar and vector potentials, we substitute (6) into (4) to obtain

*® 9*w N
v(c§v2¢+f—w)+vf'x(c§v2@+p_w):0. (7)

Here, ¢; = Ng-;-_ng and e; = \/g are longitudinal wave velocity and shear wave velocity, respec-
tively.

If Vi + f - %‘} =0 and V¥ + F — %—?— = 0 then Navier’s equations (4) are
obviously satisfied. The nontrivial question whether every solution of Navier’s equation admits a

representation (6) was answered positively in the completeness proof provided by Long [5].
For spherical coordinates, we additionally represent the vector potential W [4] in the form

U = rVe, + IV x (rxe,) (8)

where [ is a length factor in order to make the dimension of two terms in (8) the same and ¥ and
x are two unknown scalar-valued functions.
With body forces neglected, this leads to a final system of three decoupled wave equations to
be solved for potentials ®, ¥ and y
Ve = &, (9)
AV = ¥, (10)
eAvixy = %. (11)
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Substituting (8) into (6), we can obtain the displacement field

0% a*(rx) 5
ur = -+l [——~3r2 - Vx|, (12)
2
ue:lafb_l_ 1 5lI‘+£3(7'x)‘ (13)

rdf sinf ¢ r 000r

1 0 oV [ 3*(rx)
U = rsinf 0 8_9+ rsinf O¢dr (14)

From the displacement-strain relationships and the constitutive equations of linear elastic isotropic
material, we can get the following stress field:

I

Orr

or?

18‘1>+132<I> 2#5‘(#3_‘1’)
rdr 12062 r 00 \sinf 9¢

o ,[ 33(Tx3+%(m_rvzx)]‘ (16)

2 2
Av?¢+2p%—§+2mar [8 (rx) _-pvifx], (15)

oo = AV?® + 24 (

2 90207 or?

VgL PR 108 1 08 3 ( 0V 0%
%co“Av¢+2’u[rzsin293¢2+?5r+ mwae wi_:f'sim"y‘ t3¢ 000

+oul [ 1 8(ryx) r % (82(7')() ! rvzx) » cot 6 6‘2(?')()]

r2sin? 0 0d20r or? 2 900r (17)

g o 2( 0P8 108\ p (00 €
= 5 \oro8 7 00) rsind \9s  0rde

0%(rx) 3 19%(rx) a [18%*rx)
+’rl39( arr Y X) "7 8ar T o \7 d60r )|’ 18)
2 2
2u (Bd) 1a¢)+§[2aw 6(:»'11]

rsinf \ 9rdp ;1_3_5 96 060r

pl |9 d*(rx) 232 rx)
T rsin [8«;& (2 dar? VX r d¢dr (19)
oL (% 68 aw R 32lI! 1 8%
% = Zsimo \ 0006 "4 z ¥ 526 04

2ul | 33(ry)
r2sinf | 9r000¢

(20)

2.2. Separation of variables for the Helmholtz operator in a spherical domain

By means of the separation of variables, solution of the Helmholtz equation in spherical coordinates
(7,0, 9) is reduced to solving three independent ordinary differential equations: the Bessel equation
in 7, the Legendre equation in @ and a simple, second order equation in ¢.
The Helmholtz equation
1.8° af
Vif——=—==0 21
=257 (21)
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takes the following form in the spherical coordinates

af 1 9 ( af) 1 8*f 10%
2 S e A ——— . . —
1'2 ar ( 31‘) t 000 \""%¢) t antener ~ 2002 (#2)
Assuming the harmonic variation in time, we postulate the following form of the solution
f(r,0,¢,t) = F(r,0,¢)e™“" = Fy(r)Fy(0)Fs(¢)e™*. (23)
Substituting (23) into (22) and following the usual reasoning we get
e i LI (24)
= T e L F, = 2
sin9d6( gde)"L(p sn?g) 2= 0 (25)
d2r
¢2‘"’ +¢*F; =0, (26)

where k = w/c is the wave number and p?, ¢? are separation constants. Note that p? and ¢? are

here real numbers. If we change the variables with p? = v(v + 1), 4 = cosf and F; = (kr)'%R(r)
then Eqs. (24) and (25) are transformed into the Bessel’s equation

