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In this work, we propose a methodology to estimate the profile of chlorophyll concentration from the
upwelling radiation at the ocean surface, using a system of artificial neural networks (ANNs). The input
patterns to train the networks are obtained from the resolution of the radiative transfer equation, where the
absorption and scattering coefficients are represented by bio-optical models, with the profile of chlorophyll
concentrations based on a shifted-Gaussian model. In the performed analysis, we used 14 720 profiles of
chlorophyll that were generated by attributing two values to the biomass quantity, and by considering two
sets of wavelengths and three sets containing the directions in which the radiation emitted at the surface
is measured. To be able to recover the chlorophyll profile, we need to use a system of networks that works
in a “cascade mode”. The first one performs an analysis on the features of the chlorophyll profile from the
upwelling radiation and determines which profiles can be recovered. The second and third ANNs act only
on those profiles that can be recovered. The second ANN performs estimation of the standard deviation
from the upwelling radiation and the chlorophyll concentration at the surface. Finally, the third ANN
performs an estimation of the peak depth from the upwelling radiation, the chlorophyll concentration at
the surface and the standard deviation estimated by second network. The stopping criteria we adopted was
the cross-validation process. The obtained results show that the proposed methodology is quite promising.

Keywords: radiative transfer equation, inverse problems, artificial neural networks, chlorophyll profile
concentration, bio-optics, phytoplankton.

1. INTRODUCTION

Ocean color variations are directly connected with the absorption of sunlight by chlorophyll, espe-
cially in the blue and green bands. The measurements of ocean color, obtained from orbital sensors
on satellites help us to estimate the phytoplankton biomass [18, 33]. Ocean color is a useful source
of information regarding some of its features and its study allows determination of the chemical,
physical and biologic properties, and helps the selection of better locations for fishing.
As the chlorophyll pigments are inside of the phytoplankton cell, it becomes possible to obtain

the amount of these cells from the estimation of chlorophyll concentration, and from this estimation
it is possible to get an approximation of the phytoplankton biomass. Marine phytoplanktons are
photosynthesizing microscopic organisms that inhabit the upper sunlight layer of almost all oceans
and they form the trophic base of the chain food. About one-half of the global primary production is
generated by these organisms [17, 45], they affect the abundance and diversity of marine organisms,
drive marine ecosystem functionality, and set the upper limits to fishery yields [8]. Furthermore,
marine phytoplankton has a strong influence on the climate process [34] and the bio-geochemical
cycles, especially in the carbon cycle [42, 43]. Phytoplankton is also the connection between the
sunlight energy and the production of marine biological resources that depends on other trophic
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levels [9]. The photosynthetic activity of phytoplankton is the first step for the fixation of inorganic
carbon into particulate organic carbon [25]. Furthermore, as the phytoplankton is in the trophic
base of the oceans chain food, it feeds the species ranging from small crustaceans to large predators.
So, we can consider chlorophyll concentration level as parameter that can be used to measure the
health of our planet.

Due to the importance of phytoplankton, the scientific community, supported by the govern-
ments, has applied their efforts to monitor the oceans color. This monitoring can be done at local
scale, by means of the scientific cruises or, globally, by means of the passive sensors on board satel-
lites. The ocean color variations obtained from satellites enable us to know the global distribution
of phytoplankton, allowing to produce maps with synoptic, spatial and temporal variabilities of the
phytoplankton biomass, partially known by samplings studies done by boats/cruises [2, 16, 28, 30,
51, 52].

The estimation of chlorophyll concentration at the surface from the radiance and/or the re-
flectance, measured by orbital sensors, is performed by specific algorithms obtained empirically
from data sets that contain in situ measurements. The first algorithm proposed [15, 16, 19] to pro-
cess the CZCS (coastal zone color scanner) data was obtained from Nimbus experiment team [1],
and it consisted of less than sixty measurements. With an increase of in situ measurements and
the launch of new orbital sensors, other, more robust algorithms were proposed in order to convert
the upwelling radiation at the surface into maps of chlorophyll concentration [27, 36–38]. Those
algorithms, in general, produce good estimations for the chlorophyll concentration at the surface for
natural waters of Case 1 (offshore). However, they overestimate the chlorophyll concentration for
Case 2 waters. This occurs because of the presence of inorganic matter in suspension and dissolved
organic matter in Case 2 waters [23].

On the other hand, alternative methodologies, such as artificial neural networks (ANNs), have
been used to perform the estimation of chlorophyll concentration at the surface, for Case 1 [20]
and Case 2 [44] waters, and they proved to be efficient. Estimation of the chlorophyll concentration
close to the surface in Case 1 waters, from the reflectance measured by SeaWiFS, using ANNs
of multilayer perceptron (MLP) type, which were trained by back propagation algorithm, can
be found in Gross et al. [20]. According to Gross et al. [20] the estimation obtained by ANNs
shows a significant reduction of the relative and the absolute errors, when compared with the
results obtained by the OC2 algorithm. Applications of ANNs for the estimation of chlorophyll
concentration, inorganic matter in suspension and dissolved organic matter, for Case 2 waters,
can be found in Schiller and Doerffer [44]. Another application of ANNs to cluster the chlorophyll
profiles based on their features was performed by Richardson et al. [41].

Although the proposed algorithms produce accurate maps of the chlorophyll concentration
for Case 1 waters, these maps provide information only for the water near the surface layer
of. For cases, where the chlorophyll concentration is uniform along the depth, these maps are
valid to extract information about the vertical structure of the chlorophyll concentration. How-
ever, in most cases, the vertical profiles have a maximum peak along the depth and, in some
cases, they are similar to Gaussian curves [26]. A shifted Gauss model to represent the chloro-
phyll profiles was suggested by Platt et al. [39]. Their model is composed of the Gaussian model
proposed by Lewis et al. [26], and a background of chlorophyll concentration is added to the
model to represent low concentration of chlorophyll in the water column. In this work, we adopt
a shifted Gauss model to represent the behavior of the profiles of the chlorophyll concentra-
tion.

Due to the variation of the chlorophyll concentration along the depth and the impossibility of
estimating these profiles from proposed algorithms, an alternative methodology to solve the inverse
problem was proposed by Souto [46]. His methodology is based on a minimization of a functional,
given by the squared differences between the observed and modeled data, and for which a min-
imum value is sought. The observed data in his methodology were obtained from the resolution
of the radiative transfer equation (RTE), where bio-optical models that depend on the profile of
chlorophyll concentration were used to represent the absorption [32] and scattering [18] coefficients.
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The modeled data were obtained from the model adopted for the formulation of the inverse prob-
lem. Good results were obtained by Souto [46] for chlorophyll concentrations down to 20 meters
depth and poor results below 20 meters. Another problem associated with his methodology is the
extensive computational time spent to solve the inverse problem, even when using parallel codes
based on MPI (message passing interface). It becomes difficult to implement his methodology in
order to process data for large areas of the ocean. Some improvements in order to get better results
in the estimation of chlorophyll profiles were proposed in Souto et al. [47, 48], as well as some
improvements were proposed in Souto et al. [49] in order to reduce the computational time spent to
solve the problem. However, in the latter case, some mathematical simplifications were considered
in the mathematical model.

In this work, we propose a new methodology to estimate the profile of chlorophyll concentration
from the upwelling radiation at the surface in Case 1 waters. Our methodology is based on ANN of a
MLP type and is able to produce good results with a low computational cost. The ANNs are trained
by the quasi-Newton method and three networks that work in a cascade mode are used. The first
network, labeled as ANNCte, is trained especially to perform a pre-classification of the problems
considered in this work. The classification, which is based on the upwelling radiation at the surface of
the water, is performed in order to separate the problems into two classes. The first class is composed
of those problems for which it is possible to determine the chlorophyll profile. The second one is
composed of those problems for which it is not possible to determine their profiles. However, for the
problems in the second class it is possible to estimate an average value for the chlorophyll profile
along the depth. This pre-classification is necessary because there are some features, associated
with the physics of the problems and/or our adopted mathematical methodology, which affect the
resolution of some problems. These features will be explained in Subsec. 4.2. The input patterns
for the network ANNCte are the upwelling radiation at the surface, and the output patterns are the
average value of the profile of the chlorophyll concentration along the depth. So, from the upwelling
radiation, the network predicts an average value for the concentration and if this value is greater
than a threshold value, the problems are then considered belonging to the first class, otherwise they
are in the second class.

