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A new adaptive finite-element numerical method has been developed for the unsteady Navier-Stokes
equations of incompressible flow in two dimensions. The momentum equations combined with a pressure
correction equation are solved employing a non-staggered grid. The solution is advanced in time with an
explicit /implicit marching scheme. An adaptive algorithm has been implemented, which refines the grid
locally in order to resolve detected flow features. A combination of quadrilateral, as well as triangular cells
provides a stable and accurate numerical treatment of grid interfaces that are located within regions of
high gradients. Applications of the developed adaptive algorithm include both steady and unsteady flows,
with low and high Reynolds numbers. Comparisons with analytical, as well as experimental data evaluate
accuracy and robustness of the method.

1. INTRODUCTION

Incompressible flows are frequently encountered in engineering applications. During the past two
decades a significant number of numerical algorithms have been developed for solution of the
incompressible Navier-Stokes equations [8]. The lack of pressure term in the continuity equation
makes solution of the momentum equations with the divergence-free constraint more difficult. In
the case of incompressible flows, the conservation of mass acts as a constraint condition that the
velocity field must satisfy, while in compressible flows, the conservation of mass is given through
a partial differential equation for the temporal variation of density. The infinite speed of sound
in the incompressible case requires an implicit treatment of the pressure. Furthermore, spatial
discretization for pressure and velocity may produce oscillatory solutions.

One approach followed is to formulate the equations in terms of a stream-function and a vorticity.
Extension of this method to three dimensions is not possible. Different formulations have been used
in 3-D, such as the vorticity-velocity approach. Another approach is to use the compressible flow
equations and solve them for low Mach numbers. The required time-step for such computations
is very small due to the fact that the speed of sound approaches infinity at the incompressible
limit. A method that uses compressible-like governing equations is the artificial compressibility
approach [3, 4, 18]. A time derivative of the pressure is added to the continuity equation and the
incompressible flow field is treated as compressible during the transient stage. Time accuracy of
the simulation is usually not preserved.

Another class of algorithms uses a special Poisson equation for the pressure field [11, 17, 22, 26].
The usual computational procedure is to assume an initial pressure field, and then an iterative
process is defined until the continuity equation is satisfied. A major issue of the corresponding
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pressure and velocity spatial discretization is oscillations in the pressure field. In order to reject
these modes, staggered grids have been employed by several of these algorithms [6, 23]. On the
other hand, employment of non-staggered grids [7, 10, 24] requires dissipation in the algorithms.
Stability of both approaches with high Reynolds number flows is an important issue. A review of
numerical methods for incompressible flows, as well as references of previous work, are given in [8].
Furthermore extensive literature on finite-element methods is given in [30].

Resolution of the computational mesh plays a crucial role on accuracy of computations. However,
generation of a grid which both fits the flow geometry, and resolves the local flow features, is quite
difficult, and even impossible in some cases. In general the selection of the grid that is to be used
in a numerical simulation is determined a priori before starting the solution procedure, and quite
often the grid is modified by the user, in order to improve the results. Adaptive grid algorithms
are flexible enough to adjust the grid during the solution procedure without intervention by the
user. Frequently, the regions that require high resolution are very small compared to the size of
the overall computational domain. Local grid embedding consists of division of cells in order to
reduce the truncation error, and to have a more equal distribution of it throughout the solution
domain. Quadrilateral meshes have been employed for inviscid compressible flows [5, 19], as well
as for turbulent compressible flows [13, 14].

One of the most serious problems with using quadrilaterals has been the presence of grid inter-
faces, which require special numerical treatment [15], which can be quite complicated. Triangular
meshes have also been employed with grid embedding for compressible flows [19, 20]. An attractive
feature of unstructured grids is their ability to eliminate grid interfaces. The flow solver requires
no further modifications when employing such an adapted grid. However, quadrilaterals are more
suitable for solving boundary layers, which require very thin grid cells because of the strong direc-
tional gradients. Finally, staggered grids have been quite popular with incompressible flow solvers,
but they greatly complicate the treatment of grid interfaces when local embedding is used.

