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The problem of dislocation motion in monocrystals is faced in the framework of the continuum theory of
dislocations. The presented approach is based on the defects balance law. A constitutive model is formu-
lated which relates the driving forces with the dislocation velocity. The model makes use of the relations
between the plastic deformation tensor and the tensor of dislocation density. Given a crystal under certain
boundary and initial conditions, the evolution of both dislocation field and elastic-plastic deformations
is obtained by solving the coupled system of equations resulting from the equilibrium equation and the
dislocation balance for each time step. The set of equations is discretized by the finite element method. As
an example the movement of an edge dislocation field inducing shear band deformation in a monocrystal
is considered.

1. INTRODUCTION

In spite of the discrete character of the atomic structure of metals, the continuum theories still
remain the main tool to predict the strain and force distributions in deformed crystals and poly-
crystals.

The foundations of the continuum theory of dislocations have been formulated, among oth-
ers, by Kondo [5], Kroner [6], Mura [9] and Bilby [2]. It is worth emphasizing that many pa-
pers written in that period were devoted mainly to the geometry and kinematics. We can say
that there is a real fascination about geometry of defects in that period. In some sense this fas-
cination lasts till now, cf. [4]. In spite of that, many problems in the domain of defect geom-
etry and finite deformations have not been solved as yet, e.g. although there have been many
attempts, a general, continuum theory of defects does not seem to have been satisfactorily for-
mulated in finite deformations. On the other hand, any theory, in order to be applied to the
solution of a given engineering problem, should involve not only geometry and kinematics but
dynamics or thermodynamics as well, as required to determine the forces. Moreover, such a the-
ory should include suitable constitutive equations relating the defect velocities to the driving
forces.

In this paper our interest is focused on modelling the dislocation field movement in the
elastic-plastic continuum. The linear theory used here includes the elements of kinematics as well
as thermodynamics and constitutive modelling.

In the next section we consider the fundamental relations in the continuum theory of dislocations.
The field of driving forces acting on the dislocations is determined as being energetically conjugated
to the dislocation velocity field. In Sections 3 and 4 the problem discretization by the finite element
method is presented and illustrated with an example of edge dislocation propagation inducing shear
band deformation in a monocrystal.

1The paper has been presented at Japan—Central Europe Joint Workshop on Advanced Computing in Engineering,
Puttusk, Poland, September 26-29, 1994.
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2. CONTINUUM THEORY OF DISLOCATIONS

Let us consider a dislocated crystal described in terms of the linear continuum theory of dislocations,
in which it is assumed that the displacement gradient can be decomposed in the following way,

Vu=w+e€c+€pl, (1)

where w is the antisymmetric tensor of crystal lattice rotation, e is the tensor of elastic strain of
the lattice, while ey is the (generally nonsymmetric) tensor of plastic deformation. This tensor is
often called the plastic distortion tensor, cf. e.g. [6, 7, 8, 9]. As a quantity related to it we define
the dislocation density tensor as

aq 4 rot €5l - (2)

In the index notation this equation reads aqi; = €plim,n€jmn, Where €jmn is the respective represen-
tation of the alternating tensor. For clarity, while using the index notation we write the subscript
of global quantities in parentheses.

Using the Stokes’ theorem it is easy to show that the total Burgers vector of dislocations piercing
the surface region AS bounded by a given Burgers circuit C satisfies the following relations,

T d =/ ¢ dS:/ ds . 3
Cepl T el rot €p1 o oyg (3)

In the continuum theory of dislocations it is also assumed that the rate of plastic deformation
satisfies the following kinematic relation,

épl =g X'Va , (4)

where vgq is the local dislocation velocity and x denotes the cross product. vq is defined as relative
to the material, so that if v is the material velocity, then the total velocity of dislocations will be
Vv + vg.

