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The sensitivity analysis of transient temperature field in the tissue domain with respect to its thermo-
physical parameters is discussed. In particular, the influence of tissue specific heat, thermal conductivity,
perfusion rate and metabolic heat source on the temperature distribution is considered. In order to deter-
mine the influence of variations of these parameters on temperature distribution the direct approach of
sensitivity analysis is applied. Perfusion rate is treated as dependent on tissue injury which is estimated
on the basis of Arrhenius integral. On the stage of numerical realization the boundary element method is
used. In the final part of paper the results obtained are shown.
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1. INTRODUCTION

A rise in the temperature of biological tissue leads to changes in its domain. At first, when the
temperature is moderate, that is from 37◦C to 45–55◦C, the blood vessels in the tissue become
dilated without being thermally damaged. Higher temperatures cause immediate irreversible damage
to the tissue. When the temperature reaches 60◦C to 65◦C, the proteins become denatured and tissue
necrosis can be expected. After the temperature rises above 100◦C, water in the tissue changes its
phase from liquid to steam, increasing interstitial pressure until the pressure within the tissue
exceeds the strength of confinement by the tissue architecture, resulting in explosive vaporization
and thrombosis (shutting down of the vasculature). At over 150◦C the proteins are broken down,
releasing hydrogen, nitrogen and oxygen, and leaving a layer of carbonization [1, 6].

Thus, temperature elevation and thermal damage can dynamically change the thermal distribu-
tion during coagulation by altering thermophysical properties of tissue. Consequently, parameters
applied in models of heat transfer in biological tissue domain can be regarded as temperature-
dependent. A somewhat different concept based on this is the assumption that thermophysical
parameters are dependent on the degree of tissue destruction. In this approach, temperature affects
the values of parameters through Arrhenius injury integral, which means that the reaction rate
increases exponentially with temperature. Special attention in this field is dedicated to the changes
in perfusion that accompany necrosis [1, 6, 18, 19].

Knowledge of the value of the injury integral is also relevant to the point of determining the depth
of tissue necrosis. It could be significant information in some thermal therapies, such as prostate
hyperplasia or cancer thermotherapy [5, 18].

The course of the physical process is, as a rule, analyzed on the basis of a certain mathematical
model. One of the problems connected with the application of such a model is the sensitivity of
the solution with respect to the parameters appearing in the governing equations. The sensitivity
information may be used, among others, to analyze the influence of the change of parameters on
the final solution of the problem being considered [3, 13–16]. Additional tasks required to determine
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the sensitivity functions result from differentiation of the assumed equation describing bioheat
transfer with respect to the parameter, which means that the number of additional sensitivity
tasks corresponds to the number of parameters with respect to which the sensitivity analysis is
performed [4, 9].

In this paper the tissue is regarded as a homogeneous domain with perfusion rate coefficient
dependent on tissue necrosis, while the remaining thermal parameters are regarded as constant
values. The sensitivity analysis has been done with respect to thermal conductivity, volumetric
specific heat, initial perfusion rate, and metabolic heat source.

The basic problems, but also the additional problems resulting from the sensitivity analysis, have
been solved using the first scheme of boundary element method for transient heat diffusion.

2. GOVERNING EQUATION

Transient heat transfer in biological tissue domain is described by the Pennes equation in the
form [1, 3, 5, 7, 8, 11–19]

x ∈ Ω : cṪ = λT,ii + cBGB (TB − T ) +Qmet, (1)

where λ [W/(mK)] is the thermal conductivity, c [J/(m3K)] is the volumetric specific heat, GB

[(m3 blood/s)/(m3 tissue)] is the blood perfusion rate and Qmet [W/m3] is the metabolic heat source.
The parameters cB [J/(m3K)] and TB correspond to the volumetric specific heat of blood and the
artery temperature, respectively, while T = T (x, t) and Ṫ denotes a time derivative.