In the present work, an adaptive finite-element numerical scheme has been developed for the
unsteady Navier-Stokes equations of incompressible flow in two dimensions. A combination of
quadrilateral, as well as triangular cells provides flexibility in forming the adaptive grids. Thin
quadrilateral elements resolve boundary layers, while triangles eliminate special interface (hang-
ing) nodes. The border regions between the two types of elements are placed within regions of
high flow gradients in order to test stability and accuracy of the developed formulation. Compar-
isons with the results obtained with equivalent globally fine grids that contain no interfaces are
also employed. The momentum equations combined with a pressure correction equation are solved
employing a non-staggered grid where all of the dependent variables are defined at the cell cor-
ners. The solution is advanced in time with an explicit/implicit marching scheme. An adaptive
algorithm has been implemented, which refines the grid locally in order to resolve detected flow
features. Employment of non-staggered grid facilitates application of adaptive gridding. Applica-
tions of the developed adaptive algorithm include both steady and unsteady flow, as well as flow
of high Reynolds number.

In the following, the pressure correction formulation and the finite-element discretization are
presented. Next, the adaptive hybrid-grid algorithm is described. Finally, steady as well as un-
steady flow simulations are presented, and comparisons with analytical and experimental data are
performed.

2. GOVERNING EQUATIONS AND PRESSURE CORRECTION FORMULATION

The governing equations are the following non-dimensionalized continuity and Navier-Stokes equa-
tions of incompressible flow:

V.@=0 (1)

i S8 o JRITRAS
E%—V—(uu) =-Vp+ E&u (2)
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An explicit/implicit marching scheme is adopted for integration in time of the above equations.
The velocity values are treated explicitly, while the pressure values are treated implicitly in the
momentum equations [8]. The velocity values are marched in time with a forward Euler scheme
[11]. The continuity equation is formulated implicitly with the velocity values considered at time
level (n + 1). Specifically, the corresponding semi-discrete system is written as follows:

V.t = ¢ (3)
glnt1) — gln) 1
S SRl . 7(n) 2(n)) — _gp,(ntl) L Az(n)

G +V (u 7 ) Vp + ReAu (4)

where the superscripts denote the time levels. The above equation cannot be solved directly due
to the implicit treatment of the pressure term. An auxiliary velocity vector 4’ is introduced, which
satisfies the following equation:

i — @ 1
b A ln) 2(n)) — _g,n) £ = As(n)
: 4+ V (u @ ) Vp'™ 4 Re Ail (5)

In this equation, the pressure term is treated explicitly and %@’ can be obtained directly. However,
the solution #@' does not satisfy the continuity equation. Subtracting equation (5) from (4), it is
obtained:

11‘(""'1) i [V (p(ﬂ+1} _p(ﬂ))] At (6)
Introducing a scalar potential ¢, such that
ﬁ{ﬂ+l) = ‘l?' = _V¢’ (7)

the following equation for pressure can be obtained:

1
P _ ) = =g (8)

Finally, taking the divergence of each side of equation (7) and considering the continuity equation
(3), the following pressure correction Poisson equation is obtained:

Ap = V- i (9)

In this equation, the values of ¢ on the left hand side are treated implicitly, which requires inversion
of matrix. Using the ¢ values obtained by the above equation, we can correct the velocity and
pressure fields using equations (7) and (8) as follows:

i) = 7 - V¢ (10)
1

(n+1) _ pn) 4 1

P P = (11)

The above solution procedure follows the explicit/implicit marching scheme in [17]. The overall
solution procedure corresponding to marching by one-time-step is summarized as follows:

1. calculate the auxiliary velocity vector @’ from (5) using @™ and p(™ values
2. solve (9) and obtain the ¢ values
3. calculate @("*1) and p("*!) using (10) and (11)

4. if V - i) < ¢ where € is the tolerance for divergence, advance to next time step; if not,
consider #(™*1) as @ and repeat steps 2 and 3.
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3. FINITE-ELEMENT DISCRETIZATION

Both momentum and pressure correction equations are discretized using the Galerkin finite-element
approach on a non-staggered grid. The scheme is compact with all operations being restricted to
within each grid-cell. Linear triangles and bilinear isoparametric quadrilateral elements are em-
ployed [6].

3.1. Momentum equations

The momentum equation (5) can be written as

1
W= ()@ + @) + 5 - o (a2 +u)] e

12)
; (
v = o) = [@)@ + (o)) + 55 - o (o2 +)]

where the subscripts ,z, ,y, ,2z and , yy denote the operations for partial differentiation.