For dislocated crystals, the balance laws for mass, momentum, moment of momentum, energy
and the inequality of entropy, respectively, can be stated in the same form as for the ordinary
continuum, namely:

d

a/vpdvzo, (5)
d A

a/pvdv:/a’ds—{-/md’v, (6)
d )

E/Xvadv-—-/xxads+/x><p‘1dv, (7)
d 1 4

a/ <pu—|—§pvv> dv = /va‘ds—{-/pjvdv—/qus+/phdv, (8)
d qr ph

vk PO TS P LY Egf

dt/upndv__ sTds+/uT v, 9)

where p, @, j, v, X, 4, qr, h, 7, T denote the mass density, Cauchy stress tensor, body force density,
velocity, position vector, internal energy density, heat flow, heat source density, entropy density and
temperature. The above integral equations lead to the following field equations

p+pdivy =0, (10)
dive +pj—pv = 0, (11)
o-o" =0, (12)
—pu+ 0o :€c+0:€p —divqgr+ph = 0, (13)

h
P7'7+div<9%>—p? e (14)
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where div o = 0;; je; while e; denotes the i-th base vector. If we assume that the plastic deformation
is induced by the dislocation field motion, then, using (4) and (13) the inequality of entropy (14)
can be rewritten in the form

—pz[z—pnT—}-a:ée+fd-vd—s%gradT20 (15)
where

¢ = u-—nT, (16)

fd a5 Qa4 , (17)

s Pam, (18)

In the latter equations ¥, D and fy denote, respectively, the free energy density, elastic modulus
tensor and the vector of the driving force acting on dislocations per unit material volume, while
x denotes the double product: the scalar one over the first subscripts and the cross one over the
second ones, i.e. fq; = 0jr0q;i€iki. Equation (17) is a counterpart of the Peach-Koehler formula
in the notation used here, cf. [3, 11, 13]. According to the thermodynamic restriction (15), the
constitutive equations for the movement of the dislocation field can be stated in the following form,

Vg = Va3 (f—d) : (19)

Pd

where pq is the scalar density of dislocation determined as the total length of dislocations per unit
volume. Additionally, pq is related to the dislocation density tensor by

Qg = pac, (20)

where o = b @ nj3 is the tensor describing geometry of unit density dislocation, b is the Burgers’
vector and nj3 is the unit vector normal to the plane. A detailed discussion of various tensor, vector
and scalar dislocation measures has been presented by Dluzewski in [4].

3. COMPUTER ALGORITHM

Let us consider the dislocation motion in the elastic-plastic continuum at constant temperature.
Usually such motion is induced by the stress field. On the basis of the set of equations presented in
the previous section we may build a numerical model which will allow us to simulate the behaviour
of a dislocated crystal under given imposed loads and boundary conditions. Discretization of the
resulting set of equations by the finite element method yields to an algebraic equation system. By
solving this system we obtain the values of displacements and dislocation density at the nodes and,
from them, the problem dependent variables (strains, stresses) can be calculated.

The set of equations to be discretized consists of the rate form of the momentum equation (11),
and a balance equation for the dislocations. Neglecting the change of configuration (small defor-
mation approach) the material derivative of Eq. (2) takes the form

aq = rot €y . (21)
Using Eq. (4), Eq. (21) can be rewritten as?
Gaki = —(QdkiVdn)n + Cdknnvdl + CdkmVaim - (22)

Let us discuss the role of the sequential terms on the right hand side of (22).

2The following transformations have been applied:

Gdin = (@dij€xjivd1),menkm — Eplim,rVdrk€nmk = (Xdij¥a1),mekji€kmn .

= (adijva1),m(gimin — gingim) = (@dimVdn),m — (XdinVam),m -
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e We can notice that the first term represents the effect of the dislocation transport.

e In the dislocation theory it is assumed that single dislocations cannot end within the crystal
lattice. According to Nye [10] this corresponds to the following condition,

divag = 0, (23)

from which results that the second term on the right hand of (22) always vanishes.

e The third term represents the effect of the reorientation of existing dislocations. In this paper
our interest is focused on the plane problem of the plastic deformation induced by the movement
of straight line dislocations in a crystal. Therefore, the third term also vanishes, since agg =0,
agk2 = 0 and v4n3 = 0 where the third coordinate is, by assumption, perpendicular to the
plane problem and is parallel to the direction of the assumed dislocation lines.

