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A new, original numerical method of free particles, for mechanics of continuous media, has been developed.
The free particle hydrocodes (HEFP), based on this method, are the powerful tools that can be used to
simulate, in the sense of computational physics, events with very high dynamic effects. In the paper,
computational simulation of several attractive and practically important problems like: processes of the
detonation, high velocity impacts and hypervelocity planetary impacts, shaped charge jet formation,
explosive forming of projectiles, penetrating of the armour plate, is posed. All of them include shocks, very
large deformations of solids, processes of cratering with impact jets generation and targets penetration.
The method of free particles is a very useful for magnetohydrodynamical (MHD) simulation, too. It
is possible to simulate ideal MHD and non-ideal MHD processes, and such exemplary results are also
presented. In the paper, physical, mathematical and numerical models as well as results of some complex,
unsteady, spatially two-dimensional simulations are presented.

1. INTRODUCTION

Initial and boundary value problems of highly dynamic events like collisions and penetrations,
large dynamical deformations of solids, processes of detonation of explosives and MHD phenomena
belong to the most complicated problems of the mechanics of continuous media. It results from the
following reasons:

¢ nonstationarity and multidimensional character of the problems,

¢ quantity and complexity of physical processes concomitant with the collisions and deformation
of solids, detonation of explosives, and MHD plasma evolution,

e complicated mathematical description of these processes, consistent with the physical reality,
o complicated and continually extended description of properties of highly deformed materials.

Several exemplary solutions of especially attractive and important problems will be presented
[1-5,14-16, 19], namely:

¢ formation of the cumulative jet,
o explosive forming of projectile,

¢ penetration of a target by the deformable body,

"The paper has been presented at 2nd Joint Polish-Japanese Seminar on Advanced Modelling and Simulation in
Engineering, Pultusk, Poland, May 29-June 1, 1994,
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¢ planetary impact,
e MHD instability.
The physical models of these phenomena include:

e general gas dynamic equations and semi-empirical equations of state for the description of spatial
process of detonation of explosives,

e equations of the elastic/visco-plastic or elastic/plastic theory together with Steinberg model of
semi-empirical material characteristic, and phenomenological model of the crack formation for
the description of the deformation process of the solid liners and projectiles,

e general equations of hydrodynamics with gravity,
¢ equations of ideal and non-ideal magnetohydrodynamics (MHD).

The appropriate for each case set of transient, nonlinear partial differential equations in two
dimensions has been solved using an original numerical method which enables:

e use of special 9-points numerical schemes,

calculating problems with large deformations, including the possibility of fragmentation of the
investigated objects,

treating of the boundary conditions on the moving and curvilinear surfaces,

linking of the solutions on the interfaces of different media,

obtaining of the stable solutions for long times etc.

2. PHYSICAL MODELS OF THE DYNAMICAL PROCESSES

From the previous experience (see [1-4]) we can state that, in order to achieve good agreement
between the numerical simulation and experiment, the physical description of the processes of
shaped charge jet formation, explosive forming of projectiles and penetrating of the armour plate
should include:

o the set of general equations of the elastic/visco-plastic theory with semi-empirical material
formulas,

e hydrodynamic theory of detonation with the JWL type equation of state.

The set of conservation equations in two dimensions can be specified as follows:

dp Ou v w\ _

E+P(5+a+;)—0, (1)
du = ap 6Sfr 65,-2 Srr = S¢¢

’OE - or 7 or 0z % T ? (2)
dv _@ n 05,; " 08, + Sz 3

P&t = "oz or 0z r’ (3)
dF ou Ov u ou u v ou Ov
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Constitutive relations of the elastic/visco-plastic material are taken in the form:

[ - [Ju 1 /0u Odv u du v W
5 =[5 -3 (atam )]+ 5 (5 - 5) - fos )
0546 (w1 /0w Ov u)] I
S =wli-g(mtamty)|-5ese, (©)
05.. [ v ou 81} ou Ov 1
ot 2 18z (61* gy )] Sz (5 B 67‘) A nq)S" : (7)
08rz du 0Ov 1 ou Ov p
S o+ 8) om0 (2 ) e
where:
d a 0 ad
a=a+u§+v51 (9)
2
) =1-‘/my, >0, (10)
SikSir = .5'3,. + 5§¢, + sz + 253: . (11)
Equation of state for liner and casing is proposed as follows,
p= kiz + k2$2 + kgza + ')’OPDE ) (12)
where
z=1-2 k=0 ifz<o. (13)
ps

The dependence of dynamic yield strength ¥ and shear modulus on plastic strain, pressure and
temperature has been adopted according to the Steinberg model (7, 8]:

Y = Yo(l+Be?) [1 +bp (ﬁ—;) LT 300)] ; (14)
Yo(1 + Be?)" < Ymax, Y0 T >T5, (15)
1
K= o [1 + bp (ﬁ%) T - 300)} ; (16)
Po 3 Po
() o (- 2)] :
g Ps i Ps W
1
2 2 3 7
eP = 0.4714 [Efr i Egz)z it (Ef,. = egé) + (egz i E;d:) + 5 (Efz)z] 1 (18)
def, @
F e Eslk 3 (19)
5 _m,exp(,r). (20)
The model of forming and growth of cracks has been taken in the same form as in [9]:
dVe - X Ver Ve
= —k sign(p) (|p| W) (Ve +Veo)  for [p| > b W (21)
dVp s Ver
TS for |p| < Uom : (22)
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Here, k, Vo, Vo1 and og are constant parameters to be determined experimentally.

The density of the solid phase can be obtained from the relation

P (23)

p Ps

where V¢ is the specific volume of cracks and pg is the density of the solid phase in a medium with
cracks.

It is very important to take into account the proper dependence of viscosity on temperature
n = n(7T') and the influence of the crack volume growth on Y, p and 7. The best comparison
between the numerical simulation and experiment [1,3] has been obtained for the relation [10]:

4380

n=25x10"%exp (T) [Pa-s] (for copper). (24)
T is temperature in the Kelvin scale.

The relations for Y, p and 7 in dependence of the crack volume have been adopted from [9,11]
in the following form,

yYrEYF, pT=pF, T =qF, (25)
where
= el ~ for aluminum and steel, (26)
Ve + Ver
F = exp(=TpV¢) — for copper. (27)
The set of the hydrodynamic equations describing the detonation products is taken in the form
dp ou Ov u
a-l—ﬂ(g-}'a'l';)—o, (28)
du ap
P% = "o (29)
dv dp
i R (30)
£ _ _ (.‘B_‘E LN &) 31
Pat = P\or To:"7) (#1)
The equation of state of the detonation products of condensed explosive (the JWL type) is taken
in the form
_ A -RV _ % \ -Ryv
p=A (1 Rﬂ/) e + B (1 sz) e + 8pE (32)
where
= L 3
p

while p, p, ' and p, denote pressure, density, internal energy of the detonation products per unit
mass and density of the explosive, respectively.

Another class of problems that we want to investigate is connected with planetary impacts
(14-16,19]. It is impossible to compare theoretical and experimental results directly, therefore we
ought to test our simulation indirectly, for instance by comparing with seismological data like the
travel time through the Earth of the P-waves (more correctly — PKIKP waves) [12].

When the local problems of the asteroids impact onto the Earth are studied (crater and jet
formation, asteroid with diameter about 10 km), mathematical description of dynamical processes
must make use of elastic-plastic material model of the response of the impacted Earth. In the
cylindrical system of coordinates the following set of equations, with constant gravity, has been



New numerical method for continuum mechanics 109

applied to formulate the problem mathematically:

— Conservation equations:

d
T +P (a +@+ )=0, (33)
T
du = GMpp r 085: . 08z . Ser — S
% - R R Br Br T 02 T r (34)
dv ~ GMop z Op 05y  0S. | Sr:
PH TR R B o s tr (35)
dFE ou Ov u du ou Ov
par = 2 (Grt gets) + S + et S 245 (55t 50) (36)
— Constitutive relations:
08, _ (du 1 /0u Ov u du  Ov
‘a—t—2#_E-§(g+§+r)]+5m(a—$), (37)
034, _iiop {2 o X P01y B2 3)]
ot -2'u'_r 3(8r+82+r i (38)
85, [0v 1 (0u Ov u ou v
o ‘”ﬁ?‘(ﬁ*&*?ﬂ“%(%‘&) (3%
4S.. _ ou v 1 ou Ov
o (az*'a )"2 B “)( 92 3?) (40)
The von Mises limits of elasticity are assumed,
S% + 824+ 8%, +28% < 31/2 (41)
where:
Y = min(Co + ap, Yim). (42)

Here, Cy denotes cohesion, a is the slope of the Mohr-Coulomb surface and Y,,, is the von Mises
limit for compression.
Equation of state has been assumed in the form proposed by Isenberg and Schuster [14],

p=Knz — (Kmn — Kr)p* [l—exp (hﬁ%)] +vpE, (43)
where:
P —Po
= LTA0 . 44
i (44)

while K, Ky, are the initial and maximum bulk moduli, respectively, and u* is the empirical
factor.

The dynamical effects of high velocity planetary collision with a large asteroid (radius >
55km) [14,15,19] and sub-giant impact with a spherical asteroid (diameter about 1600 km), with
regard to the global response of the Earth, have been computed on the basis of the hydrodynamic
theory of impact taking into account gravitational force:

dp ou Odv u

a+p(a+§;+;)—0, (45)
du  GMop r 9p

8= " TR B o’ (#6)
dv  GMoyp 2z 0Op

& T R R 8 (47)

(48)
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The strength of material is not taken into account. The global spherical symmetry of the undis-
turbed Earth (before impact) is assumed. Therefore the initial (undisturbed) density distribution

Po =,00(R), 0< R < Ry, (49)

follows from the PREM model by Dziewonski and Anderson [13]; R denotes the radius of the
undisturbed Earth. We use the Gruneisen parameter distribution,

=v(R), 0< R< Ro, (50)

determined by Stacey [18]. The Gruneisen parameter is supposed to be undisturbable and it is
always given by Stacey data.

The Earth material is assumed to obey equation of state (EOS) in the form similar to Murnaghan
pressure-density relation with the Gruneisen term

_ K p)"’é
P—po= K, [(pﬂ 1| +p(E - Ey). (51)

Here, p is pressure, p is density, and E denotes specific energy per unit of mass (all are taken at a
given point and at a specified time instant). The undisturbed bulk modulus K depends linearly
on the undisturbed pressure py,

Ko = K(po) = Koo + Kgpo (52)
with
Koo = 2.25 x 10" Pa and K, =335. (53)

The numerical coefficients in this equation are chosen to be equal to the mean values over the
whole Earth mantle [17,20]. In the original Murnaghan equation, both K, and K, are taken at
pressure equal to zero.

The undisturbed pressure pg is determined from the hydrostatic equation

dpo _ G mo(R) po(R)

dR R?
where G = 6.672 x 107" Nm?kg~? is the gravity constant and mg(R) is the partial mass within
an undisturbed sphere

(54)

R
mo = 4?1'/.0 po(z)z? dz . (55)

The density of impactor is assumed to equal 2.6 gcm™2; the other material parameters of impactor
are assumed similar to that of the Earth mantle.
The equations describing the MHD process in the Z-pinch are taken as follows [5]:

dp
P 4 o =
5 TAVw = 0, (56)
dw 1.8
ey :VO’-!-EJXB, (57)
dT: : T L
pc”-d_t‘ = o' - Vw + 2zpe, ET. -+ W;, (58)
et
dT, dz dQ; . =T
zpe, dte = o -Vw— pchea - p% + 3% = zpc, = -+ W, (59)
B Ry jxB

Il

k
VX(WXB)—-—CVnEXVTe-i-SVX (60)
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The quantities and expressions are: p — mass density, w(v,0,u) — fluid velocity, T; — ion
temperature, 7, — electron temperature, B(0, Bs,0) — magnetic field, 2 — degree of ionization,
J(0,0, j.) — current density, o — stress tensor, n — resistivity, ¢, — specific heat, 7.; — electron-ion
relaxation time, Q); — energy loss, n, — electron density, R — thermoelectric force, ¢ — speed
of light, e — electron charge and kK — Boltzmann constant.

