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This paper presents the model based on the theory of multicomponent media that allows modelling of
rebar corrosion processes. The presented model extends and consolidates the dissertations that have been
described in the papers [8-10]. The aim of the present work is a creation of the model consistent with the
thermodynamics of multicomponent media with internal parameters, allowing description and numerical
modelling of reinforced concrete structures degradation as the result of corrosion by using FEM.

Keywords: theory of plasticity, corrosion of reinforced concrete, mass transport, concrete cover splitting.

1. INTRODUCTION

The issue of reinforced concrete structures degradation as the result of corrosion state is a very
important industrial problem [17, 18]. This subject matter states both a very complicated and
interesting physical problem. In the reinforced concrete, the separation of concrete cover takes place
as the result of corrosion products creation. Concrete cover splitting increases rapidly the rate of
degradation process. In the previous published papers, e.g. [1, 7, 13, 20] setting up a concrete cover
splitting time has been described in an analytical way. The other way of the phenomena description
is the analysis of the problem from thermodynamics of multicomponent media point of view by
using computer method based on e.g. FEM. This subject has been presented e.g. in papers [8–10].
The first paper presents the use of the multicomponent media theory with mechanical distortion
of a problem description. The second one, presents the application of plasticity theory into the
description of concrete cover fracturing as the result of distortion caused by corrosion products. The
tensor of distortional strains has been defined here as the function of corrosion current intensity.
The approaches shown in both papers are inconsistent and require homogenisation, what is the aim
of this paper.

2. FORMULATION OF THERMODYNAMICAL MODEL

2.1. Model assumption

The mixtures theory [2, 3, 19] will be used to describe the problem. The two components model
of continuous body (the skeleton α = 0 together with the migrating substance α = 1) is taken
into consideration. It will be assumed that the components do not react with each other and the
aggressive substance only initiates the process of mechanical distortion creation in the media. The
process of distortional strains creation depends on the additional internal parameter Ie (a function
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of electric current intensity), which will be defined in the further part of the work. It is assumed in
the paper that the skeleton is a dominant component and fulfills the following assumptions [11].

• The skeletons density ρ0 is notably bigger than the density of the other components of mixture

ρ0 ≫ ρ1, ρ =
1

∑

α=0

ρα ≈ ρ0. (1)

• The mean velocity field can be presented in the form

ρv =

1
∑

α=0

ραvα = ρ0v0 + ρ1v1 ≈ ρ0v0 ≈ ρv0, vα = uα + v. (2)

In Eqs. (1), (2) ρα is the partial density of the component α, v is the mean rate of the mixture, uα

is the partial diffusion velocity, vα is the velocity of α component, and ρ is the total mass density
of the body.

2.2. Local mass balance equation of the multicomponent media

It will be assumed that there is no chemical reaction between migrating substance α = 1 and a
skeleton α = 0, the density of mass source productivity of both components is equal to zero c̃α = 0.
The local mass balance equations of the mixture according to these assumptions [2, 19], respectively
for a skeleton and migrating substances, will be defined in the following form

ρ
d

dt
(cα) + div (jα) = c̃α, cα =

ρα

ρ
,

ρ
d

dt

(

c0
)

= 0, ρ
d

dt

(

c1
)

+ div
(

j1
)

= 0, j0 = ρ0u0 ∼= 0, j1 = ρ1u1,

(3)

where jα is the mass flux of the component α, and cα is the concentration of the component α.

2.3. The mean local momentum and angular momentum balance equation of the

multicomponent media

The mean local momentum balance equation of the mixture and the angular momentum of the
mixture can be presented while skipping long distance influence and using the assumption that the
diffusion stress tensor equals zero (tDα = 0), presented [2, 19] in the form

divσ + ρb = ρ
dv

dt
, σ =

1
∑

α=0

σ
α, b =

1
∑

α=0

cαbα, σ = σ
T, (4)

where σ is the mean stress tensor, b is the mean mass force, σα is the partial stress tensor, and bα

is the partial mass force.

2.4. Mean local balance equation of energy of the multicomponent media

The mean local balance equation of energy when ignoring long distance influence and small strains
assumptions gradS v ≈ ε̇ can be formulated [2, 11, 19] in the form

ρ
dη

dt
= ρr − divq+ σ : ε̇−

1
∑

α=0

div (Mαjα) , Mα = ηα + kα − pα

ρα
, pα =

1

3
trσ,

η =
1

∑

α=0

cαηα, r =
1

∑

α=0

cαrα, q =
1

∑

α=0

cαqα.

