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Today the solution of mechanical problems in engineering practice is often routinely carried out by means
of finite element packages. These packages are powerful and efficient and are able to solve many complicated
problems of technical practice on a routine basis. The packages are more and more automated. In some
cases, the user is even “deprived” of solving meshing problems — the so called meshless finite element
approach is being advocated. In other cases the packages take care of the correct determination of time
step in transient problems. These packages offer a lot of options to choose from; the options themselves
are described in particular manuals to a variable extent of details. As the Murphy law states, however, the
manuals are as a rule read only if nothing else helps. It is thus worthwhile to recall some of the essentials
from the finite element theory, show pitfalls which should be avoided and to present modern programming
tools which help a lot in the derivation of necessary relations and in subsequent understanding of the
matter. The behaviour of a rectangular membrane element and that of some finite element packages when
solving simple problems will be shown in this paper with the intention to answer the question whether a
modern engineer is supposed to know the theoretical details of the finite element theory and the essentials
of programming.

1. INTRODUCTION

In this paper, the properties of a simple finite membrane element with eight degrees of freedom
are discussed, its mass and stiffness matrices are derived analytically with the use of the Reduce
language. Then, Fortran procedures for calculating the same mass and stiffness matrices numerically
by means of Gauss quadrature will be presented. Also, the static and dynamic behaviour of a
simple problem, namely the bending and eigenfrequencies and eigenmodes of a cantilever beam,
will be analysed with a powerful Matlab matrix processor. The dispersive behaviour of this type of
element will be mentioned as well. Finally, the results will be compared with those obtained with
sophisticated finite element tools like Ansys, Cosmos, Dyna, Systus and PMD.

The widespread distribution of personal computers and their universal computing capability
allows many powerful programming tools, like algebra manipulating languages (Reduce, Maple,
Mathematica, Derive, etc.), matrix processors (Matlab, Mathematica, Gauss, etc.) as well as classi-
cal compilers (Fortran, Pascal, C and others) to be used in a unified way for a wide class of solutions
of theoretical and practical problems. This is substantially enhanced by the Windows operating
system which secures easy portability of results in various forms between particular applications.

2. DERIVATION OF STIFFNESS AND MASS MATRICES WITH THE USE OF GENERALIZED
COORDINATES

The employment of the displacement formulation of the finite element method leads to the approx-
imation of displacements by a polynomial function in the form

n=Uc, (1)

where u is a column vector containing the components of displacements approximations. Lagrangian
interpolation formulas are used in so called Lagrangian elements. U is a matrix of approximation
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functions in the form of polynomials of spatial coordinates and c is a column vector of so far un-
known constants, sometimes called generalized coordinates. The generalized coordinates are con-
structed on the condition that the assumed approximation of displacements, given in Eq. (1), must
be valid in nodes as well. The substitution of the nodal coordinates for all the element nodes into
Eq. (1) yields

g=8¢, (2)

where q is a column vector of nodal displacements and S is a matrix of nodal coordinates which
is regular for non-vanishing elements and can easily be inverted, thus allowing the generalized
coordinates to be expressed in the form

c=S"q. (3)

After substituting the last equation into Eq. (1) we receive the approximation of displacements

u=Aq, (4)
where
A =487 (5)

is a matrix of shape functions.
Approximation of strains follows from the assumption (1) and from Cauchy kinematic relations
e = f(u). It can be expressed in the form

£—Fec, (6)

By substituting (3) into (6) we finally obtain

e=Bqg, (7
where
B FS™! (8)

is an operator relating approximation of strains to generalized nodal displacements.
In linear cases the stiffness and mass matrices can be derived in the form
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where p is the material density, E is a matrix of elastic moduli appearing in the generalized Hooke
law and the integration is carried out with respect to the volume of the undeformed element. More
details can be found in standard finite element textbooks, as in [1, 2, 8, 25], etc.

3. ANALYTICAL DERIVATION OF STIFFNESS AND MASS MATRICES FOR A RECTANGU-
LAR MEMBRANE ELEMENT FOR 2D PLANE STRESS PROBLEMS

The dimensions of the considered element, numbering of nodes and its degrees of freedom are
depicted in Fig. 1. The thickness of the element is h. The approximation of displacements generally
requires a polynomial which has the same number of free constants (generalized coordinates) as
the number of degrees of freedom (displacements) in each direction. In the considered case an
incomplete polynomial of the second order in the form of a bilinear function (securing thus spatial
isotropy requirements) would be sufficient.
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The approximation of displacements has the form of Eq. (1), where
Wit {aisty} = Ye (11)
and
U= [ z’; ;2 J (12)
with
T = {1 z y ay}, 0" ={0000} and e = {ej ... e} (13)

By substituting the nodal coordinates into (12) we obtain

1.:0.0 .8
S o & 1 a 0 0
:S: = . S: 9 14
g C[OS]C Yz boah 4
1= it

where 0 is a zero matrix four by four and q7 = {g; ... gg} is a column vector of nodal displacements
ordered in agreement with the numbering shown in Fig. 1.

The further process can be carried out by means of algebra manipulating languages. An excerpt
from the Reduce program, from which all data management statements were omitted for brevity, is
as follows. Since it is richly commented the author believes that it will be readable and acceptable
even to nonprogramming readers.