The stress tensor o can be specified as follows:

o =o°+0, (61)
Ofk = —Pebik, (62)
ol = —pibix + 2uSik (63)
. L
Sik = €k — gubix, (64)
B0 3(B+3)
E = 0 = 0 ] (65)
du 9 3
P(E+E) o
where p — coefficient of viscosity, p. — electron pressure and p; — ion pressure.
The current density j is related to magnetic field intensity by the Ampere’s law
e
j=—VxB. 66
§)= VK (66)
The quantity ¢, is defined as
k
Cy= ————. 67
(v = )m; )

It has been assumed for the purpose of the numerical experiment that y = § and m; = 3.35x10~23g
(mass of the neon ion).
The equation of state has been assumed in the form

P = Petpis (68)
pe = 2(v - 1)cupT., (69)
pi = (7 = 1)eypT; . (70)

The electron density has been evaluated from the formula
Sorh 4
Ne =2 m; (71)
and the degree of ionization z by means of the collision-radiative model

&= fi- 1. (12)

The rates of the ionization process f; and those of the recombination process fj and f; were obtained
from the relation

- L/:J(z)dz (73)

30

where J(z) is the average ionization potential. The expression for the thermoelectric force has the
form

R = —kn, [ﬂJ.VJ.Te T ﬁt\(i X VT.:)] (74)
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= — (75)

and (3, , O are thermoelectric coefficients.
The expressions of W; and W, involved in the energy equations describe the transport processes
of heat and radiation,

W; =—V-hi, (76)
W, =-V-h*-V.h”. (77)

The ion heat flux in the magnetized plasma has the form:
h' = -\ V, T; - k4 (i X VT)). (78)

The components of electron heat flux h® and radiation flux h? are thus expressed by the formulae:

h* = h7 4+ h", (79)

hT = -k VUT. - 5(i X VT.), (80)

b = 5 (.54 paix )], (81)

W = —x"V, T, (82)
where

oy (83)

os — Stefan-Boltzmann constant and [/ is the Rosseland length.
The boundary conditions were as follows

Op=0,=0 on the surfaces, (84)
=0 o =0 at the electrodes, (85)

- 2ig) on the free surface of the pinch, (86)
ET =90 at the electrodes, (87)
hi =0, h;, = % on the free surface, (88)
To=Tr=Ty on the electrode surfaces, (89)

where hi, ht — the flux components normal to the surface, To — initial electrode temperature
and R = R(z,t) — radius of the pinch surface. EI — radial component of total electric field — is
expressed as follows,

E.B ke [ 1 8(n.T. oT. oT. . S
¢+_ —"—(“‘“—l or + Ba 9z | E, = nj,, Ey =1)s. (90)

v T = =
& & en.n e [n. Or

+ By

The radiation density has the form

_ 4osT)
=ity

] (91)
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Fig. 1. The idea of the computational algorithm of the method of free points (particles)

3. NUMERICAL METHODS

H

The sets of differential equations and relations describing the properties of the materials, presented
in a foregoing Section with the relevant initial-boundary conditions have been solved numerically
by means of what is referred to as a “method of free particles”, sometimes also called Dyachenko’s
“method of free points” [6] and has been discussed in brief in the works [2,4] and, in greater detail,
in [3]. This method may be used for solving various non-stationary, two-dimensional boundary
value problems of a continuum. The propagation of the shock wave front is modelled with quadratic
Richtmyer-von Neumann artificial viscosity.