As we consider the shifted Gaussian model only two parameters will be estimated by the net-
works: the standard deviation and the depth of the peak. The other parameters which are present
in that model are considered as constant values and they will be explained in Sec. 4.

From the upwelling radiation and the chlorophyll concentration at the surface, the second net-
work, labeled as ANNσ, is used in order to perform the estimation of the standard deviation of
the profile of the chlorophyll concentration. The third network, labeled as ANNτm , performs the
estimation of the depth of the peak considering, as input patterns, the upwelling radiation and
the chlorophyll concentration at the surface and the standard deviation estimated by the second
network.

The results shown in this work are valid for profiles that respect the behavior of this model. For
other oceanic regions, in which that kind of profile is not valid, for example, close to Japan [24],
the results obtained by our methodology may not be adequate. A useful study regarding different
types of chlorophyll profiles can be found in Uitz et al. [50].

2. MATHEMATICAL MODEL

We consider the radiative transfer equation (RTE) to represent the interaction of a light beam
(photons) within a body of water. In this case, we need to define the boundary conditions, in-
ternal sources and the inherent optical properties to solve the RTE, in order to determine the
upwelling radiation at the surface, after the interaction of the light beam within the water body.
In many radiative transfer applications, it is reasonable to consider that the variations of water
characteristics can only occur vertically within the water column under consideration. Thus, the
analyzed geometry can be defined as a plane-parallel geometry. The RTE for this type of geometry
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(see Fig. 1), with polar and azimuthal dependency, wavelength dependency, anisotropic scattering
and multiregions (which are associated with the depth) is expressed by

µ
∂

∂z
Lr(τ, µ, ϕ, λ) + Lr(τ, µ, ϕ, λ)

=
br(τ, λ)

cr(τ, λ)

1∫

−1

2π∫

0

∫

λ

pr(cos Θ, λ)Lr(τ, µ
′, ϕ′, λ′)dλ′dϕ′dµ′ + S0(τ, λ), (1)

subject to the boundary conditions

L1(τ0, µ, ϕ, λ) = G+(µ,ϕ, λ) (2)

and

LR(τR,−µ,ϕ, λ) = G−(µ,ϕ, λ) (3)

and to the interface conditions, for r = 1, 2, . . . , R − 1,

Lr(τr,±µ,ϕ, λ) = Lr+1(τr,±µ,ϕ, λ). (4)

Fig. 1. A system of R regions in a multiregion geometry.

Here, Lr(τ, µ, ϕ, λ) is the intensity (radiance) of the radiation field in a region r, τ ∈ (0, ζ)
the optical variable, with ζ the optical thickness of the medium, µ ∈ [−1, 1] and ϕ ∈ [0, 2π] are,
respectively, the cosine of the polar angle and the azimuthal angle, which specify the direction
of propagation Θ of the radiation in the medium, and λ is the photon wavelength. In addition,
cr(τ, λ) = ar(τ, λ) + br(τ, λ) is the attenuation coefficient, where ar(τ, λ) and br(τ, λ) are, respec-
tively, the absorption and scattering coefficients, pr(cosΘ, λ) is the phase function for scattering
from {µ′, ϕ′, λ′} to {µ,ϕ, λ}, S0(τ, λ) is an internal source of radiation and, finally, G

+(µ,ϕ, λ) and
G−(µ,ϕ, λ) are the incident radiation at the boundaries.
We discretize Eqs. (1)–(4), for each region, in the wavelength variable and consider all

wavelength-dependent variables as being averages over a wavelength interval (band) ∆λg. Thus,
for a generic variable F (λ) we have

Fg = F (λg) =
1

∆λg

∫

∆λg

F (λ)dλ,

where λg is an average wavelength in the interval g. To further simplify the calculations, we consider
neither downscattering nor upscattering, i.e., a particle can only be scattered within the same
interval. The scattering and attenuation coefficients also assume average values within each region
with respect to the optical variable τ . So, we can rewrite our original RTE, expressed by Eq. (1), as

µ
∂

∂z
Lr,g(τ, µ, ϕ) + Lr,g(τ, µ, ϕ) =

br,g
cr,g

1∫

−1

2π∫

0

pr(cos Θ)Lr,g(τ, µ
′, ϕ′)dϕ′dµ′ + S0,g(τ) (5)
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subject to the boundary conditions

L1,g(τ0, µ, ϕ) = L0,gδ(µ − µ0)δ(ϕ − ϕ0) +D+
g (µ) + ρ+s L1,g(τ0,−µ,ϕ)

+
ρ+d
π

2π∫

0

1∫

0

L1,g(τ0,−µ′, ϕ′)µ′ dµ′dϕ′ (6)

and

LR,g(τR,−µ,ϕ) = D−
g (µ) + ρ−s LR,g(τR, µ, ϕ) +

ρ−d
π

2π∫

0

1∫

0

LR,g(τR, µ
′, ϕ′)µ′ dµ′dϕ′ (7)

and to the interface conditions, for r = 1, 2, . . . , R − 1,

Lr,g(τr,±µ,ϕ) = Lr+1,g(τr,±µ,ϕ), (8)

for µ ∈ (0, 1] and ϕ ∈ [0, 2π]. Here, L0,g denotes the incident beam strength, µ0 and ϕ0 are,
respectively, the cosine of the polar angle and the azimuthal angle of the incident beam at τ = τ0,
and D+

g (µ) and D−
g (µ) represent the incident distributions of radiation at τ = τ0, and τ = τR,

respectively. Finally, ρ+s , ρ
+
d , ρ

−
s and ρ−d represent the specular and diffuse reflection at τ = τ0,

and τ = τR. We also consider that D
+
g (µ) = D−

g (µ) = ρ+s = ρ+d = ρ−s = ρ−d = 0. So, we can write
Eqs. (6) and (7) as

L1,g(τ0, µ, ϕ) = L0,gδ(µ − µ0)δ(ϕ − ϕ0) and LR,g(τR,−µ,ϕ) = 0,

with the interface conditions given by Eq. (8). In addition, the phase function pr(cos Θ) is repre-
sented by a finite Legendre polynomial expansion [7] given in terms of the cosine of the scattering
angle Θ,

pr(cosΘ) =
1

4π

L∑

ℓ=0

βℓ,rPℓ(cosΘ),

where β0,r = 1, |βℓ,r| < 2ℓ + 1 for 0 < ℓ ≤ L, βℓ,r and Pℓ are the coefficients and the Legendre
polynomials in the Lth-order expansion, respectively. The βℓ,r coefficients are determined through
the Henyey-Greenstein [22] phase function given by

pr(cosΘ) =
1

4π

1− ρ2√
(1 + ρ2 − 2ρ cos Θ)3

,

where ρ, the asymmetry factor, is a parameter that can be adjusted to control the relative amounts
of forward and backward scattering.
Therefore, the problem that is solved in this work is defined by Eq. (5) subject to the boundary

conditions given by Eq. (6) and to the interface conditions given by Eq. (8). The scattering and
attenuation coefficients will be defined in Sec. 3, as well as the adopted wavelengths, number of
spatial regions, incident angles and other parameters required to solve the problem. It is important
to note that we consider neither internal sources nor refraction of the particles at the surface of the
water body.
To solve the problem defined above, we initially perform the Chandrasekhar decomposition [7]