For quadrilaterals, the values of u, v and p are defined in each element using the following
finite-element formulation:

4 4 4
u=>" Niu;, v=>Y_ N, p=> Nip; (13)
t=1 i=1

=1

where u;, v; and p; are nodal values of u, v and p and N; is the interpolating shape function
associated with the i-th node. In the present method, u, v and p are defined at cell vertices.

Substituting (13) into (12), integrating over each element domain £ using the Galerkin method,
and then considering the Gauss theorem and boundary conditions, we can get the following equa-
tions for each element [6]:

Mij o = Migul™ — AtKE (uu{™ + p{) - At KLuof" 2: Dyjul™
14)
n n n n t (
Mo} = Moy — Atk (oo™ + p{) - At Kzu{o{V ﬁ Dyjv{"

where
M;; =/ N;N;dzdy

g AN
KE =/]N 5. dedy

K = // N; 2 dzd
3.N dN; 3N{ 3NJ‘)
D; ././ (ax Oz 3?; dy dzdy

We can construct the following global matrix by assembling the element matrix obtained in (14)

Mu' = Mu® — AtF,

15
Mv' = Mv(® — AtF, (15)
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where
M =) M;
ey = [ug,uz,uz:-], VT=[V1,V2,V3—--]
A [1(;;. (ufn)ugn] X pgn}) + KLy ¢ ?zl? D.-,-ug.")]

1
Fv = Z I:Kffﬂ:;n}t’}ﬂ) + I("'i, (T)}n)t}§n) + pgﬂ}) + }—Z; D,-jv:(")]
e
where the summation is over all the elements. The consistent mass matrix M is used. Therefore,
u’ and v’ are obtained as follows:

v = u® - AtM-IF,

16
v = v(®) — AtM™IF, (16)

3.2. Pressure correction equation

The Poisson equation for pressure correction is solved with the finite-element approach. The same
type of bilinear quadrilateral element is used as for the momentum equations. The values of U, v
and ¢ are defined in each element using the same expressions as in (13). In the present method, u,
v and ¢ are defined at cell nodes. Integrating equation (9) over the each element domain Q using
the Galerkin method, the following equation is obtained:

[ ¥ibux + ) dady= [ | Mitulz + vl dzdy (17)
Applying Gauss’s theorem, we can get the following element matrix system:

Dij ¢; = K uj + K, v (18)
where

X 6NJ [ il aNJ
K% = f/QN.Eudxdy, KU_/_/QN, 5y 4z dy

et ON;ON; ON;ON;
D= ././n(az Dt iy 6y)d"d3"

We can construct the following global matrix system by assembling the element matrix obtained
in (18)

D® =1 (19)

where

D = ) Dy, " = 1, 62,3,

f =3 [KEu)+ Ky
e
The values for ¢ on the left hand side of (19) are treated implicitly, which requires solution of a
system. The matrix that requires inversion is a symmetric linear matrix. The system is solved by the
ICCG (Incomplete Cholesky Conjugate Gradient) iterative method [21]. The rate of convergence
of the iterative process depends on the numbering of nodes. In order to accelerate convergence,
the elements of the matrix are renumbered using the RCM (Reverse Cuthill-Mckee) method [21].
Finally, the velocity and pressure values are obtained by integrating equations (10) and (11).
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3.3. Artificial dissipation

For high Reynolds number flow, the nonlinear convection terms are dominant. Central space dif-
ferencing schemes are susceptible to oscillatory modes. Furthermore, odd-even decoupling of the
solution may appear in the pressure field for this non-staggered type of mesh that is employed.

In the present work, a fourth order smoothing term is added explicitly to the momentum equa-
tions in order to suppress odd-even decoupling of the velocity solution [12]. Furthermore, fourth
order dissipation is added to the pressure correction equation in order to stabilize the solution and
suppress oscillations in the pressure field.