(5)
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Here, η is the mean internal energy of the multicomponent media, r is the mean productivity of
heat source, q is the mean heat flux, ε is the strain tensor, ηα is the partial internal energy, kα is
the partial kinetic energy density, rα is the partial productivity of heat source, and qα is the partial
heat flux.

2.5. Mean local entropy growth inequality of the multicomponent media

It is assumed [19], that the temperature T = Tα is common for all the components. The mean local
entropy balance equation can be written in the form [2, 19]:

ρ
ds

dt
≥ ρse − div(h), hα =

qα

T
, sαe =

rα

T
,

s =
1

∑

α=0

cαsα, h =
1

∑

α=0

(hα − ραsαuα) ∼=
1

∑

α=0

hα, se =
1

∑

α=0

cαs̃αe .
(6)

Here, s is mean entropy of the multicomponent media, se is the mean productivity of entropy
sources of the multicomponent media, h is the mean entropy flux of the multicomponent media, sα

is the partial entropy density, hα is the partial entropy flux, and s̃αe is the partial entropy sources
productivity.

2.6. The residual inequality of the process and constitutive relationship

Taking into consideration the uniform temperature postulate of all components in the entropy
growth inequality (6) and eliminating from the energy balance equation and for the entropy growth
inequality the terms describing the mean productivity of heat sources and mean heat flux the
residual inequality of the process will be obtained

−ρ
(

ψ̇ + sṪ
)

+ σ : ε̇−
1

∑

α=0

jα gradMα −
1

∑

α=0

Mα div jα − q · gradT
T

≥ 0, (7)

where ψ = ψ (cα, εe,α, Ie, T ) is the Helmholtz free energy, εe = ε− ε
p is the elastic strain tensor,

ε
p is the plastic strain tensor, and α is the internal plastic variable. Taking into consideration in
Eq. (7) the local mass balance equation of the multicomponent continua (3), the Clausius–Duhem
inequality will be obtained

(

−ρ ∂ψ
∂εe

+ σ

)

: ε̇e +

(

−ρ∂ψ
∂T

− ρs
)

Ṫ +

(

−ρ ∂ψ
∂c1

+ ρM1

)

ċ1 +D ≥ 0, (8)

D = σ : ε̇p −Xα • α̇−XI İe − j1 · grad
(

M1
)

− q · grad(T )
T

≥ 0, (9)

where the abstract operator • denote the scalar product. Hence, this inequality must hold {εe, T, cα}
independently the way of field choice the constitutive relationships will have the form

σ = ρ
∂ψ

∂εe
, ρs = −ρ∂ψ

∂T
, ρM1 = ρ

∂ψ

∂c1
. (10)

The quantities Xα and XI occurring in the relationship (9) are coupled thermodynamical forces
defined by using the formulae

Xα = ρ
∂ψ

∂α
, XI = ρ

∂ψ

∂Ie
. (11)
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2.7. The evolution equations of internal parameter

Fulfilment of the Clausius–Duhem inequality requires introduction of dissipative potential func-
tion [12], scalar and convex function of dual variables Θ = Θ

(

σ,Xα,XI , grad T, gradM1
)

. It will
be assumed that potential function can be treated as superposition of independent functions that
describe the mechanical effect, the effect connected with the internal parameter Ie and the part
describing thermo-diffusion effect

Θ = Θm (σ,Xα) + Θc

(

XI
)

+Θtd

(

gradT, gradM1
)

. (12)

The evolution equation of internal parameters will be assumed in the form of following equations [12]

ε̇
p = γ

∂Θm (σ,Xα)

∂σ
, (13)

−α̇ = γ
∂Θm (σ,Xα)

∂Xα
, (14)

−İe =
∂Θc

(

XI
)

∂XI
, (15)

−j1 =
∂Θtd

(

gradT, gradM1
)

∂ (gradM1)
, (16)

−q

T
=
∂Θtd

(

gradT, gradM1
)

∂ (grad T )
, (17)

where in Eqs. (13) and (14) γ is a scalar function.

