Computer Assisted Mechanics and Engineering Sciences, 1: 147-157, 1994.
Copyright © 1994 by Polska Akademia Nauk

Parallelization of the compact methods
for the Navier-Stokes equations

Jacek Rokicki
Institute of Aeronautics and Applied Mechanics, Warsaw University of Technology,

Nowowiejska 22/24, 00-665 Warsaw, Poland

Jerzy M. Floryan
Department of Mechanical Engineering, The University of Western Ontario, London,
Ontario, N6A 5B9, Canada

(Received August 4, 1994)

The proposed algorithm is based on the fourth-order compact discretization schemes for the Navier-Stokes
equations in streamfunction-vorticity-pressure formulation. The equations are expressed in terms of a
general orthogonal curvilinear coordinate system which allows for modelling non-standard geometries.
Two distinct parallelization strategies are considered. The first one relies on the domain decomposition
approach, in which each subdomain is served by a different processor. In the second strategy, suitable for
massively parallel computers, each processor serves a single grid point. The comparison of the performance
of various computing platforms is presented, including a 2048-processor MasPar computer.

1. INTRODUCTION

Numerical solutions of the Navier-Stokes equations are computationally very demanding. The speed
of the available computing hardware is insufficient for the analysis of many problems of practical
interest. This motivates the search for more effective algorithms and for computing architectures
that are capable of processing these algorithms at an even higher rate.

A classical line of development is to accelerate sequential processors. Tremendous progress has
been achieved in this area with RISC concepts. A much higher acceleration rate can be obtained
with the use of several processors working in parallel, with each processor serving a different part of
the solution domain (or a different segment of the solution matrix). This concept is very attractive
because there is no upper limit, at least theoretically, on the available processing speed. On the
other hand, not all existing algorithms can be efficiently implemented in parallel.

The range of hardware that is presently available extends from single processor computers
through architectures involving several processors (multiprocessor workstations, single processor
workstation clusters) up to massively parallel computers. While the latter have a long term advan-
tage, it is not clear which of the above configurations are capable of delivering the best processing
speed at present as well as in the near future. One of the objectives of this work is to compare
the performance of the computers on both extremes of the above spectrum, i.e. single processor
machines versus massively parallel machines.

The accurate solutions of the Navier-Stokes equations require discretization schemes of near
spectral or spectral accuracy. We present here our own algorithm that is based on a fourth-order
(near spectral) compact finite-difference discretization [5]. This algorithm has been tested exten-
sively and proven to deliver the theoretically predicted accuracy. The second reason for the selection
of this algorithm is that it has been implemented with both single domain as well as domain decom-
position techniques. Extensive testing for the case of multidomain implementation has shown that
the time required for evaluation of a solution to a flow problem is reduced significantly by serving



148 J. Rokicki and J.M. Floryan

each subdomain with a different processor and, as a matter of fact, one can achieve an acceleration
that approaches the theoretically possible maximum [4]. The third reason for the selection of this
algorithm is that it is very simple and can thus be implemented on massively parallel computers
in a straightforward manner.

The reader may note that compact methods are particularly suitable for parallelization because
interprocessor communication is minimized. Interprocessor communication is further reduced by
the fact that higher-order methods require sparser grids and fewer iterations to obtain prescribed
accuracy in comparison with the classical second-order methods [1, 4]. Despite the fact that the
number of arithmetic operations per grid point for a single iteration is much larger for the high-order
methods, the total number of arithmetical operations necessary to obtain the prescribed accuracy
of the solution remains much lower. This fact has been confirmed in numerical experiments [4].

The authors believe that the presented approach, in which a high-order algorithm (on each
subdomain) is coupled with the domain decomposition method, can be further generalized to allow
for the efficient solution of Navier-Stokes equations in complicated domains with moving or free
boundaries.