The smoothing operator is cast in a form suitable for adaptive unstructured grids. All operations
are split in such a way that no information is required from outside of each cell. Each grid node
receives contributions from each one of its surrounding cells. The operator is formed in two steps.
The second order difference operator is formed in the first step. The second order distributions to
cell-corners (j) for the momentum equations are as follows:

4
Df (u) = (Z u,-) —41£j (20)
i=1

The second step duplicates the first, replacing state variables by second order differences from the
first step. The fourth order smoothing distributions are:

- Dj(u) = (i: D?(u)) — 4D¥(u) (21)

It should be noted that similar cell-based operations of equations (20) and (21) are applied to
triangular meshes, as well. The values of 4’ and v’ in momentum equations are updated as follows:

{ = uE") + Au;

u
22
v = v,;") + Av; %)
The fourth-order difference terms of u and v are added to stabilize the solution as follows:
uf = ugn) + Au; + o4 (u) D} (uf"))
(23)

v, = v,{"} + Av; + 04 (v) D} (v‘("])

where o4 is an empirical coefficient. Large value of o4 stabilizes the solution but destroys the accu-
racy. Therefore, special care is required for choosing the value of o4. Numerical experiments have
been carried out to determine optimum values for the smoothing coefficient (¢4). The determined
values are such that the solution accuracy is not affected, while the odd-even modes are suppressed
[16].

Similarly, fourth order difference terms of pressure are added to the right hand side of the Poisson
equation (19) as follows:

D®=f+d (24)
where
d™ = [o4(0) Df ()]

Generally, the value of o4 (p) is different from o4 (u) and o4 (v). In the present work, the values of
04 (u) and o4 (v) are the same, while the value of o4 (p) is different.
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3.4. Time-step calculation

Using central space and forward time differencing, the stability limitation for the model 1-D con-

vection equation u; + cuy, = 0 is Efi < 1 (CFL limitation), while the corresponding stability
Y
P VAL |
restriction for the 1-D model diffusion equation u; = vuy, is -A_yz <3
In the present scheme, a combination of the two limitations is employed. Specifically,

(25)

Am Al }
lul+ &= " Il +3&m |’
where Am, Al are the cell dimensions in the m,[ local cell-directions, u,v are the corresponding

velocity components, v is the kinematic viscosity coefficient, and o = % is the diffusion stability
limitation. Lastly, w is a safety factor, and equal to 0.9.

Al =w min{

3.5. Boundary conditions

Four types of conditions have been applied for the cases considered in the present work. Those are
(1) wall, (i7) far field, (ii1) inflow and (iv) outflow. They are applied to the two velocity components,
as well as to the pressure corrections.

Specification of pressure, such as in the outflow boundary, is applied through specification of
the pressure corrections ¢ using equation (8) p(ntl) — p(n) = Zqub. The ¢ values are simply set to
zero. In this way, the pressure values are the initially prescribed ones. Similarly, specification of
velocity, such as in the inflow and wall, is applied by using equation (10) @(*+1) = @ — V¢ by
setting V¢ = 0. The velocity values are the initial values.

At a wall, the v and v components of velocity are set to zero. The value of d¢/dn is also set
to zero. At a farfield, the velocity components are set equal to the free-stream values, while the
pressure corrections are set to zero.

At an inflow boundary, the u and v components of velocity are specified and d¢/dn is set to
zero. At an outflow boundary, the velocity gradients in the normal direction to the boundary are
set to zero. The pressure corrections are set to zero.

4. ADAPTIVE HYBRID GRIDS

The objective of adaptive grid refinement is to adjust the grid scale in regions where extra resolution
is needed. The algorithm detects important flow features, such as boundary layers and vortices.
Then the cells are divided into smaller children cells. Points are inserted in the middle of the
quadrilateral edges.

The resulting embedded grids are topologically similar to the initial grid and so maintain its
geometric properties (e.g. stretching, orthogonality), but are not necessarily aligned to the initial
grid as the embedded meshes follow the features. The process can be repeated any number of times
and results in finer and finer local embedded grids until a region is adequately resolved [30].

The locations of such features are not known a priori and they have to be detected. A feature
detector senses the flow features that are present in different regions and guides the adaptive
algorithm to embed these regions if the existing grid spacing in such regions is not sufficient for
resolving the local flow variations.

Local embedding implies two important consequences for any basic solver that is used. First,
the mesh now becomes unstructured and the usual i,j indexing can no longer be used. A system is
required to keep track of all the required information for each cell (pointer system). Second, there
is an implied communication between the grids. The borders between grids of different refinement
levels (interfaces) must receive special attention. Employment of non-staggered grids simplifies
treatment of grid interfaces.
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4.1. Flow feature detection

The feature detector uses velocity differences and velocity gradients across the grid-cells for sensing
the flow features [13]. Threshold values for the refinement are set based on the distribution of the
detection parameters over the cells of the domain. The average (Save) and the standard deviation
(8sa) are employed to calculate a threshold (Sty) as follows:

Sth = Save + @Ssa (26)

where S is the detection parameter. The average and the standard deviation are defined as:

Sore ik 3 5 (27)
Nceu‘s e=1
1 Neents
Ssd — Nce]ln E Se2 (28)

The value of the parameter a is chosen empirically, with typical value of the parameter being 0.3.
The cells that have a detection parameter value greater than the threshold value are flagged to be
refined. The value is such that excessive refinement is avoided, while all the essential flow features
are captured [13]. Large values of o may result in inadequate refinement of the regions of the flow
features, while very small values may result in excessive refinement. Details of this method are
given in [13].