3. THE FORMULATION OF PLASTICITY EQUATION FOR THE ISOTHERMAL MEDIA

3.1. Constitutive relationship

It will be assumed that in the isothermal condition the free energy function will have form of the
following function ψ = ψ

(

c1, εe,α, Ie
)

, cf. [12, 16]

ρψ
(

c1, εe,α, Ie
)

=
1

2
ε

e : C : εe − ε
e : C : χ (Ie − Ie

0) +
1

2
α •D •α+ ψd(c

1), (18)

where χ is a tensor of material volumetric increase as the result of corrosion products creation,
D is the tensor of generalized plastic module, and ψd is the diffusion part of free energy function.
Using Eq. (18) in the relationship (10) the constitutive equation describing the behaviour of two
components media with diffusion depending on internal parameter Ie that characterize the rebar
corrosion will be obtained

σ = ρ
∂ψ

∂εe
= C :

(

ε
e − χ(Ie − Ie

0)
)

, ε = ε
e + ε

p, (19)

M1 =
∂ψ

∂c1
=
∂ψd

∂c1
=M1(c1) (20)
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3.2. The formulation of plasticity equation of the media

The elastic-plastic relationship can be obtained according to [16] by using the consistency condition
ḟ (σ,Xα) = 0

ḟ (σ,Xα) =
∂f

∂σ
: σ̇ +

∂f

∂Xα
• Ẋα = 0 (21)

where f is a yield function. Taking into consideration Eqs. (11), (13), and (14) in Eq. (21) the
formulation of the dependence describing the γ function will be obtained in the form

γ =
1

H

(

∂f

∂σ
: C : ε̇− ∂f

∂σ
: C : χİe

)

, H =
∂f

∂σ
: C :

∂θm
∂σ

+
∂f

∂Xα
•D • ∂θm

∂Xα
, (22)

Using Eq. (22) in (19) the rate form of elastic-plastic constitutive equations will be obtained

σ̇ = Cep :
(

ε̇− χİe
)

, Cep = C− 1

H
C :

(

∂θm
∂σ

⊗ ∂f

∂σ

)

: C, (23)

where Cep is elastic plastic tangent tensor. Using the backward Euler scheme in (23), cf. [16], allows
the formulation of the incremental form of elastic-plastic constitutive relationships

σn+1 = σn +Cep :
(

∆εn+1 − γ∆Ie
n+1

)

,

∆εn+1 = ε̇ (tn+1)∆t, ∆Ie
n+1 = İe (tn+1)∆tn+1, tn+1 = tn +∆tn+1.

(24)

3.3. The description of distortional strain evolution equation

Using the definition of the first invariant of distortional strain tensor and assuming the orthotropy
of distortional strain tensor (corrosion products causing distortions only in the plane perpendicular
to the rebar axis, therefore εd33 = 0 and εd11 = εd22 = ε), the following relationships can be formulated
[9, 10, 14]

Iεd =
V p(t)

V0
∼= tr(εd), V̇ p =

α

γp

ṁ =
β

γFe

ṁ,
γp

γFe

β = α, β =
V p

V
, ṁ = keI(t), (25)

where m is the mass of ferrous ions transferred into the solution, V p is the corrosion products
volume, γp is the corrosion products density, α is the proportionality coefficient of the corrosion
product mass to the mass of ferrous ions transferred into the solution, β is the proportionality
coefficient of the corrosion products volume to the volume of corrosion cavity, t is time, ke is the
electrochemical equivalent of iron, I(t) is the corrosion current intensity, V is the corrosion cavity
volume, V0 is the initial volume, and γFe is the density of iron. Basing on these relationships the
distortional strain tensor that describes the mechanical effects caused by corrosion can be presented
in the following form [9, 10]

ε̇
d = 1̃

βk

2V0γFe

I(t) ≡ χİe, 1̃ =

{

δijei ⊗ ej for i, j 6= 3,

0 otherwise,

ε
d = 1̃

βk

2V0γFe

Ie ≡ χIe, Ie =

∫ t

0

I(t)dt, I(t) =
dIe

dt
.