2 2
2%323+ riﬂ [k%z s (v+ %) ] R=0 (27)

and the Legendre’s equation

2
(1-4) G - g+ [u(v+ -
Since F3 must be a single valued periodic function with period 27, separation constant ¢ must be
an integer, say m. For the special case q=0, solution of (26) reduces to a constant function. For q
# 0, solution Fj is a linear combination of f:“f""5 and e~"9%. Next, applying the Frobenius methods to
solve the Legendre’s equation we find out that a necessary a.nd sufficient condition for the solution
to exist is that » must be a non-negative integer. The corresponding solution is then the classical
associated Legendre function.
Summarizing, we get the final solution in the form

f(r,0,0,1) = l

(kr);

2
’_"’ﬂzl F = 0. (28)

[Ad gy (kr) + BY, 1 (kn)|[CPR (1) + DQE(u)][E™® + Feimé)eiot
(29)

where P*(p) and QT (p) are the associated Legendre functions J, +1 (k) is the Bessel function of

the first kind and n + 1 order and Y, +1(kr) is the Bessel functlon of the second kind and n +13

order. The associated Legendre functlor:; Q7 is singular at g = +1, therefore we exclude it from
the solution of the sphere problem. We can express then the genera.l Helmholtz potentials as

¢ = (ar)Pm(Losﬂ)exp[ i(meo —wt)], (30)

U = Z,[l}(ﬁr)P,f‘ (cos @) exp[i(mo — wt)], (31)

X = Z)(Br) Py (cos §) expli(me — wt))], (32)
where

a =w/e, B =w/ey, (33)

Z0) = j.(kr) = (frxzkr)‘f?Jn+%(k1-}, (34)

7 = yo(kr) = (x/2kr)/? Y, 1(kr), (35)

and j,(kr) and y,(kr) are spherical Bessel functions.
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The displacement field is derived by substituting Eqs. (30)-(32) into Eqs. (12)-(14)
& = [U("(m )+ 10§ (Br)] Py (cos ) expli(me — wt)] (36)
up = {V{ )(ar [n cot 0P (cosf) — ﬂPf 1(cos 9)] + Vz(i)(ﬂ?‘);%f’,?(cos 0)
+ 1V, () |n cot 0P (cosf) — 1113 P 1(cos®)| ¢ expli(meo — wt)], (37)
up = % {Vl(i)(ar)sz M (cos @) — rV{ ](ﬁr) [n cot P (cosf) — " + ;nP"‘ (cos 9)]
+1V{(3r) 2 P (cos0) | expli(me — )] (38)
where
U (ar) = nz{)(ar) — arz{y(ar),  U(Br) = n(n+1)20(pr), (39)
Vidar) = 20ar),  v(pr) = 20(pr), (40)
Val(Br) = (n+ 1)2(r) - r2 i) (Br) (41)

U(') V(') W(’) V“ correspond to the function @, UQ{] =0, V“ W( )—V“ correspond to the

function ¥ and Ué‘), V{ R WU V() correspond to the function y.

Using the usual djspla.cement strain relations and the constitutive equations of a linear isotropic

2 4 i P :
Opp = _,u [Tl(l)(ar) s {Tl[3}(ﬁr)} P, (cos f) exp[i(m¢ — wt)],
Ogp = 3‘” {Tél) (ar)P"(cos @)

. (i 1
+ Té;}(ar)T [(m2 — ncos® 6‘) Py (cos8) + (n + m) cos 8P (cos 9)]
sin ¢

) m
T
+ 13 (ﬁ’")sinz

1133(r)

1
sin? @

x exp[i(m¢ — wt)],

% [, i N
700 = 25 {7 (ar) P (cos)

[(mz — ncos? 6) P (cos®) + (m + n)cos 8P (cos 9)]}

elastic material, we get the following stress field represented in terms of scalar functions ®, ¥ and y:

(42)

7 [(n = 1) cos 6P (cos8) — (n + m) Py (cos )] + ITS(Br)P™ (cos )

(43)

¥ f’é{][ar) = : 9 [(n cos’f —m ) Pl (cos @) — (n 4+ m)cos P (cos 9)]
T ﬁr) 9 [~(n—1) cos 0P (cos§) + (n+m) P (cos 8)] + ITD(Br) P™ (cos )
+ IT;;)(ﬂ?)sinz 2 [(n cos?f — mz) P (cosf) — (n + m)cos@P;" | (cos 9)]}
X exp[i(md) - wt)], (44)
Ong = { T (ar) [n cot 8P (cos f) — ﬁ”EPm (cos 0)] + Tﬂ)(ﬂr) ng(cosﬂ)
+ IT,fa]([)’r) [n cot P (cosf) — +;n ™ 1 (cos 9)] } exp[i(m¢ — wt)], (45)
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Orp = T—': {Té;)(ar);m—gP,’:‘(cos ) — Té;}(ﬁr)m [ncosOP (cosf) — (n+ m)Pr,(cos8))