4.2. Treatment of grid interfaces

Embedding of quadrilateral cells introduces internal boundaries between cells with different refine-
ment levels. Grid interfaces are characterized by an abrupt change in cell size. Following division of
a portion of the grid-cells, the resulting grid contains a number of cells that are left with mid-edge
nodes on some of their four edges due to refinement of the neighboring cells. These interface cells
constitute the border between the divided and the undivided cells. Employment of an accurate
and stable numerical treatment of interfaces is one of the major issues of adaptive-grid algorithms
(1, 15, 25].

Numerical schemes employ normal quadrilateral cells with four corner nodes and significant
changes are necessary in order for the scheme to be applied to interface cells with additional
mid-edge nodes [15]. This is not desired, as then the adaptive algorithm becomes dependent on the
specific numerical scheme that is employed.

Another important issue is maintaining conservation across interfaces. The fluxes across the
boundaries surrounding an interface cell should cancel one another in order for the scheme to be
conservative.

Hybrid grid

Existence of hanging nodes at the grid interfaces leads to relatively complicated numerical treat-
ments which have accuracy problems [15]. In the present work the approach is to eliminate these
hanging nodes and to treat the interface cells using the same integration method as for the rest of
the grid cells.

A simple method for eliminating the interface nodes has been developed in the present work.
The method divides the interface coarse cells, such as those illustrated in Fig. 1, into smaller tri-
angles. These triangles have as their vertices both the corners of the original interface cell, as well
as the mid-edge nodes. In this way, the mid-edge points are eliminated and the grid becomes con-
tinuous. No additional points are inserted. Following adaptation of the quadrilaterals, the triangles
are created. The triangles corresponding to previous adaptations, which require refinement, are
deleted and corresponding quadrilaterals are refined. The solver is general to handle both types
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Initial Mesh Adapted Hybrid Elements

Fig. 1. Elimination of interface nodes by employing triangular elements

of elements, namely quadrilaterals and triangles. The mass and momentum fluxes are conserved
across the edges of all cells. Linear triangular element is introduced to integrate over the triangle
region. Fourth-order difference smoothing is also introduced into both momentum and pressure
correction equations for the triangular elements.

5. VALIDATION TEST CASES

Two flow geometries are employed in order to provide an assessment of accuracy, and robustness
of the developed solver with adaptive hybrid grids; flat plate and cylinders. All the computations
were performed on a IBM RS/6000 workstation. The CPU time is 1.2 x 10~* s/cell /step.

A typical number of iterations required by the ICCG method for the Poisson equation is 3, while
10 iterations are typically required for convergence of the ¢ values. Convergence criteria for the
pressure corrections is V « @ < 107° - U/L where U and L are representative velocity and length.

The convergence criterion for the momentum equations is Rmax < 10™® where Rpay is the
maximum change-in-time (u("*1) — u(")) of u-velocity. In steady state cases, the problems are
considered as unsteady and calculations are carried out until the convergence criterion for the
momentum equations is satisfied.

The value of the smoothing coefficients for the momentum and Poisson equations (o4(u) and
o4(p)) are 10~* and 1073, respectively. A range of values were tested. The chosen values are the
largest values that do not affect accuracy of the solution.

5.1. Flat plate boundary layer

Blasius boundary layers [28] are computed for a flat plate for different values of the Reynolds
number. A Blasius profile is specified at the inlet (2=1.0) in order to avoid the leading edge
singularity. The computational domain is considered from z = 1.0 to z = 2.0. On the flat plate,
wall boundary conditions are applied. At the z = 1.0 and § = ymax boundaries outlet boundary
conditions are applied and the pressure p is assumed to be constant due to the Blasius assumption.

