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First, an analytical asymptotic method to construct quasi-periodic solutions in autonomous dynamical
systems governed by a nonlinear second order set of ordinary differential equations with delay is presented.
The approach is based on the double asymptotic expansion of two independent perturbation parameters
and is supported by symbolic computation using Mathematica package. Both resonance and non-resonance
cases are successfully analyzed and the catastrophes of the torus solutions are classified and discussed.
Second, a new method for numerical calculations of the quasi-periodic orbits, which is based on a concept
of the general Poincaré map, is addressed. In both cases considered examples support the introduced
theory.

1. INTRODUCTION

In this paper quasi-periodic attractors, which play the fundamental role in nonlinear dynamics, are
reconsidered. Landau [32] suggested that an infinite sequence of tori doubling bifurcations can lead
to chaotic orbits. This idea has been used also by Ruelle, Takens [38] and Newhouse et al. [36],
who have shown that a sequence of the bifurcations of a torus may cause an occurrence of chaos.
Recently many other specific problems dealing with transition from quasi-periodicity to chaos are
widely described in the literature [1-4,21,24,25,29,37,41]. On the other hand, the quasi-periodic
solutions have a long history in nonlinear dynamics, although serious formal approach to investigate
invariant orbits have been developed in a rather episodic way. In the isolated nonlinear dynamical
systems such attractors appear in rare cases and usually by the slight change of the right sides
of the governing equations they are supplanted by periodic or even chaotic solutions. Thus, the
problem of finding the set of parameters for which quasi-periodic solution exists occur.

One of the earliest attempts to calculate the quasi-periodic solutions belong to Krilov, Bogol-
ubov, Mitropolski and Samoilenko [15-17,31], where the asymptotic methods of nonlinear dynamics
have been used. Some fundamental theoretical results, also with relation to chaos, have been given
in [19, 22,23, 25,33, 34, 39].

In the field of computational dynamics one of the most popular method to find such solutions is
based on solving an initial value problem. Projection of the attractor, Poincaré maps, time series
analysis (Fast Fourier Transform) and Lyapunov exponents are used to identify such solutions.
This rough approach, however, does not allow for the systematical study of the torus behaviour
in the change of the control parameter and cannot be used to follow the unstable torus. For these
reasons, Kaas-Petersen [26-28] has presented another approach based on numerical evidence and
in an algorithmic spirit, developing a method often used to calculate periodic orbits by solving a
boundary value problem. He has shown that a torus solution may be treated as a fixed point of
a certain generalized Poincaré map. He demonstrated numerically that the stability of the torus
is equivalent to the stability of the fixed point. This approach gives the possibility to establish a
bifurcation of a torus as well as allowing the construction of the bifurcation diagrams.

There are also some works, similar in spirit to the Kaas-Peterson’s papers, in which an at-
tempt to locate a single point on the invariant curve and the corresponding quasi-periodic solution
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is demonstrated [44,45]. Another approach is to search for many points on the invariant curve
simultaneously with a collocation method [30,46].

In the paper this problem is also addressed. We will show, how an analysis of a quasi-periodic
solution of the original autonomous system reduces to the analysis of a periodic solution of the
nonautonomous one with a periodic excitation. We propose a method of transformation from a one
dimensional curve to a two-dimensional torus. Simple example confirms the introduced theory.

Many aspects of the quasi-periodic orbits, including theorems and their proofs, are discussed in
a seminal book by Samoilenko [39]. He showed that a problem of finding quasi-periodic attractors
in a system of autonomous nonlinear differential equations can be reduced to the consideration of
the solution

Z‘:’U,(Ql)), ¢:(¢1,-~~a¢m)€Tm7 :I,‘ERn, (1)
of the system of equations

d d

Dag), T =P@)r+FO). )

The determination of the torus requires the application of approximate methods. One such
method is a version of Galerkin’s iteration method. In accordance with this method a function u(¢),
which defines the invariant torus (1) is sought as a limit of the sequence of Galerkin approximations
to the periodic solution of

Lu(¢) = F(¢), (3)
where a differential operator is defined as
L= Z 3 ¢U — P(¢)u. (4)

The Galerkin approxunations are sought in the form of the following trigonometric polynomials
Z W 'L(k 45 (5)
Ikl <N

where the unknown coefficients are found from the system of algebraic equations
(Lwn(e), ™) = (F(g),e®¥) , (k[N (6)

Samoilenko formulates precise conditions under which such approximations are possible for the
arbitrary N > 0 and when they approach the solutions of (3) for N — +o0.
Such an idea has been used by Chua and Ushida [18]. They assume a generalized Fourier series

oo
T = ag+ Z((J,Qi_l cos vit + ag;sin v;t) , (7)
se=]
Vv, = myw; + ...+ mMewy, (8)
where my;, ..., m, are integers chosen in such a way that »; > 0, and then they calculate a; .