of the radiation field into a scattered and unscattered components. So,

Lr,g(τ, µ, ϕ) = Lu,r,g(τ, µ, ϕ) + Ls,r,g(τ, µ, ϕ),
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where the unscattered component Lu,r,g(τ, µ, ϕ) is the solution of Eq. (5), for the case br,g = 0,
subject to the boundary conditions defined by Eq. (6) and interface conditions given by Eq. (8).
To obtain the solution for the scattered component Ls,r,g(τ, µ, ϕ), we initially perform the ap-
proximation of the phase function in a finite Legendre polynomials series. Then, we perform the
Fourier cosine decomposition [7] in order to eliminate the integration over the azimuthal angle.
So, we obtain L + 1 integro-differential equations without ϕ dependency. The angular integral,
which is present in each integro-differential equation, is approximated by the SN method [7]. This
approximation produces a set of N ordinary differential equations of first order for each azimuthal
angle. The solution for this set of equations is obtained analytically by the ASN method [4]. The
ASN method is based on the spectral decomposition of the scattering matrix. For the numerical
approximation, we used the PEESNA code developed in [6] which implements the ASN method.
To solve the problem described above, knowing the inherent optical properties (such as scattering

and absorption coefficients and the phase function), the boundary conditions as well as the internal
sources (if present), we determine the upwelling radiation at the surface in polar directions selected
a priori, after the interaction of the incident light beam with the water body. The details about
the analytical solution of the RTE can be found in Chandrasekhar [7], Chalhoub [4], Barichello
et al. [3] and Chalhoub [5].

3. ARTIFICIAL NEURAL NETWORKS

McCulloch and Pitts [29] proposed the first mathematical model to represents the activity of bi-
ological neuron. This model, which is a simplified representation of the complicated activity of
a biological neuron, preserves the nature of biological neuron, i.e., it can learn and make associa-
tions. On the other hand, artificial neural networks (ANNs) are computational systems that group
a set of artificial neurons and they are inspired by biological neural networks. Therefore, these
systems can also learn and make associations.
The algorithms used to teach ANNs are based on a set of mathematical rules that allow the

network to learn and perform associations between the input and output patterns. This is possible
because during the training process, the network update its free variables (weights and biases and,
in our methodology, the slope parameter). Thus, at the end of the training process we expect that
the ANN method is able to produce results for patterns that were not present in the training
process.
There are many types of ANNs, as well as many types of learning algorithms. One of the most

common network topology is the multilayer perceptron (MLP) and the most common algorithm
for training this network is the backpropagation algorithm, which is based on the delta rule or
generalized delta rule. For our purposes we use the MLP network; however, we do not use the back-
propagation algorithm due to the fact that it has some problems associated with its convergence
[21]. So, in this work we use a learning algorithm based on quasi-Newton method [14]. Further-
more, the learning algorithms based on quasi-Newton methods have shown better results than the
backpropagation algorithms, for solving problems in hydrologic optics [11, 12].
In the following paragraphs we describe briefly the learning algorithm based on the quasi-Newton

method and more details can be found in Dall Cortivo et al. [11, 12] and Dall Cortivo [10]. In our
methodology the learning process is considered as an optimization problem, for which we define a
functional J ( · ) of squared differences between each output pattern and the answers obtained by
the network, and for which we seek a minimum value, i.e.,

J (Et, ~X) = min
1

2

Np∑

p=1

No∑

k=1

∣∣∣
∣∣∣dkp(Et)− ykp(Et, ~X)

∣∣∣
∣∣∣
2

2
, (9)

where Et is a matrix that contains the input patterns for the training, and ~X = [W BΓ]T whereW,
B and Γ are matrices that contain, respectively, the synaptic weights, biases and slope parameters.
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In addition, Np are the total patterns and No the total neurons in the output layer, dkp( · ) and
ykp( · , ~X) are, respectively, each entry of the matrices that contain the output patterns and the
outputs calculated by the network. Note that in our formulation we include slope parameters in
the set of the “original” variables (weights and biases).
As the training process of ANN can be considered to be nonlinear optimization problem, there

is no guarantee that the global minimum will be found. Thus, an idea that seems attractive is to
reduce the search space, and then search for a local minimum within it, anticipating that good
results will be achieved. In addition, the reduction of the search space can prevent the saturation
of neurons. We reduce the search space by applying constraints to free variables to be optimized,
i.e., to weights, biases and slope parameters. Thus, during the training process, the values for the
entries of the matricesW, B and Γ are sought, so that they must satisfy the following constraints:

wi
min ≤ wi ≤ wi

max,

bimin ≤ bi ≤ bimax,

γimin ≤ γi ≤ γimax.

(10)

In general, w{min,max} ∈ R and b{min,max} ∈ R, however, the constraints on the γ parameter
can change according to the activation functions which are used for neurons. Details about these
constraints can be found in Dall Cortivo et al. [11, 12].

For the training process, the variables to be optimized are organized in a vector ~X = [W B Γ]T ,

thus E04UCF subroutine [35] searches for a value ~X∗ for ~X, so that

∇J ( · , ~X∗) = ~0, (11)

and also considers that ~X∗ must satisfy the constraint conditions given by Eq. (10), see NAG [35]

report for details about how the calculations are performed in order to determine the ~X∗ point.
The gradient defined in Eq. (11) is obtained from Eq. (9) and is given by

∇J ( · , ~X) = −
Np∑

p=1

Ns∑

k=1

(
dkp( · ) − ykp( · , ~X)

) ∂

∂ ~X
ykp( · , ~X), (12)

where ykp( · , ~X) is defined according to the activation functions and all free variables of the network.
The details about the calculations for the derivative present on the right-hand side of the above
equation can be found in Dall Cortivo [10].

4. PROBLEMS

In Sec. 2 we described the mathematical model used in this work, but some specific properties
about the water body and the absorption and scattering coefficients were not defined. To represent
these coefficients we adopt the mathematical bio-optical models for Case 1 waters suggested in the
literature. For the absorption coefficient we adopt the model suggested by Morel [32] and for the
scattering coefficient we adopt the model suggested by Gordon and Morel [18]. For the profiles of
the chlorophyll concentration we adopt the shifted-Gaussian model proposed by Platt et al. [39].
As the absorption and the scattering coefficients depend on the wavelength and the chlorophyll

concentration, and in Sec. 2 we considered that the wavelength assumes an average value for each
∆λg interval, those coefficients also assumed average values with respect to wavelengths. So, we
define the absorption and scattering models, respectively, as

ar,λg =
[
awλg

+ 0.06 acλg
chl0.65r

]
[1 + 0.2 exp{−0.014(λg − 440)}] , (13)
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and

br,λg = bwλg
+

550

λg
0.3 chl0.62r , (14)

where chlr is the average chlorophyll concentration in each spatial region, and it is obtained from
the adopted model expressed as

chlr = chl(τm) = chl0 +
h

σ
√
2π

exp

[
−(τm − τm)2

2σ2

]
, (15)

where τm is the midpoint of the interval [τr−1, τr], see Fig. 2.

Fig. 2. Illustration of each of the average values adopted for each spatial region.