+ IT;;](ﬁr)sj%P:‘(cos 9)} exp[i(m¢ — wt)], (46)

2 i im m m
0op = r_g {Téll(ar)st 9 [(n = 1) cos@P(cosB) — (n + m) Py (cos )]

- Téf}(ﬁr) - 129 [(n(n; ) sin @ +n — m"’) P (cos@) — (n+ m)cosOP," ,(cosf)
sin

18 (5r) =3 [(n = 1) 058P (c036) — (n+ m) P (cos )] bexpli(mes — w)],
(47)
where

T (ar) = (nz g %ﬁ%z) 7 (ar) + 2ar2)  (ar), (48)
TE(Br) = n(n+1) [(n - 1)20(Br) - prz ()] | (49)
TH(ar) = (—n2 - %ﬁzﬂ - a%-?) 2{)(ar) - arZ$), (ar), (50)
T (ar) = Z0(ar),  TE(B) = r2{)(Br), (51)
T3(8r) = —(n? + n) [n2{)(8r) - Br2z, (Br)] (52)
T8(Br) = (n+1)2{)(8r) - Brz{),(8r), (53)
T8(Br) = (n = %[32?‘2 + a%ﬂ) 70(ar) - arzt), (ar), (54)
T(ar) = 2{0ar),  TH(Br) = rZ{(r), (55)
TH(Br) = n(n+1)20(Br),  TE(Br) = (n+1)2(8r) - Br2{,(Br), (56)
T (ar) = (n-1)20(ar) - arzl),(ar), (57)
Ti(r) = 5r [0~ 120 (6r) - 28 (67)] (58)
T8(8r) = (n? =1 36%%) 28(6r) + prala(or), (59)
T (ar) = TP (ar) = (n - 1)2(ar) — arZ8), (ar), (60)
T8(8r) = TY(Br) = 5r [(n-1)2(6r) - Brzl(6r)] (61)
T(6r) = TQ(Br) = (n* — 1= 58%%) 20(6r) + Br2h (Br), (62)
T(ar) = z0(ar), T (Br) = r20(8r), (63)
TS (Br) = (n+1)2{0(8r) - przl), (). (64)

T,E:) and ‘g] correspond to the function @, T,g;) and 'f‘égj correspond to the function ¥ while T,E;)
and T,E;) correspond to the function .
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2.3. Modal characteristic equation

In this Section we first specialize the general solution to the elasticity equations in spherical coor-
dinates to the axisymmetric case. Next we apply the traction-free boundary conditions to arrive at
a series of modal characteristic equations for the vibrating sphere problem.

Assumption on the axisymmetric form of the vibrations (the axis of symmetry coincides with the
vertical axis # = 0) implies elimination of the ¢-component of the displacement field, uy = 0, and
all derivatives with respect to the ¢ variable, 3% = (. Consequently, ¢ = 0 in Eq. (26), solution I3
reduces to a constant function and m = 0 in Legendre’s equation (23), i.e. the associated Legendre
functions P™(p) reduce just to the Legendre polynomials Py (u).

Summarizing, the formulas for the Helmholtz potentials in the axisymmetric case reduce to

d = Z{)(ar)P,(cos8) exp(—iwt), (65)
U = Z0)(Br)exp(—iwt), (66)
x = ZW(Br)Pa(cosb) exp(—iwt), (67)
with
Gz o ) = ( ) Jps(r), (68)
Z3) = ya(kr) = ( ) Yn+:5 (kr), (69)
_w w
43 = C—I', ,B = a, (70)

where P, are the Legendre polynomials and J,H_% are the Bessel functions of order n + -12- The
corresponding displacement field takes the simplified form