% A part of program written in REDUCE language

% which serves to the derivation of mass and stiffness matrices
% for a rectangular membrane elements with 8 dof

% for 2D plane stress problens.

%

% Input parameters Output parameters

L)

h

P ab. oo element dimensions W e mass and stiffness matrices
A element thickness

2 TR R density

. Poisson ratio

T ewm .. .5 Young modulus

%
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% Matrix declarations are omitted for brevity

%

% Approximation function fi is See eq.(13)
£fi(1,1):=1; £i(2,1):=x; £i(3,1):=y; £i(4,1):=x*y;

%

% form U matrix See eq.(12)
for j:=1:4 do u(1,j):=£fi(j,1);

for j:=5:8 do u(2,j):=£fi(j-4,1);

%

% Craate SmMabIIn o v fuvn s v v s vbsi nm e g et e Yyt S according to eq.(14)
%'and calculate its inverse

sinv:=s**(-1);

A

% form matrix of shape functions A See eq. (5)
aa:=u*sinv$

%

% derive the mass matrix m See eq. (10)
% form integrand ata:=tp(aa)*aa
ata:=tp(aa)*aa; % tp is a transposition operator

h
% integrate with respect to x and y within the area a*b, h being constant
for i:=1:8 do
for j:=1:8 do
begin;

mi:=int (ata(i,j),y); % integrate with respect to x
m2:=sub(y=b,m1)-sub(y=0,m1); % substitute integral limits
m3:=int (m2,x); % integrate with respect to y
m(i,j):=sub(x=a,m3)-sub(x=0,m3); % substitute limits
end;
m:=ro*h*m; % this is mass matrix

% and now derive the stiffness matrix k
% derivatives of approximation function with respect to x and y
for i:=1:4 do

begin;
dfix(i,1):=df(£fi(i,1),x); % df is a derivative operator
dfiy(i,1):=df(£i(i,1),y);

end;

A

% matrix of elastic moduli for plane stress.
P

% See standard texts on mechanics
ee(1,1):=1; ee(1,2):=mi; ee(1,3):=0;

ee(2,1):=mi; ee(2,2):=1; ee(2,3):=0;

ee(3,1):=0; ee(2,3):=0; ee(3,3):=(1-mi) /2;

const:=em/(1-mi*mi) ;
% ee:=const*ee; this multiplication will be carried out later

% The F matrix reflects Cauchy strain - displacement relations and
y P
% the assumed displacement approximation and in this case has the form

A { e_xx } [100y0000]

% o) =4 { e yy P UE 0¥ 0400701 0> 1 x W i} 25 iTF) e} See Eq. (6)
% { exy} 6.0:0 Hux 2t 0:0:y:3

%

% the first row of F matrix See eq. (6)

for j:=1:4 do £(1,j):=dfix(j,1);

% the second row of F matrix

for j:=5:8 do £(2,j):=dfiy(j-4,1);

% the third row of F matrix

for j:=1:4 do £(3,j):=dfiy(j,1);

for j:=5:8 do £(3,j):=dfix(j-4,1);

% BB matrix. See eq. (8)
bb:=f*sinv;

% integrand of stiffness matrix

beb:=tp(bb) *ee*bb$

%
% integrate with respect to x and y within the area a*b, h being constant

for i:=1:8 do % See eq. (9)
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for j:=1:8 do
begin;
mi:=int (beb(i,j),y);
m2:=sub(y=b,m1)-sub(y=0,m1);
m3:=int (m2,x) ;
k(i,j):=sub(x=a,m3)-sub(x=0,m3) ;
end;
k:=const*h*k;
end;

The output from the Reduce program is in the form of easily readable formulas. The elements
(1,1) from both matrices are shown as examples:

2 2 >
em*h*(a *mi - a - 2%b )
k(1,1) := e
2
6*axb*(mi - 1)
a*bxh*ro
LR DR R
9

This output, excellent for analytical considerations, is not, however, suitable for further computer
processing. The Reduce language can transform this into a form which conforms to the Fortran
standard. Then the above mentioned matrix elements are written starting from the seventh column
with a continuation character appearing in the sixth column

k(1,1)=(em*h* (a**2*mi-a**2-2.*b*%2)) /(6 .*axb*(mi**
2-1.))

m(1,1)=(a*b¥h*ro)/9.

4. NUMERICAL CALCULATION OF STIFFNESS AND MASS MATRICES FOR AN ISOPARA-
METRIC QUADRILATERAL MEMBRANE ELEMENT FOR 2D PLANE STRESS PROBLEMS
WITH THE USE OF GAUSS QUADRATURE

The dimensions of the considered element, numbering of nodes and its degrees of freedom are
depicted in Fig. 2. The thickness of the element is . In this case the procedure is more general,
which allows a quadrilateral shape of the element to be considered instead of the rectangular
one as it is in the analytical approach. The isoparametric approach requires (see [1]) that the
approximation of coordinates and displacements is secured by identical interpolating functions,
that is

S e
u(r, s)

B {v(r,s)}:Aq' (16)

The procedure we have followed when deriving element matrices by means of generalized coor-
dinates is repeated here in the so called referemce frame (r,s). Thus, we have