Low Re

The first case is a Blasius boundary layer with an inlet Reynolds number of 103 (Resxy =
Uso + 1/v = 10%). An initial coarse grid of 11 x 19 points is employed. The smallest grid normal
spacing at the wall is 0.016. It is adapted twice as shown in Fig. 2. The grid is hybrid consisting
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Fig. 2. Two-level adapted grid for Blasius boundary layer with Re = 10°, 1530 points (initial grid has
11 x 19 points).

of both quadrilateral and triangular elements. This grid consists of 1530 nodes, 1443 quadrilaterals
and 124 triangles. The same initial grid of 11 x 19 points is globally refined twice. This grid has
the same resolution at the wall as the finest embedded grid of Fig. 2, but it contains no interfaces.
This twice globally refined grid has 2993 nodes and 2880 quadrilaterals.

Figure 3 shows computed and analytical skin friction distributions at the wall of the Blasius
solution, the result with the twice globally refined mesh with no interfaces, and the two-level adapted
mesh. The agreement is very good. Figure 4 shows the velocity contours with the location of grid
interfaces. There are no spurious contours observed at the interface regions, where the flow should
be uniform. Figure 5 presents the maximum residual histories of the calculation using the twice
globally refined grid and the two-level adapted grid. The two convergence histories have similar
slopes. The residual corresponding to the two-level adapted grid is higher, since the size of the cells
is larger in the initial coarse grid. The initial grid is adapted at téme = 1.50 and time = 2.50.

An initial coarse grid of 21 X 37 points is adapted once as shown in Fig. 6. In this case, interfaces
are set inside the boundary layer. Figure 7 shows computed and analytical skin friction distributions
at the wall between the Blasius solution and the result with the one-level adapted mesh. The
agreement appears to be very good in both cases.

Medium Re

The second case is a Blasius boundary layer with an inlet Reynolds number of 10%. An initial grid of
21 x 37 points is employed. The smallest grid normal spacing at the wall is 0.0025. It is adapted once
as shown in Fig. 8. The grid is hybrid consisting of both quadrilateral and triangular elements. The
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Fig. 3. Comparison of skin-friction distributions for Blasius boundary layer with Re = 10%; — twice
globally adapted grid, — — 2-level adapted grid, o Blasius
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Fig. 4. Velocity contours for Blasius boundary layer with Re = 10°. Numerical result with 2-level adapted
grid; + interface nodes
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Fig. 6. One-level adapted grid for Blasius boundary layer with Re = 10°. Interfaces are located inside of
the boundary layer (initial grid has 21 x 37 points)
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Fig. 7. Comparison of skin-friction distributions for Blasius boundary layer with Re = 10°. Interfaces are
located inside of the boundary layer; — 1-level adapted grid, o Blasius

same initial grid is globally adapted once. Figure 9 shows good comparison of the skin friction dis-
tributions at the wall computed with the once globally adapted grid and the one-level adapted grid.

High Re

The third case is a Blasius boundary layer with an inlet Reynolds number of 108. Actually, the flow
over a flat plate becomes turbulent if Re is larger than 3.0 x 10°. The purpose of this laminar case
is to test stability of the present scheme with high Reynolds numbers. A fine grid of 41 x 73 points
is employed. The smallest grid spacing at the wall is 1.26 x 1074,

Figure 10 shows good comparison of computed skin friction distribution at the wall with that
from the analytical Blasius solution. Robustness of the solver is examined in Fig. 11, which illus-
trates the convergence history. The solution converges to machine accuracy for this high Reynolds
number case.

5.2. Cylinder in uniform farfield flow

Flow around circular cylinders is of significant engineering interest. Steady, as well as unsteady
laminar flow is computed for different Reynolds numbers. The boundary layer on the surface sep-
arates forming vortices. These vortices are stationary for low Reynolds numbers (up to Re = 40)
and are convected downstream forming a characteristic wake for higher Reynolds numbers. The
pressure and velocity fields are computed and compared with experimental results. Furthermore,
the unsteady forces on the cylinder for the cases of vortex shedding are monitored. The frequency
of the regular oscillation, f, when non-dimensionalized by the diameter D of the cylinder and the
free-stream velocity U, is called the Strouhal number.