Here, another analytical method to find quasi-periodic solutions is presented. This approach
is organized in the spirit of the asymptotic techniques described in [20,35]. It possesses some
benefits in comparison with the above mentioned methods. First of all, it considers system of
differential equations of second order, which is obtained directly from Newton’s laws and do not
need further transformations to obtain first order equations. The presented method also does not
require transformations leading to the system (2). Double asymptotic expansion is used, and this
approach can be easily generalized to multiple asymptotic expansions. (As has been shown earlier by
the author [5-13], such an approach can lead to new qualitative results which cannot be found using
single asymptotic expansion.) Finally, it will be shown that the domain of existence of quasi-periodic
solutions in two parameter space can be found. These considerations are supported by symbolic
computation with the use of Mathematica package.
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2. ANALYTICAL METHOD
2.1. Non-resonance case

We consider the following dynamical system
is+w3x3:er(x1,...,xn, By anily, - 21(T. =l a3kl =7 )poe), g&l kN, (9)

where F is continuous and fulfils a Lipshitz condition in a certain domain D of the n-dimensional
Euclidean space. € and 7 (time delay) are small positive parameters and € > 7 > 0. Under such an
assumption we take

1
:pi(t—'r):xi(t)—rii+§7'2féi+..., £k oM (10)
and from (10) we obtain

B tone, = el {2y, ..., 00, B1,.0- B0, 6,T), . 8=1,..,m (11)

We consider first a non-resonance case in which

¢s = ws + ns(€,7), a= b, (12)
and the frequencies w = (w1, ...,w,) are positive and are incommensurable, i. e.

((k,w)) = kywy + kaws + . . . + knwy # 0 (13)
or equivalently

[((k, @)l =a>0, (14)

where k; of k = (k1,...,kn) are integer and |k| = Y i, |ki| # 0.
Suppose that we have found such a function n(e,7) that the dynamical system (10) has the
following quasi-periodic solutions

Ts = Qs(d)l, . 'a¢n7€,7—)1 (15)
As = s = ws + 75 , & =dy. 0w} (16)
where:

QS(¢17' "7¢n,€7T) = ng(d)lw . '7¢n) =5 Z
k=

1

Zek‘rlel(d)l,...,@l). (17)
i=0

The function Q*(¢1,. .., ¢n, €, 7)is 27-periodic in regard to all the independent variables ¢y, ..., ¢, .
Because for € = 0 the autonomous equations (11) are uncoupled, we take

Qoo = A, coad, (18)

and, additionally, we choose such a family of quasi-periodic solutions that the following arbitrary
condition [14] is fulfilled

e .. 0,6,7) "
¢ 5

We expand €7 into the double series

. (20)

k=0 1=0

03 s— - n (19)

Similarly, we develop A? and €Fj .
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After comparing the terms at parameters ¢*7! we have obtained the following recurrent set of

equations

m=1r=1 8¢m8¢7
= Fiy(A1cos¢y,. .., Ancosdn, —Ajwysin gy, ..., —Apwy sin ¢n) — 2wsmjpAs cos Ps
S S 62(230 21
-l guztimién e Ui
= —2wsn20A cos ¢ — 2wsnio( Bio cos ¢s + Cigsin )
OF, . =
+Z Blocos¢1+COsm¢1)+Z Biosmqbl+Ci0cos¢1)w1+F20,
< & 82Q§0 2
mzzl r2=:1 a¢)m8¢r ke 03 stBO :
= —2ws17§0A cos @5 — 2wsnio( Bsg cos ¢ + Cyosin @, )
> arF, : :
+ Z 92; (B20 cos ¢y + Chgsinéy) + Z l (—Blgsin ¢y + Chg cos ¢p)wy + F5y

n n aZQ -
Z 2:1(9 5¢2rwmwr+w3(311 =0,

m=1r=

533 ({)2Qs o s s
Z - a¢ma2(;r WinWr ok @05 = ~20, 18 Ay cos @t S,

m=1lr

where:

2 27 =
Fg = / / (sin s + cos @) doy ... des + FS, Kl =10, 20, 30, 21.