Equation (1) is supplemented by boundary-initial conditions
{

x ∈ Γ1 : T (x, t) = T0 or q(x, t) = −λT,ini = q0,

x ∈ Γ2 : q(x, t) = 0
(2)

and

t = 0 : T = Tp. (3)

According to the necrotic changes in tissue, the blood perfusion coefficient is defined as [1, 7]

GB = GB(θ) = GB0f(θ), (4)

where GB0 is the initial perfusion rate and θ corresponds to tissue injury integral [1, 6, 7, 19]

θ(x) =

∫ tF

0

A exp

[

−∆E

RT

]

dt (5)

where A is the pre-exponential factor [s−1], ∆E is the activation energy [J/mole] and R is universal
gas constant [J/(moleK)]. The criterion for complete tissue necrosis is [1, 6, 8, 19]

θ(x) ≥ 1 (6)

In current work the function θ in Eq. (4) is assumed as a polynomial in a form [1]

f(θ) =
3

∑

j=1

mjθ
j−1, (7)

where mj are the coefficients.
Taking into account Eq. (4) the bioheat transfer equation (1) can be written as

x ∈ Ω : cṪ = λT,ii +QV , (8)

where

QV = cBGB0f(θ) (TB − T ) +Qmet. (9)
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3. SENSITIVITY ANALYSIS

To determine the influence of thermophysical parameters on the temperature distribution in tissue
domain, the direct approach of sensitivity analysis has been applied [4, 9].

According to the rules of direct method Eq. (8) is differentiated with respect to thermophysical
parameter ps, where s = λ, c, GB0 or Qmet.

∂c

∂ps
Ṫ + c

∂Ṫ

∂ps
=

∂λ

∂ps
T,ii + λ

∂T,ii

∂ps
+

∂

∂ps
[cBGB0f(θ) (TB − T )] +

∂Qmet

∂ps
. (10)

Because (cf. Eqs. (8) and (9))

T,ii =
1

λ

[

cṪ − cBGBf(θ) (TB − T )−Qmet

]

(11)

so

cU̇ s = λU s
,ii +

1

λ

∂λ

∂ps

[

cṪ − cBGB0f(θ) (TB − T )−Qmet

]

− ∂c

∂ps
Ṫ

+
∂

∂ps
[cBGB0f(θ) (TB − T )] +

∂Qmet

∂ps
,

(12)

where

U s =
∂T

∂ps
, (13)

while

U̇ s =
∂U s

∂t
, U s

,i =
∂T,i

∂ps
. (14)

Taking into account that (cf. Eq. (7))

∂f(θ)

∂ps
= (m2 + 2m3θ)

∂θ

∂ps
, (15)

Eq. (12) is transformed into

cU̇ s = λU s
,ii − cBGB0f(θ)U

s +

[

c

λ

∂λ

∂ps
− ∂c

∂ps

]

Ṫ

+

[

cBGB0f(θ)

λ

∂λ

∂ps
− cBf(θ)

∂GB0

∂ps
− cBGB0 (m2 + 2m3θ)

∂θ

∂ps

]

(T − TB)

− Qmet

λ

∂λ

∂ps
+

∂Qmet

∂ps
,

(16)

where the variation of θ is calculated as (cf. Eq. (5))

∂θ

∂ps
=

∫ tF

0

A
∆EU s

RT 2
exp

[

−∆E

RT

]

dt. (17)

Denoting that

k = cBGB0f(θ), (18)

Eq. (16) takes a form

cU̇ s = λU s
,ii +Qs

V , (19)
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where sensitivity source function Qs
V is defined as

Qs
V = −kU s +

(

c

λ

∂λ

∂ps
− ∂c

∂ps

)

Ṫ − Qmet

λ

∂λ

∂ps
+

∂Qmet

∂ps

+

[

k

λ

∂λ

∂ps
− cBf(θ)

∂GB0

∂ps
− cBGB0

∂f(θ)

∂ps

]

(T − TB) .

(20)

In particular, we have

Qλ
V = −kUλ +

c

λ
Ṫ − Qmet

λ
+

[

k

λ
− cBGB0 (m2 + 2m3θ)

∂θ

∂λ

]

(T − TB) (21)

and

Qc
V = −kU c − Ṫ − cBGB0 (m2 + 2m3θ) (T − TB)

∂θ

∂c
, (22)

while

QGB0

V = −kUGB0 −
[

cBf(θ) + cBGB0 (m2 + 2m3θ)
∂θ

∂GB0

]

(T − TB) (23)

and

QQmet

V = −kUQmet − cBGB0 (m2 + 2m3θ) (T − TB)
∂θ

∂Qmet

+ 1. (24)