A=US, (17)

where

T QT
U:[((I;T ((I),T] (18)
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L 2

and
T—{1rsrs}. (19)

The vector q, a column vector of nodal displacements, has the components ¢, ...gs which are
ordered in agreement with the numbering shown in Fig. 2, while p, the vector of nodal coordinates,
is

=48 .. 24 . W),

One of the advantages of the isoparametric approach is that the matrix S, which is obtained in
an identical manner as before, is always the same for this type of element, that is

s M Sl
S o = 1 1 —FBsuad

S = N with S = ; (20)
0 S M R |
] Lgaiisqiuyg

The inversion of this matrix is easy and can be done once for all by inverting the submatrices,

1 Jorsik 1

R o e
§== (21)

41 -1 -1 1 1

1 -1 1 -1

Evaluating the matrix A according to Eq. (17) and taking into account Egs. (19)—(21) we get

i “ay - diai- 0= 0 <00

ot 8o SN et SRS R (22)
where
a; = ay(r,s) = 0.25(1 = r)(1 — s),

1+ r)(1-5s), (23)

jice

as = ay(r,s) = 0.25( )
)=0.25(1+ r)(1+ s),
) = 0.25(1 — r)(1 + s).
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So we finally have the shape functions depending on variables r and s. For obtaining the B
matrix, which relates the strains and displacements according to Eq. (7), partial derivatives of
shape functions with respect to z and y are required. These can be found by employing the chain
rule and the inverse of Jacobian matrix. Then the matrix B has the form

9ay da
ox : _3_22i 5 0 -
B = 0 Fayx : —élyi (24)
day Qag dag day
gyt 0y ar & oz
with
day Oayg daq dag
dz: ‘" dzx T g ar figr
e beo =9 9L Ba . da, [ (25)
‘@L Tl 9s *i9s
where
da; da;
diris= ?a’m - ??yi (26)
] = . . :
e TR T

The index 7 is understood to take all the values in the range 1...4 and (z;,y;) are the nodal
coordinates of the considered element depicted in Fig. 2. Then the J matrix and its inverse, needed
in Eq. (25), can easily be evaluated numerically for a generic point (r, s) in the reference plane.

Now, all the preparation steps for the evaluation of definition integrals, required for the calcu-
lation of stiffness and mass matrices have been done. The numerical calculation is as a rule carried
out by the Gaussian quadrature. The integrals (9) and (10) are then approximated by

n

+1 41 n
/ BTEB AV = / / hBT(r,s)EB(r,s)detJ(r,s)drds = Z E oo Ig (7, 8m) ,
% ~1 J=1

I=1 m=1

K

(27)
+1 +1 n n
M = / pATA AV = p/ hAT (r,s) A(r,s)detI(r,s)drds = Z Z arom Ing(re, Sm)
4 o Slckey | I=Lma1

(28)

where n is the order of Gauss quadrature. The integrands are evaluated at so called Gauss points
(71, 8m) and then multiplied by corresponding weights (aj, @,,) and summed up. The remaining
symbols, denoting the discretized integrands, are

Iy = hBT(r),8,) EB(ry, 5) det I(ry, 8n) (29)
Iy = ph AT(r),5m) A7), 8) det J(r), 5, ) . (30)

A Fortran implementation of this procedure is listed in the Appendix.

It is known that the Gaussian quadrature of the n-th order is able to evaluate “exactly” the
polynomial of the order 2n — 1, see [1]. The integrand of the mass matrix of the considered quadri-
lateral element, which is formed by a dyadic product of shape functions a; according to (23), can
be of the fourth order at the maximum, while that of the stiffness matrix, where the derivatives
of shape functions appear, is of the second order only. Theoretically, the Gaussian quadrature of
the third order would be sufficient for the numerical integration of the mass matrix, while for the
stiffness matrix the second order would do. Practical computations show, however, that the second
order quadrature with 16 significant digits gives values of both mass and stiffness matrices which
differ from those calculated from analytically derived formulae by several least significant digits
only.

Deriving the element matrices, we started from the requirement that the number of generalized
coordinates (i.e. the number of free constants in the interpolation polynomial) must be the same as
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Fig. 3

the number of interpolated degrees of freedom. Since both directions are considered independently,
the spatial isotropy must be secured by a suitable choice of polynomial terms in case an incomplete
polynomial is used, so that no spatial directions are artificially preferred.

It is proved that the monotone convergence in finite element modelling requires that elements
must be compatible and complete, see [16, 22].

The condition of compatibility requires that the approximation of displacements inside the ele-
ment and at its boundaries, where the element is in touch with its neighbours, should be prescribed
by a continuous function of space coordinates. The choice of polynomial functions satisfies this
automatically inside the element.

For a four-node square element a possible displacement distribution is shown in Fig. 3. The
distribution was calculated with the use of Eq. (4) with arbitrarily assumed nodal displacements
a9 ={12158 13 414}).