In other words, for plain problems formulated in small deformations, we can assume that the
dislocation velocity is governed by the following equation,

aqg+ div(ag ® va)=0. (24)

Summing up, after neglecting dynamic terms from the rate form of (11), replacing (20) in (24)
and considering that o, is constant, we conclude that, from the mathematical point of view, the
solution procedure is equivalent to the solution of the following differential equation set

i = (25)
pa + div (pava) = 0.

The concept of transporting a given material in terms of a scalar field has been successfully applied
to other problems, e.g. to metal forming processes [1]. After application of the weighted residual
method, the weak form of the differential equation set (25) yields

5 ]z [E] 5

where a, and a,, f, and f, are the nodal displacement vector, a defect density tensor, force vector
and defect velocity vector, respectively, while

Cfa / VW, D VNdv, (27)
6./ /HW,,®Ndv, (28)
g / VW, Dép dv, (29)
B / (V™W,va)aqdv. (30)

In Eq. (28), ® denotes the dyadic product while W, and W, are the weighting functions for the
momentum and defects balances, respectively and N are the shape functions. Equation (26) can
be considered as the set of first order differential equations nonlinear with respect to a,

Ca+P,=f. (31)

Time discretization of (31) by the backward Euler scheme yields

1
Clans1 — an) + Py, =1 (32)
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from which the solution for time ¢,.1, a,4+1 is obtained. Equation (32) is solved by the Newton
Raphson method, from which results the tangent matrix (cf. [12])

(%) _ oL NL_E oP
r =Ki+Ki” = At‘}'aagll- (33)

Up to now we have considered a general FEM algorithm which can be applied to the computer
simulation of the motion of an arbitrarily chosen defect field. In accordance to the kind of defects,
the above set can be supplemented by the respective kinematic equation relating the defect motion
with the plastic deformation of crystals. For the case of dislocation motion, we substitute (4) into
(29) and next to (33) to obtain the tangent stiffness matrix, which reads

/ V'W,D (ad X a"“) dv / V™W,D(—v4 x N) dv
KNL = Vel aau Vel (34)
T 0vyq
/ VW, ((?a ® ad> dv / (V*W,v4)N dv
Vel U Vel

It is worth pointing out that the last dependency is still general with respect to the choice of
constitutive equations governing the dislocation motion.

4. NUMERICAL EXAMPLE

In order to test the present formulation we consider a monocrystal in a square domain, where a
shear tensile state is induced by external forces.
The following assumptions have been made:

1. Plane motion of monomial edge dislocation field is considered. These dislocations are directed
perpendicular to the considered plane, while the Burgers’ vector is deviated 20° from the hori-
zontal direction on this plane, i.e. b = b (cos 20°n; + sin 20°n;), where the mutually orthogonal
vectors n; and ny lay on the considered plane while n3 is perpendicular to it.

2. The dislocations are in conservative motion, i.e. €51 = pqvq€,, where €, = b ® (n3 x b), and
b
Vd .= vdm’

3. The dislocation velocity is proportional to the Peach-Koehler force. This means that for the
conservative motion, we have vg = mo : €, or, equivalently, vq = m(o x a,), where m = mb®b
and a, = b ® njs.

It can be shown that, under the above assumptions, the tangent stiffness matrix for an element,
(34), takes the form

/ VTW,De.pame, DVN dv / vTW,De,vaN dv
Vel Vel ; (35)

K2 =
(V*W ,b)pame,DVN do / (V™W,b)waN do
Vel

/
where ve] denotes the volume of the finite element. In the discussed example the Galerkin method
has been applied, i.e. W, = W, = N.