(21)

(22)

Based on the obtained recurrent set of equations (21) we now demonstrate an algorithm to

obtain the solution. From the first equation of (21) we find

2T 2T
h%Mb””A%ﬁié.no Ffysin¢,d¢; ...d¢, =0,

1 1N? 27 27
Pl | — FP cos¢p,ddy ...d¢, =0, oy e )
o przl,O(O) (27{') /0 0 10 ¢P ¢1 ¢ p

We expand F}, into the following multiple series
F 0 = Z Rk 10 'l

and from the first equation of (21) we find
Q3o = Q3o + Bjycos ¢s + Ciysin ¢ , S=i ooy,

where:

e __.______klo i((k,9))
U= 2 Gy

From (18) we calculate C{y, s=1,...,n.

(23)

(24)

(25)

(26)
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In order to avoid resonance terms, from the second equation of (21) we obtain

n

2 2T
wsN1oClo + (271-) / / [ BlO cos ¢y + ClO sin ¢;)
OF; : e
3 Z a—il(—Biosm ¢1+ Clocos $r)wr + Fgo] sin ¢, dy ...dg = 0,
27 x BF (27)
—AswsTz0 — WsNioBlo + <27r> / / 8:c1 (B10 cos ¢; + C10 sin ¢y)

+ Z ( B!, sin ¢y + C!,cos ¢ )wy + on] cospsdepy...do, = 0,

si=ra M
and
s 8@ OF; il
Fy = “(7710) Ascos ¢ + Z ( Qm =10 ) Je 2wsni @10 - (28)
From the first equation of (27) we obtain Bj,..., B}, whereas from the second one 73y, ..., 75, .
As in the previous case, we expand
Fjo =3 Ris o (29)
k
and we find
Q30 = Q5 + B cos ¢, + Ciysin ¢, , s=1... ..n, (30)
where:
s — Z Riao ko) (31)
074w~ ((kw))?

C3o are obtained from (18), whereas 73, and Bj; are found from the following equation (analogous
to (27))

2T 2T
wsN1oCa0 + ( ) / / [Z 2 (Bhg cos ¢y + Chy sin é)

+ Z %j—(—Bgo sin ¢y + Chg cos ¢y )w; + F;OJ sin ¢, depy ...d¢, = 0,

2 2
—Aswsn3g — wsnioBao + ( )/ / [

+ Z B—Qb;(_BéO sin ¢; + C’éo cos ¢y )wy + F;O] cos ps doy ...do,
=¥

)

I
e

s
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where:

F3y = —2nfom3oAs cos ¢>s — (nfo)? - 2wsn§on — 2wn3eQ@20

5 0% F,
+Z [Z e Q10Q10 on"’ Sa —Qlo

- ;g 8 805 ano 8Q20 32F
+ mZ::l (azlaﬁcm Jz:: ; 36; 0d; Z 50; 3 T Baide & Z 8¢]
= anO 82F’s
" Z (81: 3zmQ10 Z 8¢z )] ge? (33)
From the fourth equation of (21) we get
@11 = By cos ¢, + C7; sin ¢ . (34)

The C§, obtained from (18) are equal to zero, whereas 75, and Bf; are found from the following
equations

&) [ L[5 s

o O A s b

+ Z 9%, (—B{l sin ¢y )wy + Fgl} sin¢s;d¢y ...dop, = 0,
i=1

g . 3 1 n 27 2 (35)
_ASOanlo = Q)s7721B11 + <§> /0 . /0 [Z Bll COSs ¢l

. oF {3 s

+ Z 9%, (= Bjysin ¢)w; + F5y | cos s dy .. .dgpn, = 0,
=1

Sl R

where:

0. AP

Fh=2, (83:181' diidr & Z a¢] ) 45}

2.2. Resonance case

Consider now a case, when a subset of frequencies w* = (wy,...,wp) fulfils the following condition

|((w*, k")) >0, (37)
where k* = (ky,. .., kp) is a vector of integer components and, additionally, the following resonances
occur

ws:((w*,k(s_p))), site P L mi (38)
Similarly to the non-resonance case we have

As = ws + ns(€,7), Xl (39)
where

o0 [o/e]
nle.7) = ZZekran,, s=1,...,p. (40)

k=01=0
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Suppose that we have found 7(e, 7) such that

= Q%P1+ rPpr & T) 5 s=1,...,n, Ae=dr=w +m, l=1,...,p, (41)
where:
Qs(¢1a cony Py €, T) = QOO(¢3) o+ Z ZEleQZI(%, X ',¢p) ’
k=01=0 (42)

Qoo(¢s) = As cos §s s=1,...,m.