St = fD/Us (29)

The Strouhal number is roughly 0.20 over a wide range of Reynolds numbers [27]. This Strouhal
number of the shedding is compared with experiments.
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Steady flow of Re = 40

The first case is a steady cylinder flow with a Reynolds number of 40. A fine grid of 52 x 72 points
is employed. The smallest grid normal spacing at the wall is 0.04 and a constant grid stretching
factor of 1.10 is employed in the normal to the surface direction. The farfield boundary is placed
15 diameters away from the cylinder.

An initial coarse grid of 35 x 36 points is adapted once as shown in Fig. 12. The grid is hybrid
consisting of both quadrilateral and triangular elements. The flow field features two large vortices
located symmetrically downstream of the cylinder (Fig. 13).

The calculated Cp (drag coefficient) is 1.50 and this is within the range of the experimental
results presented in [2] which range between 1.40 and 1.70. Figure 14 shows good comparison of
computed pressure coefficient distribution on the cylinder between the numerical results for the
fine and adapted grids, and the experimental results [9].

Unsteady flow of Re = 1.6 x 10*

A fine grid of 111 x 144 points is employed. The smallest grid normal spacing at the wall is 2.00x 1073
and a constant grid stretching factor of 1.10 is employed in the normal to the surface direction.
The farfield boundary is placed 15 diameters away from the cylinder.

Figure 15 shows the history of the C, (cross flow force coefficient). The Strouhal number is 0.21
in this case, which coincides with the experimental value [27]. The value of f in equation (29) is
obtained from the average period of the C', history. Figure 16 shows the different stages of vortex
formation and shedding. Vortices are formed alternatively on both the upper and lower parts of
the cylinder surface. Then they are convected downstream, while interacting with each other.

5.3. Cylinder in oscillating farfield flow

This application considers flow around a circular cylinder with a planar oscillatory ambient (farfield)
flow. This problem is of interest in connection with hydrodynamic forces on large cylindrical ele-
ments in offshore structures subjected to the action of waves and currents.
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For such a problem, the Keulegan-Carpenter number (KC) is an important parameter. It is
defined by:
UeT
D
where D is the cylinder diameter, Uy the ambient velocity amplitude, and T is the period of ambient
flow oscillation. The associated Reynolds number is
UpD
v
where v is the kinematic viscosity of the fluid. The frequency parameter, 3, is given by

P Re _D*

B R
The unsteady wave force per unit length F is described by Morrison’s equation [27]:
7w D? dU

4 dt

where Cp and Cyps are the drag and the inertia force coefficients, respectively. Furthermore, p
is the density of the fluid and U is the ambient velocity. The first term of the right hand side of
equation (30) is called the drag term and the second is the inertia term. In cases of ambient velocity
of the form:

KC =

Re =

= -—CD,OD|U]U+CMP (30)

2rt
U=0U, cos%
equation (30) can be written as follows:
1 2t 27t xtD? 2rt
Py = ECDpDUg COST cos?—— —CM'O T Ups m? (31)

In this calculation, the numerical results are compared with experimental results described in
[29]. The boundary conditions are the same as those for the uniform ambient flow cases of the
previous section. In this problem, the farfield velocity varies sinusoidally.

In this case, an unsteady flow with KC'=10 and 3=1270 (i.e. Re=12700) is considered. The
same grid and artificial dissipation coefficient are used as the uniform flow case described in the
previous section.

Figures 17 and 18 show the phase-averaged results of f; and f, from ¢t = 67 to ¢t = 107.
The calculated values of Cp and Cps are 2.65 and 1.27, respectively. Figures 19 and 20 show the
phase-averaged in-line velocity components along the wake line compared with the experimental
results of Ref. [29]. The agreement appears to be very good.

6. CONCLUDING REMARKS

The developed finite-element, explicit/implicit marching scheme for the unsteady two-dimensional
Navier-Stokes equations of incompressible fluid flow yielded stable and accurate results for the
test cases considered. The non-staggered grid that was employed made the method suitable for an
adaptive algorithm, which employed locally embedded meshes.

A combination of quadrilateral, as well as triangular cells provided flexibility in forming the
adaptive grids. The numerical treatment of grid interfaces with employment of triangular elements
proved to be stable, even in cases in which the interfaces were located within the boundary layer
regions, Comparisons with equivalent globally fine grids that contain no interfaces provided an
evaluation of accuracy.

Applications of the developed adaptive algorithm included both steady and unsteady flows.
Comparisons with analytical and experimental results provided further evaluation of accuracy and
robustness of the developed adaptive method.
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