The approximation of displacements, prescribed by the first relation of Eq. (13), gives the dis-
tribution of displacements which is described by a surface belonging to the family of so called “line
surfaces” which are formed by two sets of straight lines (r=const and s=const). That is why the
element with this shape function is sometimes called a bilinear element. From this follows that the
displacement approximations above the element boundaries are formed by straight lines as well.
Assembling local element matrices into global ones is based on the assumption that the nodal dis-
placements are common to all the neighbouring elements. So along each segment of the boundary
line of an element we have only two nodal points, there are two values of displacements defined at
these nodes and consequently the line connecting the displacement values is unique and belongs to
surfaces from the neighbouring elements. The neigbouring surfaces thus have the same displace-
ments at the common boundary of neighbouring elements, which proves that the displacements
approximation function is a continuous function of spatial coordinates.

The approximation of strains is not continuous at boundaries, since it depends on spatial deriva-
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tives of displacement functions which are different, however, depending on the side of which element
the partial derivative at a boundary point is calculated (because different surfaces could be gener-
ally expected on both sides of the boundary). From this follows that for this type of element the
strain approximation is not a continuous function of spatial coordinates, which means that stresses,
which are a linear function of strains in the linear cases, vary stepwise at boundaries, thus violating
the local conditions of equilibrium.

The condition of completeness requires that the shape function should be capable of securing
the rigid body motion of an element and the constant strain state.

Whether an element is able to represent the rigid body motion can be checked by verifying the
condition that the prescribed rigid body motion does not evoke any external forces. The rigid body
motion in z-direction can be realized by prescribing the nodal displacements ¢; = 1, ¢ = 1...4
(see Fig. 1). In statics, the response of an element is governed by the equation Kq = F. For the
prescribed rigid body motion the quantity F — the vector of external forces — must be identically
equal to zero. Substitution of both conditions into the previous matrix equation yields the check
relation Z‘;:l kij = 0 for + = 1...4 to be satisfied for elements of stiffness matrix. A similar
condition could be written for y-direction displacements. Putting this together means that the
stiffness matrix of the considered element should have the sum of all elements in all rows equal to
zero. Due to round-off errors this condition is not satisfied exactly. The relative error is, however,
of the order of so called machep or machine epsilon, defined as a small floating point number
which, added to one, creates a result that cannot be distinguished from it, see [10]. For a particular
computer installation and the programming language used it could be easily calculated by means
of a simple while loop. The following fragment of a Pascal program should clarify the idea.

program machep;
var eps s real;
i,j,k : integer;
begin
eps:=1; i:=0;
while 1+eps > 1 do begin eps:=eps/2; i:=i+l; writeln(i,’ ’,eps); end;
writeln(’Number of bits for mantissa representation of fl. point number’);
writeln(’and machine epsilon for your computer’);
end.

An analogous but slightly more complicated condition for rigid body rotation can also be derived,
however, it will not be presented here.

The element must also be able to model correctly the constant strain state. In the case of a
rectangular element, the constant strain €;, can be evoked by prescribing the displacements of
right-hand side nodes to a chosen value g, (so that g; = g3 = ¢,) while the others are equal to zero.
For the nodal forces we can write F} = —F,, Fy = —F3 and Fs = —Fg, Fg = —F; . In this case, the

strain €, is a—"'q(fi% = ‘—If—, while ¢, and 7;, are equal to zero. The Hooke law has then the form

o = Eff;‘j;, Oyy = WOzg . The stress o, could also be expressed as 0, = E%:—;L—& = 2Tth Under

——bh—zp—z—— which could easily be checked for the given element
2a(1-p?)

dimensions and the prescribed value of g, . Similar reasoning gives conditions to be checked for
other strain quantities.

these conditions the force Fy = E

5. PROPERTIES OF A QUADRILATERAL BILINEAR (MEMBRANE) ELEMENT

Poor properties of this element when used for modelling simple bending in statics have frequently
been reported, see [3, 9, 13, 14, 15, 20, 24] etc. Modelling of a simple cantilever beam (loaded
by a single force acting at the free end) by kmaz elements, as depicted in Fig. 4, can illustrate
this behaviour. The calculation of the maximum displacement under the loading force, equally
divided between upper and lower tip nodes, with the plane stress conditions taken into account,
gives results which are shown in Fig. 5 for a varying number of elements. The results are the
same regardless whether the analytically derived stiffness matrices or those calculated by means
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Test values: L=1,b=01, h=0.01, E=2.1e11, mu=0.3, ro=7300, P=1000 (5I)

P
¥
7
vl 3 kmax o7 .
7
L h
b s
Fig. 4
0.25 u] H = 0.3
| |
@ u =06
€ 0.20
o "EXACT' |-
g & Cosmos - full
: LE
g e
R 957 0.15 - 7  Cosmos - red.
-cv o o & < E 3
<>
g m
e o beam elem.
X
©
< 0.10
s Dyna
E
0.05 — + PMD

0 20 40 60 80 100

Number of elements

Fig. 5. Membrane elements in bending

of the full (i.e. 2X2) numerical quadrature have been used. The line called “EXACT” corresponds
to the displacement calculated from the thin beam theory which is of course independent of the
number of elements. One can observe that with an increasing number of elements the convergence
to the “correct” value is extremely slow for both considered values of the Poisson ratio, i.e. u = 0.3
and 0.5. Empty squares and picas are used as markers. For comparison, the results obtained with
beam elements are added showing that simple beam elements, with only two degrees of freedom per
element and whose “actual” displacement distribution is a shape function, give “correct” results
to all significant digits with 3 elements per beam only. Also, the results obtained by professional
finite element packages are shown. The Cosmos package with a fully integrated element gives the
same underestimated value of the displacement as the one given in our approach, while the Cosmos
reduced integration gives the “correct” answer. Only 10 elements and the Poisson ratio equal to
0.3 were considered. The Ansys code has extra displacement shapes implemented to improve the
poor bending behaviour of the element and gives correct results as default. The Systus code gives
the “wrong” result corresponding to full integration with no option to relieve the situation.