Q%)(o1,. .., ¢p) are periodic functions in regard to all independent variables ¢y, ..., #,. Similarly
to the non-resonance case we take arbitrarily

&0, ... 0.6,7) =
a(ﬁs —0, S—].,...,p. (43)
For s=p+1,...,n we have
6s = (KN vy, ¢ =(1,-..,6}). (44)

We assume that small corrections of frequencies do not change the resonance order. From (39) we
obtain

Al = w + Z Z ekrln,(c}) ;
=0

k=0 [=0
Adpt1 = Wpp1 + 3 ) fle??;(f;H) )
k=0 1=0
b =wnt 3 Zekrln,(;)
k=0 =0
Taking into account (38) and the given above assumption we get
s = (O, 667D, (46)
A= (AL, 50, Baind-1.% . .90 (47)
From (45)—(47) we have
(ES ... TS e en)) = 55 ernipen,
k=0 =0 k=01=0 k=0 1=0 :
(48)

((ZZG 5 ZZéleﬂ(p) ki ”)) ZZETW :

k=0 (=0 k=0 1=0 k=0 1=0

Equations (48) show that n(p+l), i ’771?;) are defined.

’,
Comparing the terms standing at the parameters €¥7! we obtain the following system of recurrent
equations

n n 8262{0 § 3
mZ::I 7; 0¢m 0P, Wy - stlo —
F ;
= FfO(Al COS ¢1, ey An COS ¢n) _A1W1 sin ¢1, s, _An(w*, kn_p) in ¢n) s QwSUfOAS - ¢s |

where ¢, = (¢*,k(s‘p)), for p+1<s<n,
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n n OZQ%O .
'm,zz:l 7;1 a¢m6¢r wmwr + stzo =

= —QwSUSOA cos ¢s — 2wsnio(Big cos o, + Cfo sin ¢;)

Z 91 (B 0 cos B + Closindy) + Z (- Blysin ¢y + Cigcos d))wi + Fiy

for-1 < F<n, 1.<5%:0p;

+30 08 (= Blosin((8", HP) + Clocos((6 KO + F

for p+1<I<n, p+1<s<n,

= —2ws77§0A cos ¢s — 2wsnio( By cos ¢s + C’;O sin ¢s) (49)
-|-Z Béo cos¢1+02081ngbl +Z ( B20s1n¢1+C'20cos¢1)w,+[30,

forlSlSp, 1<s<Lp,

n n aZng >
mgl ; EYEE T e + wiQ3% =

= — 2w, oA, cos((¢7, kCT))) — 2waniy (Béo cos((¢7, K P)) + Cosin((°, k7))

= Z (320 cos((¢%, kU= )) + Céo sin((¢*, k(l—p))))

2 (= Blosin((9", K0)) + Clycos((67, KP)) wi+ B

for p+1<i<n, p+1<s<mn,

n n 2 s
d 11 28
wmwr+ws 11 = O,

21 S x 3
e fel 8¢ma¢Twmwr =+ OJZQ21 = —2wgns; A cos ¢s + Foy
for 1€1<p, 1<s<w
) Q 5 5 * §— =
Z ¢ (92;5 Wy Wy + waZl = _QwSTIQIAs COS((Q’) ,k.(~ p))) + F251 ,

for p+1<i<n, p+1<s<n.
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In a manner similar to that discussed for the non-resonance case we obtain the following equa-
tions

2m

2m
A A, Anitblsinn, ;’0—”):/0 [ Fosing,dgy..ddm =505
}IfO(Ala"-7An9w%0a'"awil()_IJ)nwa"anfO):
1 P 2 2
:wsnfoAs—<—) /0 o[ Fycosgudgr . dgp = 0,

2r
s 1 n 1 n—py _
20(B10s -+ +» Blos ¥205 - - - 20 )=

. wsnmcm+< ) /27r /27r [Z o (Bl cos ¢ + Clysin )