Equation (19) is supplemented by boundary conditions in the form [4, 8, 15, 16]







x ∈ Γ1 : U
s(x, t) = U s

0 = 0 or Qs(x, t) = Qs
0 = −

1

λ

∂λ

∂ps
q0,

x ∈ Γ2 : Q
s(x, t) = 0,

(25)

where

Qs = −λU s
,ini (26)

and the initial distribution of sensitivity is assumed as

t = 0 : U s = 0. (27)

4. BOUNDARY ELEMENT METHOD

The primary and also the additional problem resulting from the sensitivity analysis have been solved
using the first scheme of the BEM for 1D transient heat diffusion [2, 10]. So, the following equations
are considered

cḞ = λF,ii + S (28)

where F = F (x, t) denotes the temperature T or function U resulting from the sensitivity analysis,
S = S(x, t) are the source functions described by the Eq. (9) for the primary problem or by Eq. (20)
(or Eqs. (21)– (24)) for the sensitivity problems with respect to ps.

At first, we introduce the time grid

0 = t0 < t1 < . . . < tf−1 < tf < . . . <∞, ∆t = tf − tf−1. (29)
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If the first scheme of the BEM is taken into account then the boundary integral equations corre-
sponding to transition tf−1 → tf are of the form [2, 10]

F (ξ, tf ) +

[

1

c

∫ f

tf−1

F ∗(ξ, x, tf , t)J(x, t) dt

]x=L

x=0

=

[

1

c

∫ f

tf−1

J∗(ξ, x, tf , t)F (x, t) dt

]x=L

x=0

+

∫ L

0

F ∗(ξ, x, tf , tf−1)F (x, tf−1) dx+
1

c

∫ L

0

S(x, tf−1)

∫ tf

tf−1

F ∗(ξ, x, tf , t) dt dx,

(30)

where F ∗ are the fundamental solutions given by formulas

F ∗(ξ, x, tf , t) =
1

2
√

πa(tf − t)
exp

[

− (x− ξ)2

4a(tf − t)

]

, (31)

where ξ is the point in which the concentrated heat source is applied and a = λ/c.
The heat fluxes resulting from the fundamental solutions are equal to

J∗(ξ, x, tf , t) = −λF ∗,ini =
λ(x− ξ)

4
√
π[a(tf − t)]3/2

exp

[

− (x− ξ)2

4a(tf − t)

]

, (32)

while J∗(x, t) = −λF ∗,ini.

Assuming that for t ∈
[

tf−1, tf
]

: F (x, t) = F (x, tf ) and J(x, t) = J(x, tf ) we have the following
form of Eqs. (30)

F (ξ, tf ) + g(ξ, L)J(L, tf )− g(ξ, 0)J(0, tf ) = h(ξ, L)F (L, tf )− h(ξ, 0)F (0, tf ) + p(ξ) + z(ξ), (33)

where

h(ξ, x) =
1

c

∫ tf

tf−1

J∗(ξ, x, tf , t) dt =
sgn(x− ξ)

2
erfc

( |x− ξ|
2
√
a∆t

)

(34)

and

g(ξ, x) =
1

c

∫ tf

tf−1

F ∗(ξ, x, tf , t) dt =
∆t√
πλc

exp

[

−(x− ξ)2

4a∆t

]

− |x− ξ|
2λ

erfc

( |x− ξ|
2
√
a∆t

)

, (35)

while

p(ξ) =

∫ L

0

F ∗(ξ, x, tf , tf−1)F (x, tf−1) dx =
1

2
√
πa∆t

∫ L

0

exp

[

−(x− ξ)2

4a∆t

]

F (x, tf−1) dx. (36)

At the same time

z(ξ) =

∫ L

0

S(x, tf−1)g(ξ, x) dx. (37)

For ξ → 0+ and ξ → L− for each domain considered one obtains the system of equations

[

g11 g12
g21 g22

] [

J(0, tf )

J(L, tf )

]

=

[

h11 h12
h21 h22

] [

F (0, tf )

F (L, tf )

]

+

[

p(0)

p(L)

]

+

[

z(0)

z(L)

]

. (38)

The solution of Eq. (38) determines the boundary temperatures and heat fluxes in the primary prob-
lem or their equivalents in sensitivity problems for time tf for x ∈ Γ1,Γ2 and next the temperatures
or sensitivity functions at the internal points can be found using the formula

F (ξ, tf ) = h(ξ, L)F (L, tf )− h(ξ, 0)F (0, tf )− g(ξ, L)J(L, tf ) + g(ξ, 0)J(0, tf ) + p(ξ) + z(ξ). (39)
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5. RESULTS