(26)
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4. THE INCREMENTAL FORMULATION OF FEM EQUATIONS

The process of reinforcement corrosion is defined by weak form of mass transport and momentum
transport equation. Taking advantage of Euler scheme in the weak form of momentum balance
equation the incremental formula describing the aggressive substance mass transport in the media
will be obtained. The solution of weak form of momentum balance equation requires linearization

of the weak form in the neighbourhood of points uk
n+1 and Ie,kn+1

according to the relationship,
cf. [9, 10, 16]

G = Ḡ+DḠd∆uk+1
n+1

+DḠd∆Ie k+1
n+1, G = G

(

uk+1
n+1

, Ie k+1
n+1, δu

)

,

Ḡ = Ḡ
(

uk
n+1, I

e k
n+1, δu

)

, uk+1
n+1

= uk
n+1 + d∆uk+1

n+1
,

Ie k+1

n+1 = Ie k
n+1 + d∆Ie k+1

n+1, tk+1
n+1

= tkn+1 + d∆tk+1
n+1

,

DG(x)u =
d

dα

∣

∣

∣

∣

α=0

G(x̄+ αu), x = x̄+ αu.

(27)

Because of computer application the matrix notation will be used in the further part of the paper.
The approximation of concentration and displacement field in the finite element will be assumed in
the following form

c ≈ ch(x) = N̄(x)c̄, u ≈ uh(x) = N̄(x)ū, (28)

where N̄(x) is the shape function matrix, whereas c̄ and ū are the vectors of nodal concentration and
displacements, respectively. Using the formula (28) for the approximation of aggressive substance
concentration field the FEM equation of mass transport in concrete will have the following form

1

∆t

(

C̄n+1 − K̄n+1

)

c̄n+1 = R̄n+1 +
1

∆t
C̄n c̄n,

C̄ =

∫

Bh

N̄TN̄ dB, K̄ =

∫

Bh

∂N̄

∂x

T

kD

∂N̄

∂x
dB, R̄ =

∫

Bh

N̄Tj̄ dB,

(29)

where j̄ is the mass flux on the boundary, kD is the diffusion coefficient matrix. Using the formula
(28) in the linearized weak form of momentum balance equations we will obtain the following
incremental FEM equations

K̄k
n+1 d∆ūk+1

n+1
− Q̄k

n+1 d∆I
e k+1

n+1 = F̄ext
n+1 − F̄intk

n+1, d∆Ie k+1

n+1 = I(tk+1
n+1

) d∆tk+1
n+1

, (30)

K̄k
n+1 =

∫

Bh

B̄T · C̄ep
∣

∣

k

n+1
· B̄ dB, Q̄k

n+1 =

∫

Bh

B̄T · C̄ep
∣

∣

k

n+1
· χ̄ dB, (31)

F̄ext
n+1 =

∫

Bh

B̄T · ρb̄n+1 dB +

∫

Bh

B̄T · p̄n+1 dB, F̄intk
n+1 =

∫

Bh

B̄T · σ̄k
n+1 dB, (32)

C̄ep
∣

∣

k

n+1
=
∂σ̄

∂ε̄

∣

∣

∣

∣

k

n+1

= − ∂σ̄

∂ε̄d

∣

∣

∣

∣

k

n+1

, ūk+1
n+1

= ūk
n+1

+ d∆ūk+1
n+1

, ū0
n+1 = ūn. (33)

where B̄ is strain displacement matrix. In Eqs. (30)-(33) n means the loading step and k refers to the
correction within the loading step. The application of the foregoing algorithm in to the analysis of
corrosion can be approached by using the schematic drawing showing corrosion degradation problem
in the advanced state.

Figure 1 presents the sketch of the algorithm application, where the following regions are dis-
tinguished: 1 – concrete, 2 – steel, 3 – no active transition region elements (the region where the
corrosion products are created and the elements expand their volume), 4 – the region where the con-
centration of aggressive substance is deferent then zero c1 6= 0, 5 – active transition region elements
(the distortional strains are present), I 6= 0.
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Fig. 1. The sketch of the algorithm application

5. NUMERICAL EXAMPLE

In order to show the practical application of foregoing considerations the numerical example will
be presented. The time necessary for concrete cover fracturing in the reinforced concrete element
having the statical scheme presented in Fig. 1 has been analyzed.