2. FLOW PROBLEM

The Navier-Stokes equations written in the streamfunction-vorticity (¢ — () formulation for a plane,
steady, incompressible, two-dimensional flow have the form:

A¢ — Re(V-V( — curlf,) =0, (1)
AY = —(, (2)
V =curl?, (3)

with 1, g% known at the boundary. In the above, f, is the external body force, V is the velocity
vector, % stands for the derivative normal to the boundary and Re denotes the Reynolds num-
ber. Both the above field equations (1), (2), when expressed in terms of a curvilinear, orthogonal
reference system (€ = f(z,y), n = g(z,y)), take the generic form

a<D55 -+ bénﬂ - d(bg — 5@,, =R (4)

where a(¢,7) = 22+ f,2, b(€,1) = g2 + 0,2, @(6:1) = @u — (fow + fi), 3(€,7) = 5u — (922 + 9uy)
and the subscripts denote the respective derivatives ((z,y) are the cartesian coordinates of the
physical domain). In the case of the vorticity transport equation, one should substitute ® = (,
R = —Re: curlf,, q. = Re - ¥y(fe9y — fy9z), S« = —Re - Y¢(fzg9y — fy9z). In the case of the
equation describing streamfunction, ® = ¥, R = —(, ¢« = s« = 0 should be substituted into
Eq. (4). It is assumed that functions f and g, responsible for the mapping, are known together with
their respective derivatives.

The fourth-order compact discretization scheme for the generic equation (4), introduced by
Rokicki and Floryan [5], has a functional form similar to that obtained by Dennis and Hudson [2]
for a cartesian reference system, i.e.

—do®o + (d1®1+ -+ dg®s)+ Bo = 0. (5)

It has been derived by an analogous procedure (lower numerical subscripts refer to nine points of the
computational molecule shown in Fig. 1). It has been shown [5] that a further generalization of the
algorithm to nonorthogonal coordinate systems is not possible on the basis of 9-point computational
molecules without a loss of accuracy.

The actual functional dependence of By, do,...,dg on a, b, §, §, R and h can be found in the
Appendix (h denotes the grid step size in the computational plane). The system of linear equations
resulting from (5) is solved by the simple Gauss-Seidel relaxation procedure with the nonlinear
terms being updated after every few iteration cycles [4].



Parallelization of the compact methods 149

S -hed e Soea Ui
69
n <>3 <}O <>1 42
5 A 5 J= 1+
it & & .

0 0+
é ///////7///7///5

Fig. 1. Sketch of a typical computational molecule Fig. 2. Sketch of a typical computational molecule on
the boundary of the solution domain

The solution algorithm considered here has a classical structure. Its main steps are listed below
in order to simplify discussion in the remainder of the paper. These steps are as follows (regardless
of the discretization method and the type of coordinates):

1. Initialize the vorticity field ¢ in the flow region {2 and at the boundary I'.
2. Solve Eq. (2) for the streamfunction with the Dirichlet boundary conditions.

3. Calculate the first derivatives of the streamfunction (i.e. velocity) to update the coefficients §
and § in (4).

4. Correct the boundary value of vorticity in order to satisfy the Neumann boundary condition for
streamfunction.

5. Solve the linear PDE for vorticity (1), (4) with the Dirichlet boundary conditions determined
in step 4.

6. Check the convergence of vorticity { and streamfunction . If there is no convergence proceed
to step 2.

In actual calculations, only a few iterations of the discretized vorticity and streamfunction equa-
tions are to be carried out at each step of the external iteration procedure described above. If these
equations were solved exactly at each step, the general algorithm would become very unstable and
significant underrelaxation would be required for the vorticity boundary formula (step 5).

In order to impose the boundary condition for the normal derivative of ¢ (step 4), an algebraic
boundary formula for vorticity has to be employed. Contrary to the statement of Gupta [3], low
order formulas, e.g. of second- or first-order accuracy, cannot be used without negatively affecting
overall accuracy as shown in [4]. The fourth-order implicit boundary formula for vorticity has
been developed for cartesian reference system by Rokicki and Floryan in [4]. Generalization of
this formula to the curvilinear coordinate system is given in [5]. The description is limited here
to the case of an impermeable, non-slip boundary corresponding to a line n = const, with the
computational domain located above (A = 1) or below (A = —1) this line (see Fig. 2). In this case,
the formula can be conveniently written with Z = (/b instead of (, which results in

Bo+Zo+ + poZo + po-Zo- = 121 + paZa + p3Zs + p14+ Z14 + p1-Z1- + 15P. — 3AP.R®  (6)

where Zoy, Zo, Zo— , which are related to the vorticity at the boundary, are considered unknown
(lower subscript refers to the points in the computational molecule shown in Fig. 2). The coefficients



150 J. Rokicki and J.M. Floryan

u and P, are given as

po = 23 — 4A — 9S5h/2 — (55% — 108,,)h?, ot = 2A £ 5Qh/2,
s = —16+6A — 4Sh, w+ = —3A4A,
;Lg:ll—Sh/Q, u3=—2,