Note: Reduced integration is a numerical approach which uses the Gaussian quadrature of the
lower order than required theoretically. Reduced integration (sometimes called underintegration)
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itself adds spurious rigid-body motion degrees of freedom to the element matriz. They are then
compensated with certain correction matrices. Many variations of this approach are known. See [4,
5 11,21l

Figure 5 also shows the results obtained with PMD and Dyna codes. While the Dyna result,
obtained through dynamic overrelaxation, considerably overestimates the expected value, the PMD
result is “correct”.

The solution of the generalized eigenproblem Kq = AMq with stiffness and mass matrices of
the considered element yields eight eigenvalues and corresponding eigenvectors, thus reflecting eight
degrees of freedom of the element. The eigenvalues correspond to squares of angular frequencies,
the eigenvectors to eigenmodes. The mass and stiffness matrices are singular, with nullity 3, which
means that their rank is 5. Since they are symmetric, their eigenvalues are real. It is known that the
number of zero eigenvalues is equal to the nullity value of the matrix. The three zero eigenvalues
obtained in this case correspond to three degrees of freedom which the element has in the element
plane (zy) as a rigid body, i.e. two displacements and one rotation. The numerically calculated
eigenfrequencies and the corresponding eigenmodes of a square membrane element for the plane
state of stress with consistent and diagonal mass matrices are illustrated in Fig. 6. See also [6].

Note: The consistent mass matriz is a result of integration according to Eq. (10) and physically
corresponds to the continuously distributed mass within the volume of an element. The diagonal
mass matrices are very popular in finite element practice, because they simplify many numerical
operations. Usually they are the result of summation of all the elements in a row, the sum being
placed on the diagonal position in the matriz. In certain cases, the diagonal mass matriz physically
corresponds to the idea of mass concentrated as particles at nodes. The properties of finite element
models could be substantially influenced by mass matriz formulations employed.

The first three numerically calculated eigenvalues are not exact zeros, their values are, however,
insignificant as compared to other non-zero values. The corresponding rigid-body modes are also
calculated with certain errors; they are clearly visible in Fig. 6.

It should be noticed that the maximum eigenfrequency of the consistent mass formulation is
greater than that corresponding to the diagonal one. This is a considerable advantage in linear
transient problems where it makes it possible to use implicit integration methods and march in
time using a time step considerably higher than that needed for explicit methods. The latter are,
however, easier to implement together with complicated nonlinear constitutive relations. In spite of
their conditional stability, requiring a time step smaller than the critical one, the diagonal matrix
formulation is nevertheless advantageous. For more details see [18].

It is worth noticing that the order of shear, volumetric and hourglass modes in the spectrum is
different for both mass formulations.

The solution of the steady state vibration of a cantilever beam with the use of 10 quadrilateral
elements with data shown in Fig. 6 yields 44 eigenvalues and eigenvectors. The frequencies in [Hz],
16, o %, Q = /), with corresponding eigenmodes from the beginning of the spectrum, are
shown in Figs. 7a and 7b for consistent and diagonal mass formulations, respectively. Each mode is
identified by the eigenmode counter, followed by comma and frequency value in [Hz]. Again plane
stress conditions are assumed. The beam modelled by the considered type of element can describe
both bending and longitudinal (axial) modes of vibration. It is obvious that other modes (e.g.
torsional) cannot be mastered by this model since the element variables and shape functions are
condemned to live forever in the plane defined by the element surface. The computed finite element
frequencies can be compared with those calculated according to analytically derived formulae for a
thin beam and thin rod. It is known that the angular eigenfrequencies Q of a cantilever beam are

given by roots of the transcendent equation cos 8L cosh 8L = —1, where 8 = \/g, o= \/%, J is
the cross-sectional second moment with respect to the centroidal axis perpendicular to the bending
plane and A is the cross-sectional area, L is the length of a beam (rod) and cq is the velocity
of longitudinal waves in a thin rod. The angular eigenfrequencies of a thin rod whose one end is
clamped are given in a simple sequence §; = co(2i — 1)57, see [23]. The finite element frequencies

can be compared with the “exact” bending and axial frequencies. A few of them, from the first
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Fig. 6. Eigenmodes and eigenvalues of a rectangular membrane element with 8 d.o.f.; plane stress;
a) consistent mass matrix, b) diagonal mass matrix

Table 1
i 2 3 4 5 6
bending | 83.82 525.3 1471 2882 4765 AP 8 7
axial 1297 3892 6486 9080 11675 14 269
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Fig. 7. Eigenmodes and eigenfrequencies; 10 elements; a) consistent mass, b) diagonal mass

part of the spectrum, are presented in Table 1.