4.1. Specific details

In our simulations, we adopt two values for the h parameter. The first one is h144 = 144 mg·m−2 and
the second one is h30 = 30 mg ·m−2. We adopt these values in order to consider oceanic regions with
high and low chlorophyll concentrations, respectively. For the background chlorophyll concentration
chl0 we adopt two values as well. The first one is chl0 = 0.20 mg ·m−3 and is associated with h144
and the second one is chl0 = 0.01 mg · m−3 which is associated with h30. So, for each of those
h values we define two groups of problems. The first one, labeled Gh144 , is associated with h144
and the second one, labeled Gh30 , is associated with h30. The adopted value for the incident beam
strength L0 = π cd, the polar angle θ0 = π/3 rad, the azimuthal angle ϕ0 = 0 rad, the geometric
depth of the water body ζ = 40 m, the number of spatial regions R = 20 and the asymmetry
coefficient ρ = 0.924 for the phase function. These values for the parameters are adapted for both
groups of problems.
In the next step we define the locations of the maximum values of the chlorophyll concen-

tration (peaks), i.e., the values τm present in Eq. (15). These values follow a homogeneous dis-
tribution along the depth with a step size of 1 meter. So, we have 40 values equally spaced
given by τmi = [1, 2, . . . , 40]i=1,2,...,40 . For the σ values, we adopt eight values given by σi =

[5, 6, 7, 9, 11, 13, 15, 17]i=1,2,...,8 , which are combined with each of the τmi values. Therefore, as
we have eight chlorophyll profiles for each τmi , then we have a total of 320 chlorophyll profiles for
each h value.
For the wavelengths we select two sets of values. The first set contains discrete values that

belong to the interval λg ∈ [412, 678] nm and these values are associated with the wavelengths
of the MODIS (moderate-resolution imaging spectroradiometer) sensor in the visible interval. So,
according to ocean color [36] those values are given by

λM
gi = [412, 443, 469, 488, 531, 547, 555, 645, 667, 678] , (16)
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with i = 1, 2, . . . , 10. For the second one the values belong to the interval λg ∈ [560, 610] nm. For
this set we select only six equally spaced values with a step size of 10 nanometers. Thus,

λgi = [560, 570, 580, 590, 600, 610] , i = 1, 2, . . . , 6. (17)

The last values to be defined for the parameters are the polar directions, where the measurements
of the upwelling radiation at the surface is calculated. For the wavelengths defined in Eq. (17), we
adopt seven values that belong to the interval θ ∈ [0◦, 60◦] and they are equally spaced with a step
size of 10 degrees. So, we have

θi = [0◦, 10◦, 20◦, 30◦, 40◦, 50◦, 60◦] , i = 1, 2, . . . , 7. (18)

As mentioned before, the two groups of problems were labeled as Gh144 and Gh30 , so for each of
those groups we consider two classes of problems: the first one is labeled as 1D(6/10)λ; and the second
one is labeled as 7D1λ. In the first class of problems, we consider three types of problems, while in
the second class we consider only one type of problems. The three problems in class 1D(6/10)λ are:
problems Mh∗

; problems P1h∗
; and problems P2h∗

. The character ∗ used as an index means that we
are referring to the values 30 or 144. Figure 3 shows each problem in its respective class for both
Gh30 and Gh144 groups.

Fig. 3. Graphical representation of the problems in each class for each group.

The characteristics of each problem, for each one of the classes, for both groups are:

1. In the class of problems 1D(6/10)λ, the measurements (calculations) of the upwelled radiation
at the surface are made only in one polar direction, yet in six or ten distinct wavelengths, as
follows:

(a) in problems Mh∗
the measurements of the upwelling radiation at the surface are made only

in direction θ = 0◦, however at the wavelengths defined in Eq. (16);

(b) in problems P1h∗
the measurements of the upwelling radiation at the surface are also made

only in direction θ = 0◦, however at the wavelengths defined in Eq. (17);

(c) in problems P2h∗
the measurements of the upwelling radiation at the surface are made only

in direction θ = 60◦ and also at the wavelengths defined in Eq. (17);

2. In the class of problems 7D1λ, the measurements of the upwelling radiation at the surface are
made in directions defined in Eq. (18), however for only one wavelength. The selected wavelength
was λg = 560 nm.

4.2. Sensitivity analysis

The choice of the values shown in Eq. (16) was based on the MODIS sensor wavelengths. However,
the values shown in Eq. (17) were selected in order to highlight the good features associated with
the problem. In general, the upwelling radiation at the surface, for Case 1 waters, is more intense in
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the blue band (of course depending on the chlorophyll concentration) and at the beginning of the
green band. However, the upwelling radiation presents small oscillations related to the variations
of chlorophyll concentration (mainly in the green band). This means that different chlorophyll
concentrations can generate very close values for the upwelling radiation at the surface [13]. On the
other hand, for wavelengths in the red band, different chlorophyll concentrations can produce
significant variations in the upwelling radiation at the surface. However, in that spectral band (red)
the upwelling radiation at the surface is very small (i.e., it has a low order of magnitude) and the
high absorption of water in that band does not allow the incident radiation to reach more than
a few meters [31].
Figure 4 shows the single scattering albedo for the sets of wavelengths defined in Eqs. (16)

and (17). Equations (13) and (14) for absorption and scattering coefficients and a chlorophyll profile
with the following parameters: chl0 = 0.2 mg ·m−3, h = 144 mg ·m−2, τm = 17 m and σ = 9 m
were considered. The values adopted for the chlorophyll profile were obtained from Platt and
Sathyendranath [40] and are suggested for the Celtic Sea in May.

a) b)

c) d)

Fig. 4. Single scattering albedo curves for the Celtic Sea chlorophyll profile: a) and b) for the wavelengths
of the MODIS sensor, c) and d) for the wavelengths defined in Eq. (17).

From Fig. 4a it is possible to note that the albedo curves have almost no variations along the
depth and we can also observe a similar behavior in Fig. 4c. On the other hand, the most significant
variations in the curves of the single scattering albedo occur in Figs. 4b and 4d. Thus, the choice
of the wavelengths defined in Eq. (17) was associated with the sensitivity of the single scattering
albedo for the wavelengths in the interval λ ∈ [560, 610] nm.
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An analysis on the selected polar directions is also performed. Figures 5a and 5b show the
upwelling radiation at the surface (from simulation of the RTE) in the polar directions defined
in Eq. (18) and considering the albedo curves shown in Figs. 4c and 4d. Note that when the
albedo curves are close to each other the upwelling radiation curves at the surface are close to
each other as well. On the other hand, Figs. 5c and 5d show the upwelling radiation curves at
the surface considering different wavelengths; however, they were measured (calculated) in the
directions θ = 0◦ and θ = 60◦. In these figures, we can observe that the shape of the upwelling
radiation in the directions θ = 0◦ and θ = 60◦ is very similar. The difference in those figures is in
the order of the radiance magnitude, and the interval, where the upwelling radiation presents the
most variation, with respect to the wavelengths, is close to the interval defined in Eq. (17).

a) b)

c) d)

Fig. 5. Upwelled radiation at the surface considering the Celtic Sea chlorophyll profile. Figures 5a and 5b
show the upwelling radiation in the polar directions defined in Eq. (18) for the wavelengths within the interval
λ ∈ [500, 550] nm and λ ∈ [560, 610] nm, respectively. Figures 5c and 5d show the upwelling radiation at the

surface in the directions θ = 0◦ and θ = 60◦, respectively.

Finally, we select the wavelength λ = 560 nm because it is the first value of the wavelengths
defined in Eq. (17) and it is the value in that interval that produces the highest upwelling radiation
at the surface.

4.3. Input and output patterns

The equations and the values which were defined before are the input parameters for the model
explained in Sec. 2, i.e., knowing those equations and the values for it parameters, we are able
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to solve the RTE and then determinate the upwelling radiation L1,λg(τ0, µ) at the surface. So, we
can consider that the equations and parameters defined before (especially the standard deviation σ
and the location of the peak of chlorophyll concentration ζm) are the “inputs”, and the upwelling
radiation at the surface is the “outputs”. On the other hand, when we are estimating the profile of
the chlorophyll concentration, the standard deviation and the location of the peak of the chlorophyll
concentration become the outputs and the upwelling radiation at the surface becomes the inputs,
see Fig. 6. Of course, we can reconstruct the chlorophyll profile from the standard deviation and the
location of the peak of the chlorophyll concentration because all other parameters are considered
as constant values.