0P 9*(rx) 5
u.._g-i-fl B2 - rV*<x| , (71)
_13%®  13*(rx)
v =30t 7 d0r 72
Uy = 0, (73)
and the corresponding stress field looks as follows:
0’9 9*(rx)
= 2 bl = 2
arr—’\V¢+2N32+2 Iafl or2 Vx| A (74)
avte s (100, 109 L M1 1 (800 o
o9 = AV'® +2u (r ar * r2 96? e r? 0020r Te\ B TVix|| - (79}
_ i L ry) o), cotf(ry)
Ggg =AY B+ [r ot a0 +2’{d r\ Or? VX) r2 98or |’ (76)
?® 109 ul | @ [8%*(rx) 5 10%(rx) d [10%(ry)
e =g (61‘30 rae) T [5@( ors "V x|~ 50ar *"or \7 ovor )| (T
Orgp = 0, (78)
ggg = 0. (79)

Substituting ®, ¥ and x in (65), (66) and (67) into the stress field above, we arrive at the final
formulas for stresses in terms of the Bessel functions and Legendre polynomials,

e 2“ T (ar) + IT3(8r)] Pa(cos B) exp(—iwt), (80)
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2 i - (i 1
o = ;—% {Tél)(ar)PH(cos 6) + Tz(l)(m') =g [—n cos® 8P, (cos 8) + n cos B P,_,(cos §))]

+ lTé;’(ﬁr}Pn(cos #) + lﬂ;}(ﬁr)siljz 7 [(—nms2 9) P,(cos ) + ncos@P,_y(cos 8)]}

x exp(—iwt), (81)

Opp = % {Tg}(ar)Pﬂ(cos 6) + T (' (ar) [n cos® 8P, (cos 0) — ncos OP,_;(cos b))

lTé; (Br)Py(cosf) + ITé;}(ﬁr (n cos? 6‘) Py (cosf) — ncosP,_y(cos 8)]}

n? 9
x exp(—iwt), (82)

g = i—‘z {Tj:](ar) [n cot @ P, (cosf) — ﬁf’nhl(cos 9)]

+1T3 () [n cot 0 (cos §) — == Py (cose)] } exp(~iwt) (83)

oys = g = 0, (84)
where:

TW(ar) = (n2 —n- %621'2) Z0(ar) + 20728 (ar), (85)
TP (Br) = n(n+1) [(n—1)20(8r) - Brz{, (8r)] , (6)
Th(er) = (-rﬁ - %ﬁzﬂ + azrz) Z0)(ar) — arZ), (ar), (87)
1§ (ar) = 2{)(ar), (8)
TR(Br) = —(n? +n) [n2{)(Br) - Brz{), ()], (89)
13(8r) = (n+1)20(8r) - pral), (1), (90)
T)(6r) = (n = 367 + atr?) 28 (ar) - ar2L3 (ar), (91)
7§ (ar) = Z{)(ar), (92)
T35(Br) = n(n+1)2{(r), (93)
T35 (Br) = (n+1)Z{)(Br) - przil (Br), (94)
T(ar) = (n - 1)20(ar) — ar 2, (ar), (95)
T (pr) = (:«;2 = %ﬁ%’) Z(Br) + przl), (Br). (96)

Traction boundary conditions

The boundary conditions on the inner surface and on the outer surface of the hollow sphere are

Orr =0rg=0rg=0 at r=mw;, (97)

Opy = Opp = Org = 0 at IR (98)

where r; is the inner radius and r, is the outer radius. Boundary conditions 0,4 = 0 on both
the inner and outer surfaces are automatically satisfied. The remaining four boundary conditions
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contribute with the following four equations in terms of unknown coefficients A = A,, B = B,,
C=Cs, D=D,foreveryn=0,1,2,...

Orelyar, = 3_';‘ [ATI(,‘}(M‘-)—l-B!T(”(ﬁr )+CT ) ar)+ DITD(Br; )] P,(cos ) exp(—iwt) = 0,

(99)
Opplymr, = —': [ATI{})(aro)+BIT{1J(ﬁTg)-!-CTff) aro)+D!Tf§) 6:—0)] Py (cos 0) exp(—iwt) =
(100)
= 2 [ [ n ]
Orflr=r;, = 2 {Aﬂi”41 (ar;) [ncot P, (cosf) — = an_l(COSQ)
+ BITSY) (Br:) [n cot O, (cos 8) — -Si—:g-Pn._l(cosﬁ)]
2 n
+ CTJI](ar;) [n cot 8P, (cosl) — mP(n_;](cos 9)]
+ DIT® (Br;) [n cot B, (cos f) — #Pn_l(cos 9)] } et = 0 (101)
2u (1) n
2 PR P {AT“ (ar,) [n cot 0P, (cos ) — p n—1(c0os 9)]
+ BIT,.. (ﬁro) [n cot 0P, (cos @) — —?Pnul(cosﬁ
+ ijll(ar,,) [n cot P, (cosf) — P(n 1)(cos @ ]
+ D!Taqs (Br,) [n cot P, (cosf) — 1:9 A l(cosﬂ)]} —iwt — (102)