It can be noticed that the first FE bending frequency is obtained with approximately 20% error
regardless of the mass formulation used. This is due to the extremely low number of elements used
for the modelling. Generally, however, the frequencies calculated with the use of consistent mass
formulations overestimate the correct values while those obtained by means of the diagonal mass
formulation underestimate it. This feature, clearly depicted in Fig. 8, is a consequence of dispersion
properties of the FE model. It is known that the results of FE computation could be substantially
influenced by dispersive properties of finite elements, see [17].

Due to a discrete nature of the FE the approach only a limited number of modes can be modelled
correctly. The highest bending mode obtainable for 10 elements is shown in F ig. 9. In this case the
neighbouring nodes at boundaries vibrate in opposition. It is obvious that the lines forming the
element boundaries do not allow any higher mode of bending vibration to be modelled. Practical
experience shows that only the data from the first third of the spectrum gives reliable results.

A few words about dispersion. A dispersive system is any system admitting solutions in the form
u = Aexpli(kz — wt)], where A = A(w) is a function of frequency w, and z and ¢ are spatial and
temporal variables, respectively. The quantity & is a so called wave number which is related to w
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Fig. 9

by means of the phase velocity ¢ in the form k = £. Other quantities under consideration are the
wavelength A = 2T and the period 7 = In

In continuum mechanics the dispersion relation is a function w = w(k) connecting the frequency
w to the wave number k. If this function is linear, the medium (wave process, system) is said to
be nondispersive. In such a case the phase velocity ¢ does not depend on k, or in other words the
harmonic waves propagate with the same velocity regardless of their frequency.

The spatial and temporal discretizations of the partial differential equations governing the prop-
agation of transient waves in solids always introduce dispersion into an FE model. Spatial dispersion
equations can be found by assuming harmonic vibrations for displacements and substituting them
into equations for steady state vibration, i.e. Mg 4+ Kq = 0. In this process, we get a system of
homogeneous algebraic equations in the matrix form A(w,k)C = 0, C being a vector of unknown
constants. The system has a nontrivial solution only if the determinant of A is equal to zero. The
evaluation of the determinant gives the sought-after dispersion equations. The process can be tack-
led both analytically and numerically. When applied to the bilinear square element, the process
produces results which are shown in Fig. 10, where a locus of vector tips of velocities emanating
from the same point — so called hodograph — is plotted.

You can imagine a source of waves in the origin of the coordinate system. Without dispersion,
the correct positions of shear and longitudinal wavefronts are circles whose radii are proportional to
shear and longitudinal wave velocities, respectively. If the same wave process propagates through a
uniform mesh of square bilinear elements with the consistent mass matrix we obtain series of curves
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depending on the parameter A — the wave length — expressed as a multiple of mesh size ¢. You
can observe that the velocity of waves propagating through a FE model depends on the wavelength
(or frequency) and on the direction of propagation. If the wavelength is comparable to the mesh
size, the effects of dispersion as well as the anisotropy are significant. Since the consistent mass
matrix has been used, the 'E results overestimate the “correct” values. For diagonal mass matrix,
underestimated results would be obtained, see [7, 17].

So the FE solution is always penalised by certain errors due to the discrete nature of the model
and to dispersive and anisotropic properties which do not occur in elastic isotropic continuum. These
errors are inevitable but, with a suitable meshing strategy and proper engineering judgement, they
can be reliably minimized.

The influence of spatial dispersion on FE results of transient problems is accompanied by similar
effects caused by temporal discretization, see [12, 19]. It has been shown that the effects of dispersive
properties of integration operators could be efficiently coupled with those of spatial discretization
so that the resulting error is minimized. There are two correct choices in this respect: the use of
explicit integration methods (e.g. central differences) with a diagonal mass matrix formulation or
the use of implicit methods (e.g. Newmark method) with a consistent mass matrix. The former is
advantageous in solving nonlinear problems while the latter is a sure winner for linear ones, see [18].

6. CONCLUSIONS

The solution of a simple technical problem — the bending of a cantilever beam, which could be
routinely solved in minutes with standard I'E packages — allowed us to show that certain limitations
and pittfalls of the finite element method could be expected. Like any other tool or implement, the
method has its own limitations which should be avoided when reliable results are to be obtained.
Modern computer applications can contribute a lot to the deeper understanding of the theoretical
background of finite elements provided that certain computer literacy is sufficiently mastered.