D, . = :
+ Z 9%, Bio sin ¢ + C’{O cos ¢y )wy + F;O] sing,depy ...d¢py = 0,

H3o(Bios - -+ Bio, %30, - - -3 %30 11305 « -+ Th50)
= —wsMa0As — wsnioBio + ( ) /2” /27’ [ BlO cos ¢y + ClO sin ¢y)
& Z 7y ( Blgsin ¢y + Clgcos ¢y )wy + FmJ cos g5 dgy...dgp1 = 0,
Ggo(Béo’ : --aBgoﬂ/’am ) =
= —wsnoCilo + (%)n/:”_ : ./027r I:Zn: Z_S(Béo cos ¢y + Chysin ¢y) (50)
+ Z 9%, ( Bl sin ¢; + C’20 cos ¢p)wy + F30} singsdey ...d¢p; =0,
H3o(B3os - -+ » Bio, ¥igs - -+ V30 s M0s + o) =
27 o [ 9F,
= —wsM30As — wsnio B3 + (271_) / / { L ——>(Bjo cos ¢ + Cgsin 1)
£ Z 2—2(—350 sin ¢y + Chy cos ¢y )w; + F;O] cospsdey...dg, =0,
=1
31(3%17 . --aBﬁa‘ﬁ%n oty T) =
= (i)n/:”.../oh [Zﬂ; %B{lcow,
+ Z % ( B}, sin ¢p)w; + F21] sin s dey ...d¢pp; = 0,
Hisl(Blll""vB?bw%l?"" 21 s s - M1 ) =

2T 2T
= —wsny; As — wsny By + ( ) / / [ B11 cos ¢y

+ Z ( B11 sin ¢y )w; + Fn} cos psd¢py ...d¢p1 = 0,

S wnn,
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During the calculations we have expanded the rest of the right hand side of (49) into the following
Fourier series

F{ = Riu Zei((k*’w» , (51)
k‘

and we have obtained the following solution
Qi = Qiu(¢") + By cos g + Cysin g for 1<s<p,
Qi = Qu(¢") + Biy cos((¢7,k°77)) + Ciysin((¢™, k7)), for p+1<s<m,
where:

- Ris 1

L i((k*,¢%))
le(¢ ) = ; wsz = ((k*,w*))2 € (53)

From the first equations of (49) we have obtained 2n equations to find 2n unknown quantities
Al ... An, Yoy 107, Mos---» M- Then, from the next recurrent equations we have found

1 1 e P 1
Bipso s By Wi s i 2 Wi - 2o M a0d Crgr Gy -

2.3. Catastrophes

The presented formal analytical approach to construct a quasi-periodic solution allows for practical
application, as well as for discovery of singularities and branching phenomena.

In many branches of practical application the problem of control of the new frequencies Ay, s =
1,...,n, arises. Suppose that we require the following conditions to be fulfilled

Ne = Tss 4 s =% Hing (54)

From (11) we obtain

a6, Toda o o, B s Ban 1= ONEAE T, Ao oy gy Bl o vy i) = B (55)

The amplitudes Ay,...,A, are generated by the functions F; and a set of parameters
(Ay,...,An) attached to them. For some values of (¢,7,Aq,...,An,A1,...,Ay,) singularities can
appear. We define them as frequency-catastrophes by the following equations

hiO(Ala---,AmAla---aAm) = O,

PELR . T . St s L |

g, (56)

ajs(e,r,Al,...,An,Al,...,Am) =0,

LI~ T S 1

From (56), one or few catastrophe sets (e, 7%, AS,...,AS,) can be found, where 7 is treated as a

branching parameter. The successfully found sets (if any) can further be divided. For example, the
n-hysteresis variety [40] is defined by the set

hislAL . . iy .- oo fm) =0,

gs(G,T,Al,...,An,Al,...,Am) = O,

995

-8—2;(6,7',141,...,14“,/\1,...,Am) = 0, (57)
9gs

6A2(€,T,A1,...,An,Al,...,Am) — ",

£

s=ill=an.



Quasi-periodic solutions 11

The n-isola centers [40] are defined by the following equations

hiO(Ala"-aAn,Al,--.,Am) = 0,
IC e IMUAY PR TR
9gs
8_145(6’7-,141’.."An’Al’.”’Am) == 0’ (58)
%—gf(e,r,Al,...,An,Al,...,Am) S
i AR