P. = —(8%1 — Tiho — 12) /b2,
P, = (ASEE =35, + 255n)¢nn . (2AS€ +5Q - 3Qn)¢€nn
e (52 P 3Sn)¢vmn - 4 (—3An 5 2AS)¢55,,,, = Q’»bfmm )

where A = a/b, @ = —G/b, S = —5§/b and the subscript 0 on the right hand side is omitted
in order to simplify the notation. In the above formula, S, has to be evaluated with a standard
second-order finite-difference formula. All other derivatives found in the formula defining P, have to
be calculated with first-order accuracy. In the special case of a rectangular grid (A =1, @ = S =0)
the formulas above are reduced to those derived in [4].

Equation (6) written for each grid point along the boundary (except corners) results in a system
of linear equations with a tridiagonal matrix of coefficients. This matrix remains diagonally domi-
nant if (i) 23/8 > a/b and (ii) the step size h is sufficiently small. The numerical cost of obtaining
the solution is negligibly small in comparison with the cost of a single iteration of the discretized
field equations.

3. PRESSURE PROBLEM

Let us suppose now that the streamfunction ¢ and the vorticity ( form an exact solution of the flow
problem (1-3). The corresponding pressure field p can be recovered from the momentum equation.
After a suitable transformation (see [4, 7]), this momentum equation takes the following simple
form

Vw=G (7)
where
curl |2
= % + p, (8)
curl(
G =-(Vyp- P + £ (9)

and curl denotes the vector operator introduced in Section 2. The new variable w defined above
can be interpreted as the total pressure (for simplicity we set density p = 1). Equation (7) has a
unique (within a constant) solution [4] provided 1 and { form a true solution of (1-3).

Since it is more convenient to work with the second- rather than the first-order PDE, we take
the divergence of (7) and obtain the Poisson equation for the total pressure w

Aw= (- V. V(+dive, (10)

where - denotes the scalar product. The Neumann and Dirichlet boundary condition for w can either
be obtained by projecting (7) onto the normal unit vector n at the boundary T, or by projecting
it onto the tangent unit vector 7 and integrating along the boundary, i.e.

ow

a—nF—G'n, (11)
ow ow

ool = G w|r_/5;dt_/e-rdt, 35 s (12)




Parallelization of the compact methods 151

The equation (7) and the Poisson problem (10), (12) are not fully equivalent if the boundary
consists of disjoint parts (e.g. the integration constant in (12) may have different values on each
part of the boundary). The reader is referred to [4] for a detailed discussion on this subject.

In the orthogonal reference (£, ) system (from now on, we assume that f. = 0), the right hand
side of (10) takes the following form

2= (Welea+ ¥y (yb). (13)

Similarly, formulas (12) transform to
a
wy = —(Yn + (C&/Re)a‘e"{ > (14)

b
we = —(¥¢ = (Cn/ Re) 7 (15)

where a and b are defined as in (4) and det = frg, — fy9: #0.

The Poisson equation (10) is discretized with the finite-difference scheme described in Section 2,
where, in Eq. (4), ® is interpreted as w, R denotes the right hand side of (10), i.e. (13) and
¢« = S» = 0. The main numerical difficulty in implementing the proposed algorithm consists in
calculating the first derivatives of vorticity in (15) and (14) with fourth-order accuracy. This can
be accomplished by means of the standard second-order formulas supplemented by the vorticity
transport equation (1) to eliminate higher-order terms (see [5]).

In the above procedure, the Dirichlet boundary conditions are used because they are easier to
implement in the higher-order schemes studied here.

4. NUMERICAL TESTING

We have employed two different methods to verify the accuracy of the proposed algorithm. In the
first method, an artificial exact solution is compared with a corresponding numerical solution [4]. In
the second method, accuracy is estimated by repeating calculations on a sequence of grids (with a
diminishing grid size). The second approach is presented here. The flow between eccentric cylinders
is considered in the test problem. The inner cylinder (of radius 1) rotates with the unit angular
speed, the outer cylinder (of radius 2) remains at rest.

The typical vorticity pattern is presented in Fig. 3 and the estimated relative error of vorticity is
displayed in Fig. 4 for a wide range of Reynolds numbers (the Reynolds number is defined here as
reciprocal of the kinematic viscosity). The results shown in Fig. 4 confirm that the finite-difference
algorithm introduced here is fourth-order accurate.

