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An original idea of the Stochastic Finite Element Method (SFEM) application in numerical modelling
of random fluctuations of elastic properties of fibre composites components has been presented in this
paper. The displacement and the stress random fields have been analysed for various contents of a fibre
periodicity cell of such a composite, and for different coefficients of variation of the Young modulus of
both phases.

1. INTRODUCTION

An elastic continuum, being for many years the centrefold of the classical theory of elasticity,
has usually been treated as homogeneous. From the mathematical point of view this homogeneity
is expressed by constant components of the constitutive tensor. Noticing molecular structure of
matter, natural macroscopic heterogeneity (porous media), or randomness of material structure
(defects and cracks), homogeneity assumption seems to be too idealistic. This occurs mainly in
composite materials [12, 20, 25].

An idea of elastic properties randomization appeared in the beginning of the sixties [4,6]. In
the case of composite materials it has been often associated with searching of stochastic effective
characteristics [1,16,27] or their deterministic [14,24] and stochastic [2] upper and lower bounds.
The applied methods were in that time purely mathematical because of the lack of adequate
numerical methods.

Upon development of the Finite Element Method (FEM) the numerical simulation of determin-
istic behaviour of different kinds of composite structures has become possible. The comprehensive
literature on this subject can be found in the reviewing position [10].

The following probabilistic methods have appeared simultaneously with the deterministic one:
Monte-Carlo simulation [5,30], Fisher theory of experiments [8], stratified sampling and Latin
hypercube sampling [23]. Apart from the numerical methods connected with FEM, several other
have appeared such as for example hierarchical equations of probabilistic moments derived by Dyson
and Bethe-Salpeter [29], as well as methods connected with the existence of limit density (in the
stochastic sense) of homogenized material [1]. The example of using the Monte-Carlo method for
searching effective properties of a fibre composite together with proper numerical procedure has
been presented in [16].

All the computer algorithms quoted above have, however, one fundamental defect of not re-
garding the influence of random elastic behaviour of a certain point belonging to one material on
behaviour of another point of the same material. Expressed in a mathematical way, it means that
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elastic characteristics in different regions of the same material are uncorrelated random variables.
This assumption, from the physical point of view, seems to be oversimplified.

Such a dependence is allowed for example by SFEM (15,21, 23] developed from the late eighties.
Its application in the mechanics of composites will continuously increase because of the possibility
of modelling such phenomena as random fluctuations of periodicity conditions, random character
of fibre-matrix boundary geometry or heterogeneity occurring on this boundary [18]. Due to the
possibility of considering the correlation function of a random variable this method has already
found its use in modelling of spatial structures undergoing degradation processes [17].

In the present paper, the qualitative and quantitative influence of randomness of composite
component material elastic properties (with various fractions of such materials) on probabilistic
displacement and stress fields is determined. In the numerical analysis (plane strain problem) a
fibre composite under uniform tension in the plane orthogonal to the fibre direction is investigated.
As it has been shown by computational tests presented in [26], these composites have the highest
sensitivity to changes of elastic properties in this plane.

2. MATHEMATICAL MODEL

Let us suppose that Y C Q2 is a periodic random two-phase linear-elastic composite structure [16],
where § is a periodicity cell of Y, Q0 is a fibre region and Q, is a matrix region (Fig. 1).
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Fig. 1. Periodic composite structure Y

Next, we assume that 2 is a bounded coherent region uniplanar with the z3 = 0 plane and
having two perpendicular symmetry axes. Let €; and €, be disjoint coherent regions such that
2 = Q; UQ;y and let them contain linear-elastic isotropic homogenous media.