At the stage of numerical computations, the following values of tissue parameters have been assumed:
λ = 0.75W/(mK), c = 3MJ/(m3K), GB0 = 0.00125m3 blood/s/(m3 tissue), Qmet = 245W/m3 and
L = 35mm, while for the blood cB = 3.9962MJ/(m3K) and TB = 37◦C [8, 18]. The parameters of
Arrhenius injury integral are: A = 3.1×1098 s−1, ∆E = 6.27×105 J/mole and R = 8.314 J/(moleK),
and the coefficients appearing in the f(θ) function are as follows [1]:

0 < θ ≤ 0.1 : m1 = 1, m2 = 25, m3 = −260,
0.1 < θ ≤ 1 : m1 = 1, m2 = −1, m3 = 0.

(40)

The values of these coefficients for the interval from 0 to 0.1 respond to the increase of perfusion
rate caused by vasodilatation, while for interval from 0.1 to 1 they reflect blood flow decrease as
the vasculature begins to shut down (thrombosis).

Tissue domain has been divided into 100 elements and the time step ∆t = 0.5 s.

Sensitivity analysis has been done with regard to parameters λ, c, GB0 and Qmet, that means
four additional problems have been calculated.

As an example, the solution obtained for the boundary condition on Γ1 (tissue surface) assumed as

x ∈ Γ1 : q(x, t) = q0 = 3000W/m2, (41)

while the initial distribution of temperature has been assumed as the constant temperature
Tp = 37◦C.

In Fig. 1 the temperature distribution in the tissue domain is presented. The two next figures
concern results connected with tissue damage. Figure 2 shows the distribution of perfusion coefficient
for different times. The effect of tissue necrosis corresponds to left hand side of the peak where
value of perfusion coefficient fall down to zero, and on the right side of the peak is visible increase
of perfusion rate caused by vasodilation. In Fig. 3 the profiles of injury integrals are shown.

Fig. 1. Profiles of temperature
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Fig. 2. Profiles of perfusion rate GB

Fig. 3. Profiles of injury integral
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Fig. 4. Profiles of sensitivity function with respect to λ

Fig. 5. Profiles of sensitivity function with respect to c
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Fig. 6. Profiles of sensitivity function with respect to GB0

Fig. 7. Profiles of sensitivity function with respect to Qmet
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Figures 4 to 7 present the profiles of sensitivity function for successive thermophysical parameters
of tissue. The values on those figures are multiplied by: ∆λ = 0.25W/(mK), ∆c = 1MJ/(m3K),
∆GB0 = 0.0004m3 blood/s/(m3 tissue), ∆Qmet = 80W/m3.

6. CONCLUSIONS

Assuming that the value of heat flux on the external surface of a tissue results in a maximum level
below 75◦C, there is no water phase change. The negative effects of heating have a visible impact
on perfusion rate. The process of necrosis begins after 76 seconds and causes changes in perfusion
rate; both the drop of perfusion to zero corresponding to the left side of the peak and the increase
of perfusion rate caused by vasodilation on the right side of the peak are clearly visible. On the
basis of the knowledge of Arrhenius integral profiles (Fig. 3) and the criterion for tissue necrosis
(cf. Eq. (6)) the depth of complete tissue damage after 240 seconds was determined to be equal to
5.6mm.

The profiles of the sensitivity functions show that thermal conductivity and volumetric specific
heat have the most substantial impact on temperature levels. The results obtained for sensitivity
with respect to initial perfusion rate delineate the change of temperature by about 2◦C down for
the change of initial perfusion on ∆GB0 = 0.0004m3 blood/s/(m3 tissue), and denote a decrease
of temperatures with an increase of initial perfusion. According to temperature-dependent injury
integral formulation (cf. Eq. (5)) greater values of initial perfusion rate cause a decrease of the depth
of necrosis as well.

The proposed model is closer to the real conditions of an ablation process in living tissue than the
classical Pennes equation with constant values of thermal parameters. However, the thermal wave
model of bioheat transfer could be also taken into account. Application of Arrhenius integral injury
formulation in such a kind of problems seems to be quite a convenient tool to obtain additional
information about the process considered. It should be pointed out that the presented model could
be also considered with phase change taken into account, similarly to that presented in [1]. On the
stage of sensitivity analysis using the adjoint approach is also possible.
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