The object of our study is the system of material points moving together with the body in the
course of its deformation, see Fig. 1A. At the initial instant of time, these points are located so that
they form sufficiently dense mesh covering the object to be studied, in agreement with its geometry.
The values of the dependent variables are prescribed at each point. The motion of the points is
followed in the course of solving the problem, new values of the parameters being calculated. The
motion and the parameters at each point are determined from the equations of the problem, taking
into account the parameters at some neighbouring points which are the nearest ones to the point
considered. The selection of the neighbouring points should be done according to the following
principles:
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(a) the neighbouring points should constitute the nearest neighbourhood of the considered point,
(b) the angular distribution of the neighbouring points should be as uniform as possible,
(c) the number of the neighbouring points must exceed the value of eight.

The idea of the computational algorithm can be explained (see Fig. 1B) by considering one of
the equations of the problem, e.g. the simplified form of one of the conservation of momentum
equations

du 1dp

— = ——— 2
dt por (92)
If u} g denotes the velocity of the point identified by a pair of numbers (L, K') at the time ¢"
and if u““ denotes the velocity of that point at the subsequent time instant ¢**!, the quantity
uE"}} can be determined as follows,
At 8p]"
n+l n
=ul g —— | = , 93
Upg = UL K Pir Lorlox (93)
At =" (94)

where p} i is the density at the point (L, K’) and at the time ¢", and [gE]ZK is the pressure

gradient at the point (L, K) and at the time ¢". The evaluation of this gradient in the moving
meshes of neighbouring points is of fundamental importance. It has been done by the method of
least squares for the linear approximation of p.

Let us denote by (", z*) the coordinates of the neighbouring points at the time instant ¢* and
by p!' the pressures at those points. By the linear interpolation between the considered point (L, K)
and the neighbouring points (7, z7), the latter of them are brought to a certain circle around the
point (L, K'). After interpolation, the new locations of the points (r?,2") are denoted by (7, 2/
and the pressures by p/*. The aim of this operation is to apply the same weighting procedure to
each particular point in the process of the gradients evaluating.

Let us assume that the pressure in the neighbourhood of the point (L, K) is described by the
linear function

p(r2) = pLx +a(r — 1L k) +b(z - 2 &) (95)

where 77 -, 2] - and pj j- are coordinates of the point (L, K') and the pressure, respectively. The
coefficients a and b can be calculated by the method of least squares,

N
€a,0) = 3 [p"(ri™, 5" - P17, (96)
= |
(43
9¢
T 0. (98)
These formulae give the values of the coefficients a and b which are also the gradients
L BP] g
= |3, (99)

op|"
b = |— 2
azL,K (100)
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All the remaining space derivatives involved in the set of equations, formulated in the preceding
Section can be calculated in an analogous manner. Making use of this fact we can find, from the
formulae just mentioned, all the values of the dependent variables for the next time-level ¢t"*1,

By repeating this procedure for consecutive time steps we obtain a solution of the problem in a
discrete form in time and space.

Although the idea of the algorithm seems very simple, practical realization is quite complicated.
Over the past few years the method was developed to obtain stable as well as qualitatively and
quantitatively correct solutions. It was very difficult because of original character of this method.
For example it was impossible to find another but analogical methodology in the literature and
compare our results with another works. Let us, not considering the details of the construction of
an appropriate numerical code (a set of coupled programs), only list the most important problems
to be solved within the framework. They are the following:

(a) storing and completing current information on the state of all the points, for which computa-
tion is performed,

(b) storing and completing current information on the set of neighbouring points, for each point
of computation, for computing of the values of space derivatives on the irregular grid,

(¢) introduction of special algorithms making possible the removal of non-physical fluctuations and

instabilities of the numerical scheme, especially by choice of appropriate external numerical
diffusion,

(d) adjustment of the density of spatial distribution of computational points as well as adjustment
of the time step, according to the criterion of stability,

(e) elimination of these points which are referred to as angular and approaching instabilities,

(f) modelling of boundary conditions by introduction of fictitious points: (1) on all free surfaces
which reduce themselves to the condition of zero stress or pressure; (2) on the contact surface
(detonation products — cumulative liner) the classical free slipping condition,

(g) modelling of the condition on the symmetry axis by introduction of fictitious points,

(h) construction of special algorithms for computing rapid processes (in time step scale) such as:
stress relaxation, growth of cracks etc., and elimination of fragmented parts of solids,

(i) modelling of processes of generation and propagation of shock waves.