A similar classification to that given above can be introduced on the base of the vector
of independent variables ¢y,...,¢,, referred further as the variables of torus. We define the
variable-catastrophes [40] by the following equations

hio(A1,..., An,Av,. .  A) = 0,
Qs(faT7¢17---7¢n7A17---7An7A1a~--aAm) :05
0Q, (59)
%(Qqsla”'a¢naT>A17"',A'n7A17-"7Am):O>
8= liiuisn.
The variables n-hysteresis variety [40] is defined by the equations
higlAss o i R o, A) — 7T
QS(€7T7¢1,'"a¢n7A17"‘>A'rLaA17'",A'm) :03
9Qs
M(E’%""’¢”’T’A1""’A"’Al""’Am) —0, (60)
0%Q,
ad?z (€,¢1,'"7¢TL=T,A1,'"7A'n.aA17"',Am):0)
5= RO
The variables n-isola centers [40] are governed by the equations
hio(A1, ..+ 5 An, Asye. oy Am) s
Qs(fﬁTa¢17""¢n’A1,'"7An7A1>-"7Am) :07
9Qs
T%(E,(ﬁl,...,qﬁn,T,Al,...,An,Al,...,Am) :0, (61)
9Qs

(€a¢17""¢naTaA1a'"7ATL7A1,"'7Am) — 07

fm o

or

The catastrophes defined by the Eqs. (56)—(60) can be found by the use of numerical meth-
ods. The parameters set (¢, 7,Aq,...,A,,), constituting the solution of the problem is known as a
catastrophes set. There are generally three possibilities:

1. The catastrophes equations have no solutions in the considered space of parameters. It means
that in the torus analyzed the catastrophes do not appear.

2. The catastrophes equations are satisfied for the arbitrary values of A;,..., A, and/or ¢1,..., b,
for a certain set of (¢,7,Aq,...,An).

3. There are one or few isolated solutions for a certain sets of (¢,7,Ay,...,Ap).
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With the use of the above given definitions and considerations one can construct (for a particular
case) many special multi-diagrams in the higher-dimensional hyper-space (e,7,A1,...,Am). Then,
by the use of parameter 7, such catastrophes can be controlled.

Finally, we briefly consider another break down of the quasi-periodic solution. Taking into ac-
count (12) we calculate

((ksA) = ar + ((k, en(e, 7)) (62)
where:
a1 = ((k,w)). (63)

We define the break-down of the quasi-periodic solution by the following equation
((k, 1)) =0. ' (64)

For the given ¢ we can find a critical value of the control parameter 7 for which (64) holds.
Thus, due to (3.11), the domain of existence of the quasi-periodic solutions in two parameter space
is established.

2.4. Example

We would like to support the above given theoretical results presenting an example. From (12) and
for s = 1,2 we get

)‘1 —. Wy = 6771(A1,A2,€,IU,,P(1)),

65
/\2—(4.)2 = 6772(1417 Az,C,}L,P(2)), ( )

where A;, Ay are the amplitudes, €, 4 are the perturbation parameters, while PM) and P®) are the
vectors of parameters. Suppose that we want to keep the A; (i = 1,2) constant treating ¢, u as the
variables. We have to solve first the nonlinear equations leading to determination of the unknown
Ay and Ay, which are the functions of parameters (usually we solve the equations numerically).
Therefore, the problem can be reduced to the consideration of the following equations

wi = em(c, u, PY), i

w; = 6772(63 ,u'7P(2))7 ( )
where: wy = A\ —w;y and w3 = A3 —ws.

Let us discuss briefly the typical issues of the catastrophe theory and how they relate to our
present example. It should be emphasized that this theory refers to the Taylor expansion near the
equilibrium surface. The vanishing of certain terms from the Taylor expansion can be understood as
a singularity leading to the catastrophe. In our approach, instead of the real coordinates, we have
perturbation parameters which possess physical meaning (they are combinations of the physical
quantities). Additionally, our example results from an utilization of the averaging procedure. Here
the catastrophes can be interpreted in relation to the frequency surfaces. We show that each of
equations (66) can exhibit at least elementary catastrophes introduced by Thom [42]. If there
exists a set of parameters for which Eqgs. (66) have (one or more than one) solutions we will call it
a branching set. In general, each of Eqgs. (66) can be represented by the following polynomials

i i i) i i i
Plooye® + Ple® + Pl + Pene + P + P

+ 98 S Py e+ pE )+ o+ pYyen
5 ])81),2)64“2 g pg),'z)e?’“2 + pg)g)(z’ﬁ + pE?J)E'“Q 4 7’223),:3)63'“:3 +p! =0, (67)

where: p() = —wf,1=1,2.
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According to Thompson [43], if 4 = 0, whereas only pg)o) # 0 and p(i) # 0, we get the fold
catastrophe and a point p) = ¢=0is the turning point.

For p&),o) £0, Pgé),o) # 0, p() # 0, we get a cusp manifold, which can be symmetric stable or
unstable. ' : _

¥orp =0, p&)’o) # 0, p&)'o) # 0 and p() # 0, a swallow-tail catastrophe can be realized.