Fig. 6. Schematic illustration of a direct and an inverse problem.

In order to make possible the estimation of the standard deviation and the location of the peak
of the chlorophyll profile we must consider, besides the radiation at the surface, the chlorophyll
concentration at the surface, labeled as chlS0 . Therefore, the input patterns for the networks are
composed of the upwelling radiation and the chlorophyll concentration at the surface.
In order to calculate chlS0 we consider τm = 0 in Eq. (15). In practical applications, we will not

be able to calculate this value from the referred equation because we do not know the standard de-
viation and the location of the peak. However, we can get this value from the ocean color algorithms
or from in situ measurements.
As mentioned before, three networks were used: ANNCte, ANNσ and ANNτm . The network

ANNCte performs a pre-classification of the problems and the other two solve the problem. The
network ANNCte has, as input patterns, only the upwelling radiation at the surface and the output
is the average value of the profile of chlorophyll concentration. So, from the radiance L1,λg(τ0, · )
the network ANNCte performs the estimation of the average value for the profile of chlorophyll
concentration. The network ANNσ performs the estimation of the standard deviation from the input
patterns composed of L1,λg (τ0, µ) and chl

S
0 . Finally, the network ANNτm , performs the estimation

of the location of the peak from the same input patterns used in the network ANNσ adding the
standard deviation value estimated by it, see Fig. 7, where we do not present the network ANNCte.
This strategy is used in order to help the networks in their assigning the input patterns to the output
patterns, and to provide better answers instead of using only one network with two outputs.

Fig. 7. Graphical representation of the input patterns for each of the networks used to solve the problem.
Note that the estimation made by ANNσ produces an additional entry in the input patterns for the second

network.
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Thus, the entries for each of the input patterns that compose the training set, for problems Mh∗

are composed of chlS0 and L1,λg(τ0, 0
◦) for the wavelengths defined in Eq. (16). Therefore, we have

11 entries for network ANNσ and 12 entries for network ANNτm . For P1h∗
problems, the entries of

the input patterns are also composed of chlS0 and L1,λg (τ0, 0
◦). However, in this case, L1,λg (τ0, 0

◦)
is calculated using the wavelengths given in Eq. (17). For P1h∗

problems, ANNσ has seven entries
while ANNτm has eight entries. The difference between problems P1h∗

and P2h∗
is that L1,λg(τ0, · )

is calculated in the direction θ = 60◦ for P2h∗
problems. Finally, for problems 7D1λ, the entries

of each input pattern are composed of chlS0 , and L1,λg(τ0, µ) is calculated for the polar directions
defined in Eq. (18) for the wavelength λg = 560 nm. So, for the last problems we have eight entries
for ANNσ and nine entries for ANNτm .

4.4. Networks classifiers and network system

As mentioned before we need to classify the problems into two classes. The first one contains those
problems for which it is possible to determine the profile of the chlorophyll concentration and
the second one contains those problems for which it is difficult to determine the profile, but it is
possible to estimate an average value for it instead. This classification is necessary due to some of
the chlorophyll profiles that possess a deepest peak and a smallest standard deviations, are difficult
to estimate from the input patterns defined before. So, that classification is performed by ANNs
specially trained for this process, i.e., the ones that identify the problems that have those features,
and so facilitate the work of the other two networks.
The difficulty in the estimation of those parameters, from the input patterns, is due to the fact

that the upwelling radiation at the surface, which is obtained from the chlorophyll profiles with
deeper peaks, has a small order of magnitude in comparison with the upwelling radiation obtained
from the chlorophyll profiles with the peaks close to the surface. Figures 8a and 8b show three
profiles at 5 meters and 35 meters, and the corresponding single scattering albedo curves are shown
in Figs. 8c and 8d, respectively. The upwelling radiation for these profiles is shown in Fig. 9. As we
can see, these profiles that have the peak of the chlorophyll concentration close to the surface have
the upwelling radiation that is more intense than the other ones.

The profiles shown in Figs. 8a and 8b are symmetric with respect to depth of 20 meters. Thus,
the curves of the single scattering albedo are also symmetric. However, the attenuation that occurs
in the albedo values, starting from 20 meters for the profile with σ = 5 m, and for the last 5 meters
of the profile with σ = 9 m (Fig. 8c), does not influence the behavior of the upwelling radiation
at the surface (see Fig. 9a). On the other hand, the attenuation that occurs in the first meters,
for the albedo values shown in Fig. 8d (see the profiles obtained with σ = 5 m and σ = 9 m for
τm = 35 m), infers directly on the upwelling radiation at the surface, see for reference the black and
dot-dashed lines in Fig. 9b. Therefore, the radiation that would be emitted at the surface, carrying
the features/information about the distribution of the profile of the chlorophyll concentration at
the bottom, is attenuated due to the reduction of the albedo value in the first half of the depth.
However, the profile that considers σ = 17 m prevents the radiation to be attenuated, similarly to
the other two cases.
Two or more upwelling radiation curves which are too close to each other can make difficult the

correct classification by the networks, and the addition of noise to the upwelling radiation curves
can make it more difficult as well. To circumvent this problem we train special networks, in order
to recognize those types of problems and then “eliminate” them from the original set of problems.
So, we consider another set of problems, similar to the ones described before; however, in this
new set we adopt a single spatial region, where the chlorophyll concentration assumes an average
value along the depth and we repeat the same features of the problems that were considered in a
multiregion problem. As in this new set we have a constant chlorophyll profile (for each problem),
it is necessary to define an interval of variation for these values. Therefore, for the problems of
group Gh144 we adopt the interval chlGh144

∈ [0.01, 2.0] mg ·m−3, and for the problems of group
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a) b)

c) d)

Fig. 8. Profiles of the chlorophyll concentration and its respective single scattering albedo: a) chlorophyll
profiles obtained with τm = 5 m and σ = 5 m, 9 m and 17 m, b) chlorophyll profiles obtained with τm = 35 m
and σ = 5 m, 9 m and 17 m, c) albedo curve of the profiles shown in (a), d) albedo curve of the profiles

shown in (b).

a) b)

Fig. 9. Upwelling radiation at the surface measured in the polar directions defined in Eq. (18):
a) considering the profiles shown in Fig. 8a, b) considering the profiles shown in Fig. 8b.

Gh30 we adopt the interval chlGh30
∈ [0.01, 1.0] mg ·m−3. In both intervals we consider a step size

given by ∆chl = 0.01 mg ·m−3. Thus, we have 200 discrete values for the problems in group Gh144 ,
and 100 discrete values for the problems in group Gh30 .
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These networks are trained in order to determine, from the upwelling radiation at the surface, an
average value for the chlorophyll concentration. The entries for each input pattern for the networks
classifiers are only composed of the upwelling radiation at the surface. The classification which is
performed by those networks is based on a threshold Υ value of the chlorophyll concentration. The
threshold was selected in order to eliminate, from the whole set of problems, these problems which
present the characteristics explained before (upwelling radiation curves very close to each other)
and do not allow the correct estimation of the chlorophyll profiles by other networks.
Figure 10 shows how the system of networks works. The solution of a problem starts when an

input pattern, which is obtained from those problems that consider a shifted-Gaussian profile and
multiregions, is presented to the network classifier ANNCte. If the estimation given by the network
classifier is less than the threshold, then we consider that the standard deviation σ∗ and the peak
τ∗m of the chlorophyll concentration cannot be estimated. Thus, the solution for the problem is taken
as the average value estimated by the network. On the other hand, if the estimation obtained by
the network classifier is greater than the threshold, the next step consists of the estimation of the
standard deviation. To perform the estimation of σ∗ we use the same input pattern presented to the
network classifier; in addition we also add the chlorophyll concentration at the surface corresponding
to the problem as an additional entry for the input pattern. Finally, the σ∗ estimated by ANNσ

is added as an additional entry for the input pattern of the network ANNτm , which performs the
estimation of the location τ∗m of the peak of the chlorophyll concentration.