4. EXAMPLES OF RESULTS OF COMPUTER SIMULATION STUDIES

The scope of the present paper being limited, we shall only present some examples of the results
to illustrate the possibilities of computer simulation of such problems by means of the method.

Figure 2 shows, as an example, the result of computer simulation study of the shaped charge
jet formation and the penetration process of a steel armour plate. Consecutive frames illustrate
the process of development of the detonation, deformation of the conical copper liner and the
aluminium casing as well as generation of the shaped charge jet.

Figure 3 shows the results of simulation of the explosive forming of projectile.

Figure 4 illustrates the process of modelling of the armour plate penetration.

Figures 5-8 regard modelling of the hypervelocity asteroids collisions with the Earth.

Figure 5 presents several snap shots of the impact of the 10 km diameter asteroid on the ocean
and the multilayered Earth’s litosphere.
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On Figs. 6 and 7 we demonstrate results of the simulation of the shock wave propagation through
the Earth and velocity vector of the Earth surface after collision with an asteroid.

Figure 8 shows snap shots of the simulation of the sub-giant impact of the asteroid on the Earth.
Diameter of the asteroid is about 1600 km.

Figures 9 and 10 illustrate the development of the M = 0 type instability in the ideal and
non-ideal MHD approximation, respectively. The total current I(t) was approximated as follows:

I(t) = 3 x 10% cRo [1 = cos(1a7n)] , 0<t<1077,

I(t)=6 x 10*cR 1-ﬂ 10L& 107
= 2 9x10-7 |’ = ’

I(t)=0 £ > 1078

The initial configuration consists of a gas cylinder at rest, the radius of the cylinder being
Ro = 2.5cm, the length lp = 2 cm, the density po = 10~*gem ™3, the initial degree of ionization
z9 = 0.1 and Tp = 2 x 10® K. The magnetic field inside cylinder is assumed to be absent (Bg = 0).

It was also assumed that the surface of the gas column is subjected to an initial disturbance in
the form of the neck with AR/R = 0.1 (see Fig. 11a). This disturbance becomes a region of rapid
M = 0 type instability.

Figure 11 illustrates the development and interaction of many instabilities in the ideal MHD
approximation.
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Fig. 4. Simulation of the multilayered steel-aluminium-steel armour plate penetration (continued in the
next page)
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a) b)
Ar[cm] 9.1297E-11 sec Ar[cm] 1.7710E-08 sec
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4.1294E-08 sec

zlom)

=2

-1 0 i 2

Fig. 11. Development of the multiple M = 0 type Z-pinch inst.abi].ities in the ideal MHD approximation
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5. CONCLUSIONS

The results obtained in the present paper and a number of solutions concerning the problems of
dynamical effects in solids, gases and plasma enable us to draw the following inferences:

1. The models discussed in the paper and the relevant computer codes are capable of simulating,
in agreement with the conditions of the experiment, processes of detonation, shaped charge
jet formation, explosive forming of projectiles, armour penetration or, in agreement with the
planetological data, hypervelocity asteroid-Earth (and the other Earth-like planets) collisions.

2. The obtained results are in agreement with the experiment or with seismological data. This may
be concluded on the base of comparison of our own experiments as well as information which
can be found in the literature concerning the dynamical high-velocity collisions phenomena with
numerical results.

3. The versatility of the model makes possible its direct application for optimization and analysis
of parameters characterizing various collisional systems.

4. The free particle method is useful and efficient for MHD problems.

Our computational experiments provide evidence that although the method is conceptually simple,
the computer codes are effective, convenient and advantageous. This method of computational
physics is satisfactory from a practical point of view.
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