The analysis has been performed in the system for the FEM analysis. Because there was no
possibility of interfering in the finite element code the analysis has been simplified. Two types of
analysis have been performed. The analysis of aggressive substance mass transport and the me-
chanical analysis. The analysis is made by using a separated part of a reinforced concrete element
that contains rebar with diameter φ0 = 20mm and 40mm thick concrete cover, Fig. 2. The com-
putational model is 200 × 100 × 10mm part, virtually cut from the structure, containing a rebar
ideally connected with the concrete. It has been assumed that the virtually cut part of the structure
satisfies plain strain conditions. Moreover, it has been assumed that for nodes laying in the cutting
plain displacements in normal directions are fixed. Distortional strains caused by increase of corro-
sion products volume have been specified taking advantage of thermal strains tensor analogy (the
constitutive equation for a solid body with thermal distortions and corrosion product distortions
after some assumptions are identical). The active elements (see Fig. 2) will start to grow when the
chloride ions concentration on the rebar surface overcomes 0.4% of cement mass and the corrosion
process will be activated. For the assumed concrete B25/30; according to [6, 15] the mean value
of compressive strength is fcm = 33MPa, the mean value of tensile strength is fctm = 3.3MPa,
elasticity modulus is Ecm = 31GPa. The Drucker–Prager plasticity model is used to describe the
concrete. The input data cohesion coefficient c = 4, 33 · 106 N/m2 and the angle of internal friction

Fig. 2. Analysed numerical example
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Φ = 60.57 required by system have been calculated using the following formulas [4]

a =
m− 1√
3 (m+ 1)

, b =
2fcm√

3 (m+ 1)
, m =

fcm

fctm

,

c =

√
3 b (3 − sinφ)

6 cosφ
, φ = arcsin

(

3
√
3 a√

3 a+ 2

)

.

(34)

The reinforcing steel A-I is used with the elastic material model. On the basis of [6, 15] the elasticity
module Es = 200GPa is accepted. The corrosion electric current density is determined on the basis
of the regression function presented in [13]:

ln(1.08 icorr) = 7.89 + 0.771 ln(1.69Cl)− 3006
1

T
− 1.16

104
Rc + 2.24 t−0.215,

I = π φ0 la icorr,
(35)

where icorr is the corrosion electric current density [µA/cm2], Cl is the chloride ions content in
concrete [kg/m3], T is the steel surface temperature [K], Rc is the concrete cover electric resis-
tance [Ω], and t is the corrosion process time [year]. To determine the corrosion electric current
density icorr the following values for parameters have been assumed: the chloride concentration in
concrete cCl = 0.4% of cement mass, the cement content in concrete mcem = 250 kg/m3, the rebar
surface temperature T = 283.15K, the concrete electrical resistance Rc = 15000Ω, the electrochem-
ical equivalent of iron ke = 9.12 · 10−3 g/µA ·year, the length of section of active corrosion processes
on the rebar la = 10mm, and the density of iron γFe = 7.85 g/cm3. Estimating the magnitude of
distortional strains three ratios of the corrosion product volume to the corrosion cavity volume,
β = V p/V , have been taken into consideration, namely: β = 2, β = 3, β = 4. The results obtained
for time changes of corrosion current density functions icorr, the ratio of the major tension stress
S1(t) over the maximum tensile stress at the moment of concrete cover fracture S1max

∼= 3.6MPa
(according to this model from the moment of corrosion process initiation) on the element edge (at
point A according to Fig. 2) are presented graphically in Fig. 3. The distribution of equivalent plas-
tic strain around the analyzed reinforcing bar at the moment of concrete cover splitting is shown in
Fig. 4.

Fig. 3. The results of computer calculations of the ratio of the maximum tension stresses over the maximum
stress, S1(t)/S1max, in the model at point A (cf. Fig. 2) in the function of time and electric current density
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Fig. 4. Equivalent plastic strain distribution at the moment of concrete cover splitting

6. SUMMARY

This paper presents the model based on the theory of multicomponent media allowing the modelling
of rebar’s corrosion processes e.g. FEM. The presented model extends and sums up the considera-
tions described in [8–10]. The additional internal parameter Ie describing the rebar corrosion process
that depends on corrosion current intensity has been introduced in the model. The free energy func-
tion allowing formulation of constitutive relationship with mechanical distortions which depend on
internal parameters has been used. FEM equations and numerical example showing application of
the model for the simulation of concrete cover fracturing process have been presented. According to
the author, the presented theory is in a way simplified but a complete model allowing modelling of
degradation processes of concrete cover as the result of rebar’s corrosion taking into account very
complex physical processes.
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