Additionally, thanks to the occurrence of the non-zero parameter u, a set of two other catastro-
phes can be detected.. : A : ;

For p&)’o) > 0, szz),z) < 0, pg),o) > 0, pgll),z) > 0, pEQO) < 0, pg)yl) < 0, the eﬂ.iptic umbilic
is realized, whereas for pg;),o) > 0, pgg{l) >0, pg)’o) > 0, p?l)g) >, p(;)'o) < 0, pﬁ)yl) < 0, the
parabolic umbilic occurs. (Note that in all cases considered the non-mentioned parameters are equal
to zero. Pictures which characterize an appropriate catastrophe can be found in references [42,43].)

One can imagine that if one of equations can exhibit one of the freely chosen catastrophe, then
it can be tied to each of the potential catastrophes. This leads to the complicated branches of
manifolds in a control space of parameters P(!) and the parameters €, 1 play the role of incremental
coordinates.

3. NUMERICAL METHOD

We consider now a general numerical technique for tracking the quasi-periodic solutions using a
generalized Poincaré map approach. The analysis introduced below is independent of the analytical
methods considered before. However, if for some values of control parameters catastrophes appear,
the they can be analyzed with the use of analytical methods described earlier. Thus, both of the
methods presented support each other in finding a final solution to the problem.

3.1. Theory

Let us consider the following dynamical system

i—j:F(z), F: R" - R". (68)

Samoilenko [39] showed that a quasi-periodic orbit lies on an invariant manifold M , which can
be covered by the points z; € M. This manifold can be approximated by the n-dimensional balls
situated in the points z; with the radii ». An m-dimensional invariant torus m = {(¢,y), y €
R", ¢ € R™} is approximated by the equation

y=y(s). (69)

In what follows, we get

oY b oy

with the following boundary conditions

y(¢17 & '7¢j—la0>¢j+1)- . 7¢m) = y(¢)17 . "a¢j—1’2n7¢j+17' . a¢‘m) v (71)

Let us now introduce the variable ¢; = t, and the period 7 = 2II. If we can eliminate all
variables ¢;, j = 1,2,...,m — 1 except ¢, then

(050505 20,05 .+ + 10} = 9040050, 80 T, 05, . . 0) (72)
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Therefore, based on (70), we obtain
dy

Be g 73

Y F(t,y) (73)
with the boundary condition

y(to) = y(to + T). (74)

In order to give more light to the above formal consideration we investigate the case bfim =2
Having two incommensurable frequencies w; and wy with the corresponding periods T; = % gt =

1,2) we get

t 211
x(wltk, wztk) =T (QHIC, (9] (tk = INT(T—k> T2>> = $<0, T‘“ MOD(tk,T2)> =
2

2

; 7)) ==(020g;) ==(0 5 2m)
= QIl—= — 2IIINT(— ] | ==z(0, 2« ) = z{ 0, k—2II ) = z(0, 7, z € R". (75
s (0, 21zt (%)) = (0, 2mzr ) = = 0, 22 (©,m). (75)
We can use a continued fraction expansion in approximation of irrational numbers (winding number
w= gf) by rational numbers

f!
_:[w17w27"'7wl], (76)

i
where w; are integers. With enough accuracy of { we get (0, 0) = z(2Ils;, 2IIr)) = zo for k = 5;. In
order to use numerical spline interpolation we rescale the map to get period 7' = 1, and the spline
approximation is applied to the points 7 very close to 1. Knowing w; and w, we can very easy
find r, and s, and the fixed point zo of the above described Poincaré map. This is very adequate
when starting with nonautonomous system. In order to get a fixed point of the map (75) a spline
interpolation is recommended and a shooting method can be used to fulfil the boundary conditions.

Finally, we propose here a route from a one-dimensional curve z(7;) = z(z) to the two-dimen-

sional torus S according to the formula
S = (MOD(3, s;) + 1,MOD(4,7;) + 1) = z;, i=adid e (77)

Above, s, corresponds to ¢; and r; corresponds to ¢, . On the boundaries of 5 we have periodic
solutions.