Let the Young modulus e = e(x) be a Gaussian random variable e(x) = e(x;w), where x € Q;
w € S and

(1)

E(e(x)) = [ N e }

E(CQ); X & Qg
with the covariance matrix

Var(e;) 0 }

0 Var(ez) )

Cov{e;, e;) = [

where Cov(ey,ez) = 0. This means uncorrelation of functions of random variables of elastic prop-
erties in ©; and €, regions, which seems justified from the physical point of view.
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The Poisson modulus is assumed to be a deterministic function so that:

rv; x€y
vy, XEQz :

v(x) = [ 3)

Thus, let us define the random elasticity tensor field Cjjki(x;w) as follows:

v(x)
(1 +v(x))(1 - 2v(x))

Cijn(x;w) = e(x;w) [6ij5kl + (6ik6j1 + 6ubjk)

D
201+ v(x)))”

where 7,7, k,l=1,2.

Problem formulation

Find displacement u;(x;w) and stress o;;(x;w) random fields fulfilling the following boundary-
-differentiable equation system:

oij(xw) = Cijru(x;w) en(x;w), (5)
> 1 [ Oui(x;w) | Ouj(xyw)

gij{xiw) = 5( B % S , (6)
oiji+pfi =0, (7)
ui(x5w) = di(x5w); x € 004, (8)
oij(xjw) = Gij(%5w); x € 00, (9)

where p and pf; are the material density and the body force per unit volume, respectively.

Denoting the random variable of our problem (Young modulus in this case) as a vector {b"(x;w)},
its probability density as g(b") and g(b", b*) respectively, where r,s = 1,2, ..., R, we can define the
expected values of our variable as follows [31]:

E[p] = /_ T b g (b7 db” (10)

o0

and covariances
+00  pto0
Cov(d",b°) = / / (b" — E[b"]) (b° — E[b°]) g(b",b%) db"db* . (11)
Generally, the variational formulation equivalent to the specified above system of equations

(5)-(9), obtained from the Hamiltonian theorem, leads to the following algebraic systems of equa-
tions [15,21, 23]

KOqO g QO, (12)
Ky =@ —~K'q°, (13)
K% = % [Q»” SPWTGo s K’”qo] Cov(b",b%), (14)
where
1
q(2) i 5q,rs Cov(b",b*) (15)

and 1 < r,s < E (£ — finite element number). The zero-th order functions from the FEM equations
were denoted by (-)° and (-)", (-)* denote the first and the second partial derivatives with respect
to the random variables. K, q, Q denote global stiffness matrix, displacement and external load
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vectors, respectively. The stiffness matrix and its derivatives in two-dimensional elasticity problems
are defined as follows:

E

K% =Y /Q %1 BijoBup AN, (16)
e=1 s
E

Kgﬁ = Z/Q CégleijaBklﬁ ds; (17)
=1 S
E

]\"(’;ﬁs - Z/ﬂ Cg;leijaBkzﬂ dQ . (18)
e=1 £

Thus, in the algebraic equation systems (12)-(14) there are

e the first partial derivatives of the elasticity tensor

- v(x) 1
Cionl ) = bt )1 — 2y T Ok T S0k ) 5
e the second partial derivatives of the elasticity tensor
ot 5 (Cih=0eKi=0), (20)
e the first and the second partial derivatives of the external load vector
SRR UL (21)
Finally we have to solve the following algebraic equation systems
KOqO = Q07 (22)
K%' = -K'd’, (23)
K%® = —K"q” Cov(b,b). (24)

In the above equations we compute successively q° from (22), @ — from (23) and q"* — from
(24) to finally determine the expected values of displacements

1 TS » S
Elg5] = qf + 545° Cov(t',b%) = ¢f + g (25)
and their covariances
Cov(qa,q5) = quqs Cov(b",b°). (26)

The expected values of the stress tensor in the finite element e are given by

E[e{?)

iy

CHIBEE o + 5 205008 o + CoDaly) B, Cov(s, ). (27)
The assumed mathematical model allows global consideration of material heterogeneity by means
of one variance value. In order to include local changes of individual material elastic properties, the
covariance matrix should be specified as a local function. The existence of discontinuities or other
weaknesses would be equivalent to maximum components of this matrix, and homogenous regions
would correspond to minimum components.
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3. NUMERICAL ANALYSIS AND RESULTS

The purpose of the numerical analysis was investigation of elastic behaviour of a fibre composite
when the Young modulus of composite components is a random variable. Moreover, the numerical
simulations were carried out in order to find out, how various contents of fibre (with round sec-
tion) in a periodicity cell, and random material properties of reinforcement and matrix, influence
displacement and stress state in the cell.