Modal characteristic equation

Requesting a non-trivial solution to (99)-(102), we arrive at the modal characteristic equation in
the form

T{}:(an) T{;;(an) T{?]}(an) Tg]’(ﬁr)

s s i =) T 3 ar,) T 5

A= | Tia\ore) Tig(fre) Ty fero) Tig (Bro) | _ g gor 5 g, (103)
Ty '(ar;) Tg'(Bry) T‘% (ary) T4§. (Br:)
T (ers) TH(Bro) T(ar,) TE(Br.)

(1) ) (2)
A = TH)(M‘) (m‘) =0 forn=0, (104)

11 (ar,) Tn (0-'7‘0)

where

w w [A+2
g=— f=— o= ,ua (_-2=\/E_
&1 C2 P P

Note that for n = 0, Equations (101) and (102) are automatically satisfied, so that the determinant
has the form (104).
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2.4. A stable algorithm for the evaluation of Bessel functions

Many algorithms have been proposed to evaluate Bessel functions of fractional order. Here we adopt
the Steed’s method and Temme’s Series. The Steed method described in [5] consists in calculating
Jy, J!, Y, and Y, using the following three relations:

¢ Wronskian Relation

W=y -Y,J = = (105)
T

e First continued fraction (CF1)
L._ v Jup1 v 1 1
-3 d TR D (106)

fo

The rate of convergence for CF1 is determined by the position of the turning point z;, =
Vv(v +1) 2 v. If 2 <= z4,, the convergence of CF1 is very rapid. If ¢ >~ zy,, each iteration
of CF1 effectively increases v by one until 2 <~ ;.

e Second continued fraction (CF2)

J” -}-zY" 1

3y _ .2
prign B L W aon

+i)+ 2(z +20)+

£

If ¢ >~ 24, then Eq. (107) converges rapidly.

ﬁ—\ -

For z not small, we can ensure that 2 >& z;, by stable downward recurrence J, and J}, to a value
v = pu <= z. The initial values for the recurrence are

J, = arbitrary, (108)
Joq = fadis (109)
The downward recurrence relations are
ot = ZhoH T, (110)
vr—1
Jyq = Jyo1+ J, . (111)

Since CF2 is evaluated at v = p, from Egs. (105), (106) and (107) we can solve the equation for
four unknowns, J,, , J,, Y, and Y,

1

W 4
J, =t —mm—=] , 112
" (q+ v(p - f,u)) (112)
I o= ol (113)
¥, = v, (114)
Y, =Y, (p+%), (115)

where the sign of J, is the same as that of the initial J, in Eq. (108) and

s T (116)

q
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Once four functions have been determined at v = p, the quantities of Y, and Y] can be evaluated
by the stable upwards recurrence formula. By scaling the value in Eq. (108) according to the ratio
of J, in (112) to the value found after recurrence calculation in (110), we can obtain J, and J.

For the case of small z, the convergence of the second continued fraction will fail. However,
Temme’s series can be applied to give the good estimate of Y, and Y, 4, as

o] 2 o0
Y, == cxgk, Yoqr =—-= Y cihs, (117)
k=0 T k=0
where
D 4 k
g = % (118)
2
g = fi+ ;Sin2 (%) Tk » (119)
hi = —kgk+ pr, (120)
o=, (121)
_ Gk
w =L, (122)
kfr—1 + pr— -
fe = i szpj ;2-}‘ Qk—1 ‘ (123)
1 —-v
3 = ;(%) I(1 4 ), (124)
1 fyv
a = ;(5) I(1-v), (125)
2 vm sinh o 2
fs = e [cosh ol'1(v) + o In (;) I‘g(y)] 3 (126)
2
o = uln;, (127)
1 1 1
L) =5 [[‘(l—v) - r(1+u)]’ (128)

1 1 1
Fa(v) = E[r(l- T F(1+u)] ‘

For more detail of these methods see [5].