Fig. 10. Graphical representation of the joint operation of the networks classifiers and the networks that
determine the value of the standard deviation and the depth of the peak of the chlorophyll concentration.

4.5. Networks training – theory

In this subsection, we present a brief description about the steps which are used to train all networks.
They are based on the details given in Sec. 3. Other practical details are presented in Subsec. 5.1.
Initially, we consider that each input pattern is represented by a vector ~Lp. Now we define a

matrix E where each column is composed by each one of the input patterns. So, we have E =
[~L1, ~L2, . . . , ~LNp ], where Np are the total patterns in the training set. We also consider that each

output pattern is represented by a vector ~d. So, ~d =
[
ν1, ν2, . . . , νNp

]
, where νp represents each

output of the training set. For the outputs calculated by the networks, for each input pattern ~Lp,
we represent them as a vector ~y, so

~y =
[
ν∗1 , ν

∗
2 , . . . , ν

∗
Np

]
. (19)

It is important to note that each entry of the vector ~d depends on each training vector ~Lp, and

each entry of the vector ~y depends on each training vector ~Lp, the synaptic weights, biases and
slope parameters. So, considering a matrixW that contains all synaptic weights, a matrix/vector B
that contains all biases and a matrix Γ that contains all slope parameters, we can write Eq. (19) as

~y
(
~Lp,W,B,Γ

)
=
[
ν∗1 , ν

∗
2 , . . . , ν

∗
Np

]
, p = 1, 2, . . . , Np.
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The optimization problem is defined as a functional given by the squared differences between the
output patterns and the outputs calculated by the network for each input pattern and for which
we seek a minimum value. So,

J (E,W,B,Γ) = min
1

2

Np∑

p=1

∣∣∣
∣∣∣d
(
~Lp

)
− y

(
~Lp,W,B,Γ

)∣∣∣
∣∣∣
2

2
, (20)

subject to the constraints wmin ≤ w ≤ wmax for weights, and bmin ≤ b ≤ bmax for biases. Note
that we have only one sum in Eq. (20) because we have only one neuron in the output layer. The
constraints to be applied to the slope parameter must be based on the type of the activation func-
tions used for each neuron. For neurons that have the sigmoid function, as an activation function,
the constraints in the slopes are given by 0 < γ ≤ γmax, and for those neurons that have the linear
functions as an activation function, the constraints in the slopes are given by γmin ≤ γ ≤ γmax,
where γ 6= 0.
All networks used in this work have an input layer, a hidden layer and an output layer. The acti-

vation functions, which are used in all neurons in the hidden layer, are the sigmoid function, given
by φ(γ, v) = 1/(1 + exp{−γv}), and in the output layer the linear function given by φ(γ, v) = γv,
where v is the local field given by v =

∑n
i=1 xiwi + b is used.

Finally, the training of the networks is performed in a batch mode, i.e., the updates on the free
variables of the networks are made after all training patterns are presented to the network. The
search for the minimum value, for the functional defined in Eq. (20), is performed by E04UCF
subroutine implemented in NAG library.

5. NETWORKS TRAINING, RESULTS AND DISCUSSION

Before explaining the training of the networks and discussing the obtained results, it is important to
present some explanations considered in the description that follows. Table 1 presents: the problems
considered in this work, the number of networks used in each problem, and the threshold Υ used to

Table 1. Networks used in each problem of each class, number of profiles for multi and single regions,
threshold value adopted in order to classify the problems in groups Gh144

and Gh30
.

Group Classes Regions Problems Networks Profiles Υ [mg ·m−3]

Gh144

1D(6/10)λ

Mh144
2

20 P1h144
2 320 1.2

P2h144
2

Mh144
1

1 P1h144
1 200 –

P2h144
1

7D1λ
20 P7Dh144

2 320 1.2

1 P7Dh144
1 200 –

Gh30

1D(6/10)λ

Mh30
2

20 P1h30
2 320 0.11

P2h30
2

Mh30
1

1 P1h30
1 100 –

P2h30
1

7D1λ
20 P7Dh30

2 320 0.11

1 P7Dh30
1 100 –
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classify the problems into Gh144 and Gh30 groups. The following points show common information
for the training of the networks and/or for each problem in each group:

1. For each problem, that considers 20 regions, two networks are trained, i.e., the first one deter-
mines the σ∗ value and the second one the τ∗m value; the networks which are trained to solve
the problems in Gh144 group are not able to solve the problems in Gh30 group and vice-versa.

2. Description given for the training of the networks that act in both groups is the same; so, the
noise levels, number of patterns in the training and testing and validation sets are the same.

3. All networks are trained by the quasi-Newton method with gradients (for each variable) calcu-
lated by means of analytical expressions obtained from Eq. (12); the stopping criteria is based
on the cross-validation process.

4. In all networks the slope parameters are considered as variables; thus, during the training process
the algorithm searches for better values for them.

5. All networks use the sigmoid function as an activation function for the neurons in the hidden
layer, and the linear function for the neuron in the output layer; also, all networks have only
one neuron in the output layer and the number of neurons in the hidden layer is determined by
ad hoc criteria.

6. The input patterns for the networks classifiers are not normalized, while the input patterns for
the other networks are; the output patterns for all networks are not normalized.

7. The number of patterns in each set (training, testing and validation), noise levels and the
quantity of patterns in each noise level are also determined by ad hoc criteria.

The input patterns are normalized to the interval [0, 1] according to the following equation:

pnormij =
pij −min(P )

max(P )−min(P )
, (21)

where P is a matrix that contains the values to be normalized, pij are the entries, min(P ) and
max(P ) are the minimum and maximum values of the matrix P , respectively, and pnormij are the
normalized values.

5.1. Networks training – practice

The upwelling radiation at the surface calculated by our mathematical model was corrupted with
four noise levels, which are shown in Table 2. As we can see from this table, three noise levels were
used for the training and testing of the networks and one of them was used only in the validation
process. This strategy ensures a better generalization for the networks.

Table 2. Noise levels adopted for the training, testing and validation sets.

ε1 ε2 ε3 ε4

Noise 1% 2% 3% 5%

Training × × – ×
Testing × × – ×
Validation – – × –
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5.1.1. Training of the networks classifiers

During the training of the networks classifiers all patterns obtained from radiative transfer problems
with a single spatial region are used. In this case, the training, testing and validation sets are equal,
however the noise level in each set is different. The patterns in the training set were separated into
three parts, and in each of them they were corrupted with one of the noise levels, as shown in
Table 3. To perform the validation of the networks, the patterns obtained from radiative transfer
problems with a single spatial region, were corrupted with the noise level ε3, which is not present
in the training and in the cross-validation process.

Table 3. Distribution of the patterns in each noise level considered in order to train the networks classifiers.

Noise Levels
Sets

ε1 ε2 ε3 ε4

Training 30% 30% – 40%

Testing 100% 100% – 100%

Validation – – 100% –

The number of neurons in the input layer is defined according to the characteristics of each
problem, and the number of neurons in the hidden layer is defined by ad hoc criteria. The threshold
values adopted are Υ = 1.2 mg·m−3 and Υ = 0.11 mg·m−3 for groupsGh144 andGh30 , respectively.
See Table 1 and, for the topology of each network, see in Table 4.

Table 4. Topology of the classifiers networks.

Group Classes Problems NI NHN

Gh144

1D(6/10)λ

Mh1
10

25P1h144
6

P2h144
6

7D1λ P7Dh144
7 25

Gh30

1D(6/10)λ

Mh30
10

20
P1h30

6

P2h30
6 25

7D1λ P7Dh30
7 25

NI = Number of Inputs; NHN = Number of Hidden Neurons.