3.2. Example

As an example we consider a two-dimensional torus with w; = V2 and wy = 1 and a solution is
governed by the equation

2(¢y, ¢y) = cost + cos V2t (78)

This solution can be found in one degree-of-freedom quasi-periodically excited mechanical systems
with the periods T; = %}L‘I— (: = 1,2) and with positive damping. One of such dynamical systems
has been considered by Kaas-Petersen [26]. In order to check a validity of the introduced theory
we omit here an unsteady process leading to the steady state (78) and we introduce the following
denotations:

%=1+, if Oﬁtk<%,
7 . (79)
Th=d if -Q-Stk<1,
where:
g = (t—’“> MOD 1 = (k£> MOD 1 = (k‘ﬁ> MOD 1. (80)
Ty T, w1
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In order to apply the spline interpolation we use the following points: 74 = 0.8284268, 77 =
0.94974, 10 = 1.0710675, 713 = 1.1923877. The fixed point of the generalized Poincaré map is
found to be (zo = 1.99, & = —0.0004), which is a very good result in comparison to the exact
solution of (zo = 2.0, &9 = 0.0). The stroboscopic function can be obtained in this simple case
analytically and it is governed by

z(tx) = 1+ cos(21I1ty) &(tr) = — sin(211#;) . (81)

The computational results are shown in Fig. 1 and they are in a very good agreement with
the results presented in the paper [26]. All numerical computations were conducted using the
FORTRAN routines from the IMSL-library.

5
{1 0¥ £y oot £33 Tale o IS TT EACERLT e, 2T oL SaS i LEAEe A F e W Aesies iR s nrEaa T e st E T
* i % ;
* *
0 e e e s s i R
*
i *
X o a -
*
{0IB)E - s e -3 et i LR R R SN SR L. I PR
*
- *
B e e D e RS R SR e Beoonsdelinsg1gus aimaes o]
(15) | | 1 1 |
(0.5) 0 0.5 1 1.5 2 25

X

Fig. 1. Points of the generalized Poincaré map found with the use of the shooting method

4. CONCLUDING REMARKS

The paper addresses two theoretical approaches concerning the way of finding quasi-periodic solu-
tions in the deterministic discrete dynamical systems, i.e. the analytical and numerical techniques.
Both of the methods are supported with the computer assisted studies. In the first case sym-
bolic computational analysis (Mathematica package) is conducted, whereas in the second case the
FORTRAN program has been developed on the basis of the IMSL-library routines.

The analytical approach is based on the double perturbation method, when one of the perturba-
tion parameters (¢) is strictly connected with the system, and the other (7) is treated as a control,
or, in the sense of singularity theory, as the bifurcation parameter. It should be pointed out that
instead of delay some other parameters can be used as control parameters — particularly those
whose small changes cause large changes in the phase flow. The unknown quasi-periodic solutions
zs and the corresponding set of frequencies A is sought in the form of double asymptotically con-
vergent series of the powers of the parameters € and 7. Such an approach possesses some benefits
in comparison with the others described in Introduction. They will be now briefly summarized:
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1. The method is applied to the set of second-order differential equations. Such equations are
derived from the Newton laws or Lagrange equations and they govern the dynamics of almost
all physical systems with inertia. There is, however, one limitation. Usually, linear parts of (9)
are coupled because of damping. Only for the cases with small enough damping coefficients it
is possible to find the transformations leading to (9).

2. This approach can be treated as an extension of the classical single perturbation parameter
method applied to periodic orbits and widely discussed in the literature [20, 35]. For the control
parameter 7 = 0 it is reduced to a method applied to the construction of a quasi-periodic
solution [17,22].

3. Both resonance and non-resonance cases are successfully analyzed. The explicitly given for-
mulas for frequencies A, and quasi-periodic solutions z, = Q°(¢1,...,¢n,€,7) allow control of
quasi-periodicity.

4. The possible catastrophes are classified and discussed. They are referred to as: (a) the frequencies
catastrophes, frequencies n-hysteresis variety and the frequency n-isola centers, and (b) the
variables catastrophes, the variables n-hysteresis variety and the variables n-isola centers. In
many applications due to the introduced control parameter 7 it is possible to avoid them.

5. The domain of existence of the quasi-periodic solution in the two parameters set is established
(see (64)).

6. The accuracy of the calculations is obtained to the order of ¥ 7! (k + 1 = 4).

7. In our approach, two independent perturbation parameters are treated not only as formal pa-
rameters used in order to establish a linear set of recurrent equations but also as parameters
with physical meaning.

The numerical approach is based on the introduction of the general Poincaré map which reduces
the problem of finding quasi-periodic solutions to the problem of finding the fixed point of the
Poincaré map. This has a fundamental meaning because the investigation of the stability and
bifurcation of the quasi-periodic solution can be reduced to the fixed point stability and bifurcation.
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