(129)

3. KIRCHHOFF-LOVE SHELL THEORY SOLUTION

Following [3] we review the classical Kirchhoff-Love theory for thin shells and derive the shell
equations in spherical coordinates under the simplifying assumption of axisymmetric vibrations.
As in the case of 3-D continuum, we arrive finally at a series of characteristic modal equations.

3.1. A review of the shell theory

In order to derive the equations of motion of thin elastic shells, Love introduced the following four
assumptions:

e h/a < 1, i.e., thickness h over midsurface radius a is very small,

® u./h, ug/h and uy/h < 1, i.e. the displacement is small compared with thickness,
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e 0, is negligible,
e Iibers in the radial direction remain undeformed during the motion.

Based on these assumptions, if we consider the axisymmetric vibrations only, we can express the
components of the displacement vector in terms of the displacements of middle surface

uy = Uy, (130)

x z U,
Uy = (1+E)U TR (131)

where = r — a and U, as well as Uy are functions of € only.
The kinetic energy can be expressed as follows:

2 -';-‘~
T = lps/ ] / (u‘,? + u‘ﬁ) (a+z)?sin @ dzdfde. (132)
2o Jo J-2

After neglecting 2 in comparison to midsurface radius a, we can obtain the total kinetic energy in
terms of u, and ug.

r=1, f"/“ﬁ (42 + 1ig?) a? sin 6 dz dB do . (133)
2 Jo Jo -t :

Neglecting the effects of rotatory inertia and plugging (130) and (131) into (133), we can simplify
the total kinetic energy to the following form

ﬂ - -
T = ﬂpshazf (0% + Us*) sin6 do . (134)
0

Non-vanishing components of strain in spherical coordinates can be expressed in terms of u,
and ug as

o =2 (% + ) 135
1
el == a+m(cot6ug+u,). (136)
If we substitute (130) and (131) into (135) and (136), then we get
1 (ou, z [(0Us 80,
Ea&_a+:¢:(39+0) (a+x)(88_3ﬂ2 ‘ (137)
Ehy: B (cot 0Us + Uy ) + cot ¢ (U - ) (138)
&0 E a(a + z) "7 o8
The non—vamshmg components of stress in terms of £g5 and 44 are
E
900 = 7 5(€00 + vegs), (139)
Opp = T (€¢.¢ o+ VE'BB) . (140)

Using Eqs. (137)- (140) we get now the strain energy of the shell as

2r
o 2 / f / (00008 + 044Es)(a + z)* sin 6 da dg df

:‘S
h
2
Eh U,
= Iﬁ—uz {( - ) + (cot 8Up + U, )? + 2v (%+U)(cot9Ue+Ur)}sin9d9

nEh . avg v, \* . 9( aU,)2
ti— a0 agr | T a8

92
+ 2v cot 0 (BU" ¢ U’) (Ug oY )}sinade (141)

a6 a6? a9
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where

hZ

2
p T 1242

Applying the Hamilton principle, we get the final equations of motion

(1 + ﬁ2) [a"‘Ug +eotgde _ (u n cot"’&) Ugl

67 6
—Bza U 8;;’;’ - [(1+u)+ﬁ"’- (u +cot29)] ";if = “g" =0,
626:5‘;36 +28% cot 6 3;92 [(140) (14 5) + 5 cot?6] il
+cot @ [(2—u+c0t26) 3 = (l-l-v)] Ug—ﬁza U. 962 co 3;;;1-
+6? (1+V+‘20t 9) 635; —ﬁgcotB(Q—v—l—cot?B) %ir ach,, =0,

or, in a more compact form,

LggUg + Lo, U, + QU = 0,

LroUg + LU, + Q%U, = 0,
where
1 d2 1
L99=(1+ﬁ2){(1—n2)2d—?}.2(1 )2+(]-V)}$
L = (1-7) { [P0 -0 - (140) dim"gd,f%} :
Lre=—{[ﬁz(l—v)—(l+u)]ada( )%+ﬂ2 d(l_nz)%}’
Ly, = —*V3 - (1 - v)V2 - 2(1 +v)
and
d d
Vg = E(l_nz)ﬁl

The following notation has been used

a — the radius of the middle surface of the shell,
E, v — the Young modulus and Poisson ratio,
h ~ the shell thickness,

7= cos#,

2 - the dimensionless frequency of the shell, Q = ° = (é)ka,

¢ - wave velocity,

¢p  — the low frequency phase velocity of compressional waves in an elastic plate,
w — the frequency,

k — the wave number.