When presented to the networks classifiers the patterns that were obtained from our radiative
transfer problems with 20 spatial regions and corrupted with the noise level ε3, we get that for the
problem in groupGh144 approximately 50% of all problems were selected, and approximately 60% of
all problems in group Gh30 were selected. It is important to remember that the networks classifiers
were trained with those patterns which were obtained from the radiative transfer problems that
consider only one spatial region.

5.1.2. Training of the networks ANNσ and ANNτm

To form the training sets to train the ANNσ and ANNτm , the selected patterns are divided into two
parts. The first one is composed of 70% of the selected patterns and forms the training set. The
second one is composed of the last 30% and forms the testing and validation sets. The patterns in
the testing and validation sets are not present in the training set, and the difference between them
are the noise levels.
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As we have a small quantity of patterns in each set and as we are considering three noise levels,
the patterns contained in each noise level may not be sufficient to represent the physical problem.
To circumvent that problem we replicate the patterns in each set. For the training set, the patterns
are replicated six times and for the testing and validation sets, the patterns are replicated ten times.
Then, the total patterns in the training set are distributed (and corrupted) with three noise levels
according to Table 3. For the testing set, all patterns are corrupted with the noise levels indicated
in that table, and the patterns in the validation set are corrupted with the noise level ε3. Remember
that the noise level ε3 is not present in the training and (cross-validation) testing processes.
Finally, to train the ANNτm , the inputs that correspond to the standard deviation (which was

estimated by ANNσ) are not corrupted with any noise level, they are, however, normalized to the
interval [0, 1] according to Eq. (21). Both ANNσ and ANNτm networks are trained according to
the methodology described in Subsec. 4.5.

5.2. The obtained results and discussion

The main results obtained in this work are shown in Table 5. Those results are obtained by the
networks from the testing and validation sets for groups Gh144 and Gh30 . In order to count the
hits obtained for each network we considered that a correct answer given by any network must be
within the interval given by

ν − 1 ≤ ν∗ < ν + 1, (22)

where ν is the correct answer (σ or τm) and ν∗ is the answer given by the network. We adopted
this rule to count the hits because we considered, especially, in the discretization of the τm variable,
a step size of 1 meter.

Table 5. Results obtained by the networks on the validation set for the problems in groups Gh144
and Gh30

.

Group Classes Problem Networks I HN TPT HT
[%]

TPV HV
[%]

HS
[%]

TV
[s]

MSE

Gh144

1D(6/10)λ

Aquah144

RNAσ 11 76
1470

62.59
490

59.59
47.55

19.65 1.89

RNAτm
12 111 63.95 65.10 37.19 1.60

P1h144

RNAσ 7 80
1470

70.41
490

70.00
55.92

15.29 1.30

RNAτm
8 78 75.31 72.45 12.63 0.92

P2h144

RNAσ 7 63
1440

56.35
480

58.96
37.29

7.18 1.94

RNAτm
8 96 58.13 56.46 12.09 2.30

7D1λ P7Dh144

RNAσ 8
92 1560

62.63
520

63.08
42.69

27.24 1.93

RNAτm
9 66.47 63.85 27.47 1.87

Gh30

1D(6/10)λ

Aquah30

RNAσ 11
59 1710

73.80
570

71.75
55.61

23.94 1.06

RNAτm
12 72.22 72.46 25.93 1.25

P1h30

RNAσ 7
59 1800

74.00
600

74.17
63.33

6.52 0.95

RNAτm
8 80.11 78.83 7.26 1.06

P2h30

RNAσ 7 48
1770

57.01
590

52.71
40.00

12.80 2.23

RNAτm
8 78 56.95 57.29 23.94 3.12

7D1λ P7Dh30

RNAσ 8 78
1980

79.19
660

79.85
63.03

39.38 0.80

RNAτm
9 79 73.08 75.91 37.53 1.32

In Table 5, we present the groups, classes, problems and networks. We also present the number of
inputs in the network (I), the number of neurons in the hidden layer (HN), the total patterns in the
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testing set (TPT) and corresponding hits (HT), the total patterns in the validation set (TPV) and
corresponding hits (HV), the hits obtained simultaneously (i.e., both networks ought to produce
a correct answer) in the validation process (HS), the required time spent to reach the optimal point
of the training (TV), and the mean squared error (MSE), given by

MSE =
1

Nr

1

NP

NP∑

p=1

|dp − yp|2,

where Nr is the number of noise levels, NP are the total patterns in the validation set, dp is the
desired answer and yp is the answer calculated by the network.

Our discussion will be about the results shown in Table 5. The hits obtained from the testing
set (column HT), in the cross-validation process, indicate that the characteristics of problem P1h144

are the most adequate. This can be assumed because in that problem we obtained the greater hit
rate when compared with other problems of group Gh144 . On the other hand, for problems in group
Gh30 we obtained hit rates very close to each other except for problem P2h30 . In this problem, we
can observe that the hit rates were less than 60% and a similar behavior occurred for the same
problem in group Gh144 . The low hit rate can be associated with two factors. The first one is that
the upwelling radiation at the surface at θ = 60◦ is greater than the upwelling radiation at θ = 0◦.
The second one (which is a consequence of the first) is that it is related to the sensitivity of the
problem with noise. Although the inserted noise is proportional to the upwelling radiation, the
greater order of magnitude of the upwelling radiation at θ = 60◦, the noise tends to become more
significant in this case.

The hit rates shown in columns HT and HV do not guarantee that the estimations of σ∗ and τ∗m
are correct simultaneously, according to Eq. (22), because these rates were calculated independently
in the output of each network. On the other hand, the rates shown in column HS mean that both
networks have produced a correct answer according to Eq. (22). As we can see, in this case we have
a lower hit rate than in the other two cases (HT and HV). As before, in problems P2h∗

we get
a lower hit rate, and the hit rates in group Gh30 greater than the ones obtained in group Gh144 .

Finally, the computational time spent for the training (including the cross-validation process)
is shown in the column TV. It is the time necessary to reach the best point during the training
process, and as we can see it was very short. This is a consequence of good features of the proposed
algorithm to train the networks, and the analytical expressions for the gradients obtained from
Eq. (12).

As we have a lot of problems to analyze, in Tables 6 and 7 we show the estimations that were
considered as simultaneous correct answers, i.e., both networks produced a correct answer. In this
case, only the best estimation of the σ∗ (Table 6) and τ∗m (Table 7) is considered and the errors eσ
and eτ are calculated, respectively, by the expressions eσ = σ − σ∗ and eτ = τm − τ∗m.

Table 6. The best estimations for the standard deviation and the respective values for the peak depth for
problems in groups Gh144

and Gh30
.

Group Class Problem σ [m] σ∗ [m] τm [m] τ∗m [m] eτ [m]

Gh144

1D(6/10)λ

Mh144
7.00 7.00 10.00 9.46 0.54

P1h144
11.00 11.00 15.00 14.50 0.50

P2h144
9.00 8.99 6.00 5.15 0.85

7Dλ P7Dh144
15.00 15.00 1.00 0.10 0.90

Gh30

1D(6/10)λ

Mh30
15.00 14.99 13.00 12.54 0.46

P1h30
9.00 9.00 14.00 13.61 0.39

P2h30
13.00 12.99 28.00 27.81 0.19

7Dλ P7Dh30
11.00 11.00 4.00 4.26 −0.26
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Table 7. Best estimations of the peak depth and the respective values for the standard deviation for
problems in group Gh144

and Gh30
.