A quarter of a fibre composite periodicity cell has been investigated in numerical analysis. Its dis-
cretization is shown in Fig. 2. This example has been already analysed, cf. [11, 16, 22] (computations
of effective properties in deterministic and probabilistic case).

The numerical implementation allowing the computations has been done using 4-node rectan-
gular plane element of POLSAP system [3, 15] written in FORTRAN 77 (Plane Strain/Stress and
Membrane Element). The composite structure was subjected to uniform tension (100 kN/m) on the
vertical cell boundary (60 finite elements with 176 degrees of freedom). On the remaining bound-
aries the vertical displacements were fixed and the analysis of the plain strain element with unit
thickness has been ordered. Twelve numerical tests have been performed assuming fibre contents
of 30, 40 and 50% and coefficients of variation specified in Table 1, have been calculated from the
formula:

Var[b(x;w)]

afb(x;w)] = ()]

(28)

Material properties of fibre and matrix were as follows: E(e;) = 84.0 GPa, v; = 0.22, E(e;) =
4.0 GPa, v, = 0.34.

Table 1. Coefficients of variation for different

numerical tests

test number aler) a(ez)
1 0.10 0.10
2 0.10 0.05
3 0.05 0.10
4 0.05 0.05

Fig. 2. Discretization of a periodicity cell quarter

In each case, the first two moments of displacement function were observed on the phase bound-
ary and on the vertical edge subjected to tension. Regarding expected values of stress fields, location
and maximum value of reduced stress have been examined.

Figures 3 and 4 show radial displacement coefficients of variation of points located on the
fibre-matrix boundary as a function of 3 angle.

The results of the test no. 1 (Table 1) are presented in Fig. 3, and Fig. 4 shows the results of the
test no. 3. Results of the remaining tests (no. 2 and 4) agree with them respectively. In both cases
coefficients of variation for # = 90° were omitted on the graphs because of their big values. For
fibre contents equal to 50% they are approximately 1.5 times bigger than for 6 = 0° (disproportion
of data would give illegible picture).
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Fig. 4. Coefficients of variation in the test no. 3

On the basis of these figures we may state that random state of displacement on the considered
boundary depends mainly on random character of fibre elastic properties,

alu(x)] = afe]; X€0M,. (29)

The fibre contents in a periodicity cell influences also displacement coefficients of variation on
08 2. This influence becomes evident in the range 0° < 6 < 45°.

For the contents of 40% the decrease is not so sharp, and for 50% plane fraction the tendency
is opposite: the coefficient increases up to about 1.5 times of the value obtained at = 0°. Phys-
ically, it may be interpreted as increasing of random measure of uncertainty about displacements
perpendicular to fibre boundary of the points belonging to its upper part with increase of this fibre
radius.

Figures 5-8 show displacement variation coefficients of horizontal points belonging to the verti-
cal, uniformly tensioned edge of a periodicity cell, obtained in the tests no. 1, 2, 3 and 4, respectively
(Table 1). On the horizontal axes of these figures, real numbers in the decreasing order denote height
on the vertical tensioned edge.

On the basis of the graphs shown in the above figures we may conclude that random character
of matrix elastic properties mainly influences random displacement state of tensioned edge of the
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Fig. 9. Expected values of maximum stresses

tested quarter. Analogously to the previous observations we may write that
afu(x)] = ale]; x € 095 . (30)

Random character of fibre stiffness has secondary influence here. With the increase of variation
coefficients of the fibre Young modulus the curves describing displacement variation coefficients on
the edge are becoming less and less steep. Increase of fibre contents in a periodicity cell, as expected,
in all cases decreases variation coefficients of tensioned edge displacements, which physically can
be interpreted as increasing stiffness of the periodicity cell by the fibre.