(142)

(143)

(144)
(145)

(146)
(147)

(148)

(149)

(150)
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3.2. Free vibration problem

The displacement field admits the spectral representation in terms of the Legendre polynomials:

Ur(n) = > UpnPa(n) exp(—iwt) (151)
n=0
= LdP, .
Ug(n) = gUan (1 = nz) Eexp(f%wt), (152)
By substituting (151) and (152) into (142) and (143), we can obtain
02— (14 8%) (v + An - 1)] Upn — [B(v + An - 1)+ (1+ )| Urn =0, (153)
“An [P+ A= D)+ (14 V)| Usn + (92 = 2(1 4 v) = B2V + An - 1] Us = 0 (154)

For a non-trivial solution of Egs. (153) and (154), the characteristic equation for natural frequencies
Q must be satisfied

Q4 — [1+ 30+ A, — B2 (1~u—)«i—v,\n)]92
+(n—2) (1-02) + 7 [A) - 4r2 + A (5-+?) ~2(1-4?)] =0 (155)

where A, = n(n + 1), or, equivalently
2 2
[92 - (o) ] [92 - (o) ] = 0. (156)

The higher natural frequencies are denoted by Qf) and the lower natural frequencies are denoted
by QQ}. We call the collection of 9511] the first branch and that of Qg‘) the second branch.

4. NUMERICAL EXPERIMENTS AND CONCLUSIONS

We conclude our investigations by presenting a series of numerical experiments aimed at comparing
the natural frequencies of the vibrating, elastic sphere using both the full 3-D elasticity theory
and the Kirchhoff-Love shell theory approximations. All comparisons are done in terms of the
nondimensional natural frequency Q' (see the definition below).

We begin by restating the modal characteristic equation of the shell theory in the form

Q"—[l+39+An—32(1—v—Ai—uAn)]Qz
+ (=2 (1-12) + 8 [Ai—4Ai+Aﬂ(5~v2)—2(1—u2)] =0 (157)

or, equivalently,

[QE . (951”)2] [92 - (QE})?] =0, (158)
where
1 h wa E 7
P = —_—— = — = |—

and the modal characteristic equation of the 3-D theory

ENCOR I Ty (ar) Ti3(Br:)
1 (2

7 (ar) Tl((:»i)(ﬁro) 1)(aro) 133 (Bro)

T?(h)(ar;) T4?)(ﬁr,-) T%)(ar,-) T}s}(ﬂr,-)
2

T (are) Ti(Bre) T&(ars) Ti(Bro)

A =0 forn>0, (159)
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| 7War) TP (ary)

= =0 forn=0. 160
TI(})(O"’"G) Tl(f)(a%) ( )

n

Six cases, corresponding to different ratios of thickness A and middle surface radius a, h/a =
0.01, h/a = 0.025, h/a = 0.05, h/a = 0.1, h/a = 0.25 and h/a = 0.5 were investigated, with
¢; = 5760 m/sec, a = 1m and v = 0.29. The results of calculations are compared in terms of the
nondimensional frequency

! “
= —a. 161
Q ‘]G ( 6 )

Both characteristic equations were solved by using the standard bisection method. Bessel functions
were evaluated using the algorithm described in Section 2.

Figures 1-6 present the comparisons of the natural frequencies obtained using both theories
for the different ratios h/a. The difference becomes visible starting with h/a = 0.05 with the first
branch of eigenfrequencies being more sensitive to the choice of equations.

The sensitivity of both branches with respect to ratio h/a is displayed in Fig. 7 for the shell
theory and in Fig. 8 for the 3-D theory. The qualitative difference in the behavior of the second
branch for both theories can be observed. While, for the shell theory, the second branch moves up
with h/a decreasing, the same branch for the 3-D results is moving down getting closer to the first
branch.

Finally, in Fig. 9 we indicate the qualitative difference between the two characteristic equations.
While Equation (157), for n > 1, has two double eigenfrequencies only, Equation (159) has infinitely
many solutions. This corresponds to the presence of multiple branches, with only the first two
branches reproduced by the shell theory. Figure 10 presents the variation of determinant of (159)
for h/a = 0.01 indicating the existence of the higher natural frequencies corresponding to branches
of higher order.
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Nondimensional Freguency (€)
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3-D theory
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Branches of Nondimensional Frequencies by 3-D Theory
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