Group Class Problem σ [m] σ∗ [m] eσ [m] τm [m] τ∗m [m]

Gh144

1D(6/10)λ

Mh144
6.00 6.66 −0.66 7.00 7.00

P1h144
15.00 14.24 0.76 6.00 6.00

P2h144
15.00 14.90 0.10 14.00 14.00

7Dλ P7Dh144
13.00 13.54 −0.54 27.00 26.99

Gh30

1D(6/10)λ

Mh30
6.00 6.05 −0.05 8.00 7.99

P1h30
11.00 10.25 0.75 6.00 6.00

P2h30
9.00 8.82 0.18 15.00 14.99

7Dλ P7Dh30
7.00 7.18 −0.18 11.00 11.00

We observe in Table 6 that a good estimation for the standard deviation does not imply a good
estimation for the depth of the peak. We notice especially in problem P7Dh144 , in Table 6, that
the error in the estimation of the standard deviation is null, however we get a “big” error in the
estimation of the depth of the peak. A similar case has occurred in problem P2h144 in the same
table. Figures 11a and 11b show the profile obtained from the best estimation of the standard
deviation for the cases where we get a lower error in the estimation of the peak depth. Figures 11c
and 11d show the profile obtained from the best estimation of the peak depth for these cases where

a) b)

c) d)

Fig. 11. a) and b) show the profiles obtained from the best estimations of the standard deviation for problems
P1h144

and P2h30
, respectively, for these cases where we get a lower error in the estimation of the peak depth

which are shown in Table 6, c) and d) show the profiles obtained from the best estimations of the peak depth for
problems P2h144

and problem Mh30
, respectively, for the cases where we get a lower error in the estimation

of the standard deviation which are shown in Table 7.
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we get a lower error in the estimation of the standard deviation, for the problems in groups Gh144

and Gh30 .
On the other hand, a poor estimation of the standard deviation does not imply a poor estimation

of the peak depth, as we can see in Table 7 for problems P1h144 and P1h30 . Note that in these cases
we get a “big” error in the estimation of the standard deviation, however the error in the estimation
of the peak depth is almost insignificant.
Finally, we present the worst estimations of the standard deviation and the peak depth. These

estimations are shown in Tables 8 and 9. In this case, we do not take into account the cases where the
networks produced a correct or a wrong answer. We simply search for the worst answers obtained
on the validation set.

Table 8. The worst estimations for the standard deviation and the respective values for the peak depth
for the problems in groups Gh144

and Gh30
.

Group Class Problem σ [m] σ∗ [m] eσ [m] τm [m] τ∗m [m] eτ [m]

Gh144

1D(6/10)λ

Mh144
17.00 11.38 5.62 9.00 11.79 −2.79

P1h144
11.00 15.36 −4.36 15.00 16.25 −1.25

P2h144
9.00 13.75 −4.75 14.00 16.87 −2.87

7Dλ P7Dh144
9.00 14.74 −5.74 21.00 23.51 −2.51

Gh30

1D(6/10)λ

Mh30
17.00 12.36 4.64 13.00 14.47 −1.47

P1h30
15.00 18.70 −3.70 28.00 29.52 −1.52

P2h30
9.00 14.11 −5.15 14.00 16.16 −2.16

7Dλ P7Dh30
13.00 16.32 −3.32 16.00 15.94 0.06

Table 9. The worst estimations of the peak depth and the respective values for the standard deviation
for problems in groups Gh144

and Gh30
.

Group Class Problem σ [m] σ∗ [m] eσ [m] τm [m] τ∗m [m] eτ [m]

Gh144

1D(6/10)λ

Mh144
13.00 16.82 −3.82 11.00 7.03 3.97

P1h144
11.00 14.35 −3.35 20.00 24.10 −4.10

P2h144
11.00 14.67 −3.67 21.00 26.81 −5.81

7Dλ P7Dh144
17.00 15.83 1.17 11.00 4.40 6.60

Gh30

1D(6/10)λ

Mh30
17.00 15.68 1.32 2.00 7.15 −5.15

P1h30
13.00 16.47 −3.47 28.00 32.67 −4.67

P2h30
17.00 17.82 −0.82 10.00 3.79 6.21

7Dλ P7Dh30
11.00 12.21 −1.21 6.00 -0.23 6.23

In that situation, we will analyze the worst estimation for the standard deviation and peak
depth, which occurred in the groups Gh144 and Gh30 . In Table 8 we can observe that we get the
worst estimation for the standard deviation in problem P7Dh144 , in group Gh144 . In group Gh30

the worst estimation has occurred in problem P2h30 . The respective profiles are shown in Figs. 12a
and 12b. In Table 9 we can observe that we get the worst estimation for the peak depth in problem
P2h144 in group Gh144 . In group Gh30 the worst estimation has occurred in problem P7Dh30 . The
respective profiles are shown in Figs. 12c and 12d.
To conclude our analysis, it is important to mention two situations that have occurred. One of

them is in Table 8 and the other one is in Table 9. The first one is for problem P7Dh30 in Table 8,
where we get a “big” error in the estimation of the standard deviation, but the estimation of
the peak depth was good. The second one is for problem P2h30 in Table 9, where we get a good
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a) b)

c) d)

Fig. 12. Profiles obtained from: a) and b) the worst estimation of the standard deviation for problems P7Dh144

and P2h30
, respectively, c) and d) the worst estimation of the peak depth for problems P2h144

and P7Dh30
,

respectively.

estimation for the standard deviation, however the estimation of the peak depth was poor. The
profiles for those two cases are shown in Fig. 13. These situations emphasize our assertion that,
although the networks are “connected”, the answers given by them are independent.

a) b)

Fig. 13. Profile obtained from: a) a poor estimation of the standard deviation and a good estimation of the
peak depth, b) a good estimation of the standard deviation and a poor estimation of the peak depth.

6. CONCLUSION

Although the problems studied in this paper are sensitive to noise and have physical limitations
(two different chlorophyll profiles can generate the same upwelling radiation at the surface), the
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obtained results show that our methodology is quite promising to estimate the concentration of the
chlorophyll profile for ocean waters of Case 1. We are able to make such an assertion because we
get good hit rates on the validation set and, when we get a wrong answer the committed error is
“controlled”, i.e., the error on the estimation remained within “acceptable limits”. Furthermore, the
problems P1h∗

, which considered measurements only in the direction θ = 0◦ and in the wavelengths
defined in Eq. (17), showed the best results.
We can also attribute the good results obtained to the strategy used to train the networks.

The inclusion of the slope parameter into the set of free-variables increases the dimension of the
search space, however it becomes possible to get different shapes for the activation functions, and so
neurons can become a specialist in a particular “region” of the input patterns. Also, the constraints
adopted on the free-variable avoid reaching very high orders of magnitude, and we can thus prevent
the saturation of neurons, and a possible overflow in the exponential term of the activation functions.
Another advantage is associated with the computational time spent to solve the problem. As we

mentioned before, the training of the networks needs a low computational time, due to the efficiency
of the quasi-Newton method and the analytical expressions used to approximate the gradients. This
feature encourages the use of laptop computers to solve the problems presented in this work.
The cascade of networks (Fig. 10) has proved to be an efficient strategy to solve the problem.

The classification performed by the first network makes easier the work of the last two networks.
Also, for the problems for which it is not possible to estimate the chlorophyll profile an average
profile along the depth from the network classifier is obtained. Thus, we can assert that we have
answer for all problems.
The physical feature of the problem which can produce the “same” upwelling radiation at the

surface for two different profiles can be circumvented by adopting the chlorophyll concentration at
the surface as an input for the networks. Nevertheless, if the profile is very deep and has a small
standard deviation this strategy can become inefficient because we can get the “same” upwelling
radiation and the “same” chlorophyll concentration at the surface for two distinct problems. In
this work, the approximation of the chlorophyll concentration at the surface was performed by an
analytical expression. In practical application, we cannot obtain this value from the same equation,
we can however obtain the chlorophyll concentration at the surface from the algorithms which were
mentioned at the introduction of this work.
Finally, in view of the obtained results, the use of artificial neural networks to solve inverse

problems in hydrological optics has shown an efficient and robust methodology. Of course, we must
use an efficient algorithm to train the networks.
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