Now let us analyse the expected values of maximum stresses (in MPa) in fibre and matrix
specified in Fig. 9. Darker bars denote the maximum stresses in the matrix region, while the lighter
ones denote the fibre region.

Generally, we may state that the difference between the obtained expected values and the results
of deterministic tests is approximately equal to the computational error. This difference would
undoubtedly be much bigger if the formula (27) describing these values contained a component
connected with elasticity tensor derivatives. The present version of the program includes only the
first two components, which correspond with the expected values of displacement functions.
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The obtained results allow us to state that the most important factor influencing the value of
maximum stresses is unquestionably fibre radius, cf. Fig. 9. In the case of matrix area, maximum
stresses increase approximately in direct proportions to fibre radius increment

Elomax(x)] = R; x €0;. (31)

To get an analogical relation for maximum stress occurring in the fibre it is necessary to perform
a more precise numerical analysis. In the tested examples with plane fractions of 30, 40 and 50%,
an extreme appeared at 40% contents of fibre in a periodicity cell.

Another factor, which influences the expected values of maximum stresses within given material,
is its variation coefficient of the Young modulus. We may now formulate a relation

E[omax(x)] = ale;]; x € ;. (32)

Finally, it can be observed that there is a third-rate influence of stronger material random
changes of elastic features on maximum stresses within the matrix, especially with decreasing fibre
contents in a periodicity cell.

In the context of present numerical analysis of maximum stresses it should be added that, apart
from changes in expected values of these stresses, a change of their locations was observed. In order
to determine the relation between location of stress functions extreme and fibre radius increment
it would be necessary to consider a wider range of the radius variation (equivalent to, for example,
surface fraction of 10-60%) with simultaneous increasing of the number of tests (every 1-5% for
example). The most essential thing would be, however, creating a much more precise mesh than
the one used in the above tests, especially near the composite phase boundary, where maximum
stresses appear.

4. CONCLUSIONS

1. The results obtained from numerical analysis prove that the random character of reinforcement
material in a fibre composite directly influences the random state of radial displacements of
the boundary of composite phases and expected value of maximum stresses within the fibre
(directly proportional dependence). The coefficient of variation of the matrix Young modulus is,
however, directly proportional to the analogical coefficient of horizontal displacement on vertical
edge subjected to uniform tension.

2. It appeared that a very important factor in the presented tests is fibre radius parameter, which
influences both changes of expected values of maximum stresses within fibre and matrix, and
the analysed displacement field. In the case of displacement fields this influence is locally more
important than the influence of the random Young modulus, but in the case of expected values
of maximum stresses it is definitely the most important factor.

3. In the context of the above mentioned conclusion it seems essential to extend the analysis of
the periodicity cell behaviour, performed for uniform tension, to the analysis of shape sensitiv-
ity [7,13]. Such analysis would bring interesting results if the design variable were assumed to
be the fibre-matrix boundary shape.

4. In comparison with Monte-Carlo simulation [5, 16], there is no need to do pre-processing random
number generation [28] and post-processing calculations of individual displacement and stress
random distribution parameters. It should be as well underlined that the time of computations
using SFEM is approximately equal to one sample time in the Monte-Carlo method (number
of samples is usually between 1000 and 10000). Additionally, there is a possibility of including
correlation of random variables in the computations. Considering all the advantages specified
above, SFEM method is the least time consuming one.

5. It would be interesting to make a simulation of elastic behaviour heterogeneity within one
material (cracks or inclusions). Such simulation is possible when using for this purpose the
presented numerical method and defining properly the covariance matrix [15]. Using for this
purpose the deterministic FEM formulation seems to be more complicated.
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6. From a numerical point of view it would be interesting to extend the presented stochastic model
to the stochastic sensitivity problem, where the Young modulus would be treated as a design
variable [15,21]. It would enable, for example, to analyse fluctuations of periodicity conditions
on the boundaries of an analysed cell.
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