As a basis for computer analysis we have used the finite element code FEAP (see [12]). In order
to simulate the dislocation motion, the additional finite element procedures have been inserted.
Since the problem is formulated in rate form, it is necessary to store not only the nodal dislocation
densities, but the total plastic deformations for the Gauss points inside the elements as well. In
our approach the plastic deformations are relatively large in magnitude with respect to the (small)

elastic deformations considered. For this reason small time steps have to be taken. The step size
in the present work has been such chosen so that the plastic deformation increment would be of

el
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Table 1. Material constants mﬁsrte{s 151155155 157 mams 1m 15',1 mzmism-im;
Notation Value 1zﬁzmm1mzﬁmqrmtzs1qrmmmarﬁ:5
Kirchhoff modulus G 0.3 x 10° MPa 1ﬁmmmmmm~1§~iﬁdwm
Young modulus E 0.7 X 10° MPa ; -7 . ﬁﬁ*ﬁi‘ﬂﬂ
Burgers vector b 3A e e S
Dislocation mobility m 1 x 108 5

Fig. 1. Discretization data and loading

the same range as the elastic one. When dealing with elastic-plastic deformations, an elastic-plastic
stiffness matrix is used. Usually, this leads to difficulties to correctly predict the unloading process.
In our calculation, the stress increment was not determined on the basis of the strain increment,
but on the basis of the stored total strain value at the Gauss points. Such approach allows to avoid
elastic spring back problems.

In our calculations a square region 0.7um x 0.7um of a crystal has been divided into 196 bilinear
elements. The assumed material constants for this crystal are shown in Table 1. The external loading
applied to this region together with the mesh and node numbering are presented in Fig. 1.In what
concerns the kinematics, the domain is simply supported by constraining the displacements in the
left lower corner (node 1) and the vertical displacement in the rest of the lower boundary (nodes 2
to 15). The applied loads change sign between nodes 76 and 91. These nodes have been assumed to
be a source of edge dislocations with the following components of the Burgers’ vector b, = bcos 20°
and b, = bsin20°. The boundary conditions for the dislocations are as follows: a dislocation flux
value of f = 6x10°/(m-s) has been assumed both in nodes 76 and 91, whereas in the rest of the left,
upper and lower boundaries zero dislocation flux (natural boundary conditions) have been adopted.
On the right boundary zero dislocation density has been imposed. Therefore, the dislocation flux
is found there as a solution of such stated boundary value problem. In Fig. 2 the shear stress
contours are shown at the deformed configuration. The considered deformation—flux process has
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Fig. 2. Shear stress contours at initially deformed configuration and loading
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been integrated using the backward Euler method with the time step At = 1s. As a result of this
calculation the obtained process of crystal deformation coupled with the dislocation field motion is
shown in Figs. 3a—d. It can be observed how the dislocations propagate along the Burgers’ vector
direction. A shear deformation region is observed developing at an angle of 20° from the horizontal
axis.

5. CONCLUSIONS

The present results can be treated as a first approach to the application of FEM to the continuum
theory of dislocations. It should be noted that in our approach the fundamental role is played by
the dislocation balance law (22). Thanks to this law, we were able to predict the dislocation density
inside the elements in terms of its value in the nodes.

While solving problems of elastic-plastic deformations of solids the phenomenological theories
based on the concept of a yield surface are usually applied. The presented computer simulation
shows that the continuum theory of defects can be also treated as an alternative approach, moreover,
this theory can be also employed using the finite element method. The results shown in the numerical
example reflect many additional aspects of the behaviour of deforming crystals, e.g. the coupling
of the defect flux with the development of the shear band regions.

These capabilities of the model indicate that the continuum theory of defects has large potential
abilities for practical applications. From the practical point of view this means also that the con-
sidered approach gives the possibility to built a powerful tool for the analysis of the elastic-plastic
deformation of microstructures induced by the movement of dislocations.
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