For this test problem, the periodicity of the pressure field had to be imposed by modifying the
boundary value of the streamfunction, which makes the solution algorithm slightly more compli-
cated. The constant value of the streamfunction is known only on one of the cylinders (e.g. on
the inner one % = 0). On the other one, i.e. on the outer cylinder, the streamfunction is constant
¥ = 1y, but the value of v, is not known in advance (¢, describes the net mass flow between
cylinders). However, for any fixed 1, it is possible to obtain the flow solution (using the algo-
rithm described in previous Sections) and, afterwards, to obtain the pressure field as described in
Section 3.

The streamfunction and vorticity fields are periodic with respect to ¢ but the pressure is not
periodic in general and has a jump dpes

dPres:/ G- Tdt, tey, (16)
i 4

where 7 denotes an arbitrary curve surrounding the inner circle (dpres does not depend on the
particular choice of ). The actual value of dpyes is a nonlinear scalar function of v, . Therefore, the
usual iteration algorithm has to be supplemented by an additional step in which %, is iteratively



152 J. Rokicki and J.M. Floryan

i B
S
10 ™
14
Ll
-5
5 10
=
Si0- - 12
m10 I
s 2 18
10~ = 200
#4wnk Re = 400
. =-==-=- const*h
10 SRR G B T
0.01 0.1
STEP: SiZEs:h
Fig. 3. Vorticity distribution for Re = 200 Fig. 4. Estimated relative vorticity error

modified to obtain dpres = 0 (we used the simplest secant method). Ideally, dpyes can be calculated
by integrating (15) along any 7. However, the most obvious choice is to take any interior line
n = const. In our tests, we calculated dpres on a few such lines and took the mean value. This
allowed us to obtain a good approximation of dpes even from values of ¥ and ¢ that have not yet
completely converged (it would have been a waste of computer time to calculate fully converged %
and ¢ for 1, that had not yet converged).

5. DOMAIN DECOMPOSITION

The domain decomposition methodology consists in dividing the computational domain into over-
lapping subdomains and solving the original problem on each subdomain separately, with the
appropriate transfer of boundary information between the neighbouring subdomains. Since calcu-
lations on each subdomain can be carried out simultaneously on different processors, this procedure
offers an opportunity for tremendous acceleration of calculations.

The success of domain decomposition in accelerating the overall calculations depends most
crucially on the strategy of information transfer between different subdomains. Two obvious issues
are (i) what type of information should be transferred and (ii) what the size of the overlap domain
should be. These questions can partly be answered by identifying and analysing the transfer matrix
for a simple model problem. Our analytical results show that the convergence rate for a linear
problem with two subdomains is ~(1 — §3) for the transfer of (2/), ) and ~(1 — §) for the transfer
of (9, (), where § denotes the size of the overlap domain. These results suggest that the former
type of information transfer may be impractical. Numerical experiments with the full Navier-Stokes
equations confirm these predictions and show lack of convergence in the case of the transfer of
(¢,§ ). Acceleration of calculations due to multiprocessing has been investigated with the use of
computational examples discussed in [4].

In our calculations, the solution domain (square) was subdivided into k equal size subdomains
and multiprocessing was simulated on a single processor with the appropriate information transfer.
The overlap between subdomains was characterized by §, which in that case was half the width of
the overlapping rectangle. The calculations were performed for different values of é, including the
smallest possible overlap 26 = h, where h stands for the discretization step size.

It is interesting to check whether domain decomposition can influence effective accuracy of the
discretization schemes. The results of our numerical experiments show no such effect, i.e. in all
cases fourth-order accuracy of the solution is maintained.



Parallelization of the compact methods 153

The acceleration of calculations due to the use of several processors, each one serving a different
subdomain, is best described by defining an acceleration factor in the form

W(K)

A(K) = 70

where W(K) stands for the work effort associated with K processors (serving K subdomains) and
W(1) denotes the work effort of a single processor (single domain calculations). The acceleration
factor cannot exceed the number of processors K which defines the theoretically possible maximum
acceleration of calculations. If A(K) is less than one, the application of domain decomposition
brings no benefits. The work effort of a hypothetical K-processor computer can be defined as

W(K)=[1+ OVL(&)]—A—,%—) "
In the above equation, N(K) stands for the total number of cycles of the Navier-Stokes solver.
The work effort is reduced by the factor K because each of K processors serves 1/K part of the
total grid, but it is increased by the factor (1 + OVL(6)) because the total number of grid points
increases due to the overlap between subgrids. Here, OVL(§) ~ § < 1. The work effort of a single
processor computer W(1) is simply equal to the number of cycles N (1) of the Navier-Stokes solver.