APPENDIX
PROGRAM IS0Q1
€ calculates mass and stiffness matrices for a
c rectangular isoparametric quadrilateral element
c with 8 dof. Plane stress or plane strain is assumed.

implicit real#*8 (a-h, o-z)
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dimension xke(8,8),xme(8,8),xc(4),yc(4)

c output
c xme, xke ! mass and stifness matrices
c
c input data
ro=7800.d0 ! density
ey=2.1d11 ! Young modulus
xm=0.3d0 ! Poisson ratio
xh=1.0d-2 ! thickness of the element
ng = 2 ! order of Gauss quadrature
inap = 1 ! consider plane stress conditions
c inap = 2 ! consider plane strain conditions
c node coordinates
xc(1)=0.4d0
xc(2)=0.1d0
xc(3)=0.1d0
xc(4)=0.4d0
yc(1)=0.4d0
yc(2)=0.d0
yc(3)=0.1d0
yc(4)=0.1d0
c calculate mass and stiffness matrices
call LOC4RM(xke,xme,ro,xc,yc,xh,ey,xm,ng,inap) ! see eq. (28),(29)
end
¢ 3k ok ok ok ok procedures K K K K K
SUBROUTINE JAC4(xj,xji,detj,r,s,xc,yc) ! see Eq. (26)
c for a given point r,s
c calculate jacobian matrix, its inverse and determinant
implicit real*8 (a-h, o-z)
dimension xj(2,2),xji(2,2),dr(4),ds(4),xc(4),yc(4)
c
c calculate derivatives of shape functions
call DE4ARS(r,s,dr,ds)
c
c calculate jacobian matrix for a point r,s
C arrays xc(i),yc(i); i=1,4 contain node coordinates
¢
sum1=0.d0
sum2=0.d0
do 10 i=1,4

suml=sumi+dr (i) *xc (i)
10 sum2=sum2+dr (i) *yc (i)

xj(1,1)=suml

xj(1,2)=sum2

sum1=0.d0

sum2=0.d0

do 20 i=1,4

suml=sumi+ds (i) *xc (i)
20 sum2=sum2+ds (i) *yc (i)

xj(2,1)=suml

xj(2,2)=sum2

-

¢ determinant of xj

C
detj=xj(1,1)*xj(2,2)-xj(1,2)*xj(2,1)
if(detj .1t. 1.d-6) go to 900
dum=1./detj

c

c inverse of jacobian matrix
xji(1,1)= dum*xj(2,2)
xji(1,2)=-dum*xj(1,2)
xji(2,1)=-dum*xj(2,1)
xji(2,2)= dum*xj(1,1)
return

(é

c erroy .return

900 write(*,910)
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910 format(’ jac4: negative or zero determinant’)

return

end
€ *kokk kK

SUBROUTINE A4RS(as,r,s) ! see Eq. (23)
€ for a given point r,s calculate shape functions

implicit real*8 (a-h, o-z)
dimension as(4)

rp=1. +
rm=1. -
sp=1. +
sm=1. -
e=0.25d0

wnHRA

as (1)=e*rm*sm
as (2)=e*rp*sm
as (3)=e*rp*sp
as (4)=e*rm*sp

return
end
< *okok ok Kk
SUBROUTINE DE4ARS(r,s,dr,ds)
6 for a given point calculate derivatives of shape functions, see (23)
implicit real*8 (a-h, o-z)
dimension dr(4),ds(4)
rpele:t T
rm=liie T
sp=1l. + 8
sm=1l. -8
e=0.25d0

c partial derivatives with respest to r
dr(1)=-sm
dr(2)= sm
dr(3)= sp
dr(4)=-sp

c partial derivatives with respect to s
ds(1)=-rm
ds(2)=-rp
ds(3)= rp
ds(4)= rm

do 10 i=1,4
dr (i)=e*dr (i)
10 ds(i)=e*xds (i)

return

end
c *kokok ok

SUBROUTINE CA4ATA(ata,r,s) ! integrand of mass matrix
c calculate matrix ata=[a-transp]*[a]

implicit real*8 (a-h, o-z)
dimension as(4),ata(8,8)

do 5 i=1,8
do 5 j=1,8
5 ata(i,j)=0.
c
¢ calculate shape functions
call A4RS(as,r,s)
G
' calculate a diadic product
c the first diagonal submatrix
do 10 i=1,4
do 10 j=1,4

10 ata(i,j)=as(i)*as(j)
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c
c the second diagonal submatrix
do 20 i=5,8
ii=i-4
do 20 j=5,8
39%5-¢
20 ata(i,j)=ata(ii,jj)
c
return
end
c Hok Kok KK
SUBROUTINE CA4BEB(beb,r,s,xc,yc,inap,ey,xm,detj)
c for a given point r,s calculate integrand of stiffness matrix
c matrices [b], [b-transp]l, [el, and [b-transp]#*[e]*[b]
implicit real*8 (a-h, o-z)
dimension beb(8,8),b(3,8),bt(8,3),dr(4),ds(4),xj(2,2),
1 xji(2,2) ,ded4rs(2,4),dedxy(2,4),e(3,3),bte(8,3)
c
€ jacobian, determinant and inverse of jacibian matrix
call JAC4(xj,xji,detj,r,s,xc,yc)
c
c partial derivatives with respect to r and s
call DE4ARS(r,s,dr,ds)
¢
B store them in derrs

do 10 j=1,4
dedrs(1,j)=dr(j)
10 dedrs(2,j)=ds(j)

c
c multiply dedxy=xji*dedrs

call MAMU1(de4xy,xji,dedrs,2,2,4)
c
(< form b matrix

do 30 i=1,3

do 30 j=1,8
30 b(i,j)=0.d0

do 40 j=1,4

b(1,j)=dedxy(1,]j)
40 b(3,j)=dedxy(2,]j)

do 50 j=5,8

Jj=j-4

b(2, j)=dedxy(2,5j)
50 b(3,j)=dedxy(1,jj)