The results shown in Fig. 5 demonstrate that it is possible to come very close to the theoretically
possible maximum acceleration rate. These results also show that the advantage of multiprocessing
increases with the increasing problem size.

10+

8- Gessa 4 SUBDOMAINS
1 aaeth 9 SUBDOMAINS

ACCELERATION FACTOR
<

& =

7 %

2]

%

Ou'é'é"1 L Y R B
SrEP - SIZE h

Fig. 5. Computation acceleration due to the use of several processors, each one serving a different

subdomain

6. PARALLEL COMPUTATIONS

Domain decomposition concepts can be applied in various ways. At one extreme, a single domain
is served by a single processor. In the opposite extreme, the number of subdomains equals the
number of grid points, each grid point being served by a different processor. The utility of the
latter approach is illustrated below for the case of viscous flow in a periodic rectangle [4]. The
formulation of the problem and the solution algorithm are as described in Section 2.



154 J. Rokicki and J.M. Floryan

We have selected three computing platforms for testing purposes. The first one consists of a
personal computer with a 486-66MHz processor, 8 MB memory, DOS-6 operating system and the
Lahey EM/32 Fortran compiler version 3.01. The second one consists of an Iris-Indigo workstation
with an R-4000 processor, 32 MB memory, IRIX 4.0.5F operating system and the SGI Fortran 77
compiler version 3.10. The third one uses a MasPar MP-2 massively parallel computer with an
array of 64 x 32 (2048) processors of 64kB memory each, running under MasPar/Ultrix Operating
System version 3.2.2 with the MasPar Fortran compiler version 2.2. The first two compilers are
compatible with Fortran 77 standards, while the last one uses Fortran 90 concepts. All coding has
been done with double precision arithmetics.

The test problem that forms the basis for the following discussion involves a steady flow of
viscous incompressible fluid in a rectangular domain with the Reynolds number Re = 10, subject
to the following boundary conditions at the upper and lower boundaries:

%=4=0 3 y=0_ 8 2 (17)

<z<L2,
<z<2, (18)

u =sin®(rz), v =0, oyl U
and periodic conditions in the z direction, with the length of one period equalling 2. In the above, u
and v stand for the z and y components of the velocity vector, respectively. Our boundary conditions
are specially selected in order to include a mix of conditions found in typical application problems.
The rectangular shape of the solution domain results from the structure of the processors’ array
in the MasPar computer and from our desire to work with the same grid step size in the z and y
directions.

The program, written originally for the MasPar computer, uses Fortran 90 array instructions in
order to allow for the maximum and most efficient parallelization. This program has been translated
into Fortran 77 (to use on sequential computers) in such a way that both versions are arithmetically
equivalent, i.e. (i) they perform the same number of useful additions and multiplications and (ii)
they deliver exactly the same results.

Calculations have been carried out on a progressively more and more refined grid, beginning
with an 18 X9 grid and ending with a 256 x 128 grid. Storage matrices were declared in multiples
of 64 X 32 segments in order to simplify the mapping between the array of processors and the grid
points in the case of the MasPar computer. When the grid size was smaller than the number of
processors, some of them were performing useless work. When the grid size was exactly 64 x 32, all
processors were performing useful work. When the declared size of matrices was larger than 64x32,
the matrices were automatically partitioned (by the operating system) into 64x32 segments. Again,
if the grid happened to be such that not all elements of the matrices were utilized, some processors
would perform useless work during a certain part of the computational cycle.

The increase in the size of the declared matrices caused an increase in the required core memory.
Tests were carried out up to the 128x64 grid in the case of the personal computer because of memory
limitations. The memory available in the two remaining computers was sufficient for the in-core
calculations for all the tests quoted.