c
c tranpose b matrix

do 100 i=1,3

do 100 j=1,8
100 bt(j,i)=b(i,j)
c
(= calculate e matrix

call CALCE(e,inap,ey,xm)

multiply bte=bt*e

call MAMU1(bte,bt,e,8,3,3)
C
c multiply beb=btexb

call MAMU1(beb,bte,b,8,3,8)
c

return

end
c koK kokok

SUBROUTINE LOC4RM(xke,xme,ro,xc,yc,xh,ey,xm,ng,inap)
¢ assemble local stiffness and mass matrices, see (27), (28), (29), (30)

implicit real#8 (a-h, o-z)

dimension xke(8,8),xme(8,8),beb(8,8),ata(8,8),

1 gp(5,5),alfa(5,5)
c

do 10 i=1,8
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do 10 j=1,8
xke(i,3j)=0.d0
10 xme (i,j)=0.d0

call GAUSQ(gp,alfa)
C loop over gauss points

do 20 1=1,ng
r=gp(1l,ng)
do 20 m=1,ng
s=gp (m,ng)
e weight function
w=alfa(l,ng)*alfa(m,ng)
call CA4ATA(ata,r,s)
call CA4BEB(beb,r,s,xc,yc,inap,ey,xm,detj)

c loop over matrix elements
do 30 i=1,8
do 30 j=1,8
fk=xh*beb (i, j)*detj
fm=ro*xh*ata(i,j)*detj
xke (i, j)=xke(i,j)+u*fk
xme (i, j)=xme(i,j)+wxfm

30 continue
20 continue
return
end
c *ok ok kKK
SUBROUTINE GAUSQ(gp,alfa) ! Gauss quadrature

implicit real*8 (a-h, o-z)
dimension gp(5,5),alfa(5,5)

c
c gauss points (columnwise)
c j-th column contains ng values of gauss points for
c gauss qaudrature of ng-th order (j=ng)
c values are rounded to 16 significant digits

do 10 i=1,5

do 10 j=1,5

10 gp(i,j)=0.d0

c ng=2
gp(1,2)=-0.577350269189626d0
gp(2,2)=+0.577350269189626d0

ng=3
gp(1,3)=-0.774596669241483d0
gp(2,3)=0.d0
gp(3,3)=+0.774596669241483d0

c ng=4
gp(1,4)=-0.861136311594053d0
gp(2,4)=-0.339981043584856d0
gp(3,4)=+0.339981043584856d0
gp(4,4)=+0.861136311594053d0

c ng=5
gp(1,5)=-0.906179845938664d0
gp(2,5)=-0.538469310105683d0
gp(3,5)=0.d0
gp(4,5)=+0.538469310105683d0
gp(5,5)=+0.906179845938664d0

(g

array of gauss weight coefficients - columnwise j-th
> column contains ng values of gauss coefficients.

do 20 i=1,5

do 20 j=1,5
20 alfa(i,j)=0.d0
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10

.0 O ART O

ng=2
alfa(1,2)=1.
alfa(2,2)=1.

ng=3

alfa(1,3)=0.
alfa(2,3)=0.
alfa(3,3)=0.

ng=4

alfa(1,4)
alfa(2,4)
alfa(3,4)
alfa(4,4)

=0
=0

0
0

ng=5
alfa(1,5)=0.
alfa(2,5)=0.
alfa(3,5)=0.
alfa(4,5)=0.
alfa(5,5)=0.
return

end

*okok ok kK
SUBROUTINE M

matrix multiplication c(m,p)=a(m,n)*b(n,p)

do
do

555555555555556d0
888888888888889d0
5555555555655556d40

.347854845137454d0
.652145154862546d0
.652145154862546d0
.347854845137454d0

236926885056189d0
478628670499366d0
568888888888889d0
478628670499366d0
236926885056189d0

AMU1(c,a,b,m,n,p)

implicit real*8 (a-h, o-z)

integer p

dimension c(m,p),a(m,n),b(n,p)

do 10 i=1,m
do 10 j=1,p
c(i,j)=0.d0
do 10 k=1,n
c(i,j)=c(i,j
return

end

koK K ok oK

SUBROUTINE CALCE(e,inap,ey,xm)
calculate elastic moduli matrix e

)+a(i,k)*b(k,j)

implicit real*8 (a-h, o-z)

dimension e(

do 5 i=1,3
do 5 j=1,3
e(i,j)=0.d0
go to (10,20

plane stress
c=ey/ (1-xm*x
e(1,1)=1.
e(1,2)=xm
e(2,1)=xm
e(2,2)=1.
e(3,3)=0.5d0
do 15 i=1,3
do 15 j=1,3
e(i,j)=c*xe(d
return

plane strain
c=ey/ ((1+xm)
e(1,1)=1-xm

3,3)

. plane stress
. plane strain
. young modulus
. poisson ratio

) ,inap

m)

*(1-xm)

:J)

*(1-2d0*xm) )
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e(2,2)=1-xm
e(3,3)=0.5d0* (1-2d0*xm)
e(1,2)=xm
e(2,1)=xm
do 25 i=1,3
do 25 j=1,3
25 e(di,j)=cxe(i,j)
return
end
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