The efficiency of a particular computer may depend on the overall size of the solution problem.
In order to compare various machines , we divided the overall time required to carry out calculations
by the number of iterations and the number of grid points. This gave us the time required to serve
one grid point during one iteration. The inverse of this quantity gave us the speed of calculations.
We estimated that one unit on this speed scale corresponds to roughly 4 x 107 additions and
multiplications (double precision) per second. Also, we typically calculated 10 iterations in the
tests in order to improve accuracy of time measurements.

In the first test, we used Jacobi iterations on all computers. We showed that calculations were
arithmetically equivalent, i.e. the results were identical on all computers after the same number
of iterations and with the same initial guess. We also showed that fourth-order accuracy was
maintained on all machines and that it was possible to get convergence up to machine accuracy,
regardless of the type of machine.



Parallelization of the compact methods 155

Figure 6 presents the results of our tests. It can be seen that the speed of calculations on
single processor (sequential) machines remains essentially constant regardless of the problem size,
the Indigo being about 10 times faster than the PC. We noted significant deterioration of the
performance of Indigo in the case of a 256 x 128 grid, which required no more than 16-17 MB
of core memory. The same test was repeated on a Challenger machine with an R-4400 processor
and 128 MB memory and the conclusions were the same. This significant deterioration of the
performance of the Silicon Graphics machines is due to the problems in the caching algorithm
encountered when the declared matrix size is a power of 2 (256 = 28). The problem disappears
after changing the size of the declared matrices to 257 x 129, for example.

1

CaBso8a PC — 64x32
00600 PC — 128x64
cessg IN — 64x32
00000 IN — 128x64
000 IN — 192x96
ikt IN — 256x128
cessa MP — 64x32
00000 MP — 128x64
GeeeO MP — 192x96
*hiit MP — 256x128

0.1

SPEED OF CALCULATIONS

0.01 g iyl 0-9-90

$ 2 3T HACF e YL 2
10 100
NUMBER OF GRID POINTS IN THE y DIRECTION

Fig. 6. Calculation speed for different grid sizes with storage matrices declared as 64x32, 128x64, 192x92 or
256 x128. PC, IN and MP denote personal computer, Indigo workstation and MasPar computer, respectively

The results of the tests performed by the MasPar computer with 64 x 32 matrices show a linear
increase in the effective speed of calculations with an increase in the number of grid points (Fig. 6).
This is due to the fact that an increasing number of processors participate in the calculations as the
number of grid points increases. MasPar is about 2.5 times slower than Indigo on an 18x9 grid, but
it is about 8 times faster on a 64x32 grid. The increase in the size of matrices to 12864 required
their automatic partitioning (by the operating system) into four 64 x 32 segments for mapping into
the array of processors. This caused deterioration of the performance by about 30%. Again, the
speed of calculation increased with an increasing number of grid points due to better utilization of
the available processors. Matrices of size 192 x 96 required partitioning into nine 64 x 32 segments,
and those of size 256128 required partitioning into sixteen 64x32 segments. The presence of these
additional segments caused no additional deterioration of the performance of MasPar (see Fig. 6).
If we eliminated the 256 x 128 grid from our considerations (due to the substandard performance
of Indigo), MasPar would be at best only about 6 times faster than Indigo and only if the grid
structure were such that all the processors were fully utilized. An inappropriate declaration of
matrices can make MasPar five times slower than Indigo (see the case of a 64 x 32 grid in Fig. 6).

In the second test, we compared the efficiency of the Jacobi and Gauss-Seidel iterative procedures
on the Indigo machine. This was done in order to assess loss of performance on parallel machines
due to the use of a less effective algorithm. The test consisted in finding a solution to our test
problem with the same grids, the same convergence criteria and the same relaxation parameters
(relaxation parameters were kept constant regardless of the Reynolds number and no attempt was
made to optimize them). On the average, our results show about 20% decrease in computational
effort due to the use of the Gauss-Seidel rather than Jacobi iterations. This makes the Indigo



156 J. Rokicki and J.M. Floryan

workstation only 5 times slower than the MasPar computer. Computational details are described
in [6].

APPENDIX

The fourth-order discretization scheme for the generic equation (4) is not restricted to equations of
the Navier-Stokes type. Indeed, this discretization is valid for all PDE of generic form (4) provided
a>0,b>0and all a, b, §, § are sufficiently regular functions of ¢ and 7. The free term Bp in (4)
is expressed as

h h h
By = —h? [830 + Riao (1 - qu) + R3ybo (1 - s—%—) + R3ao (1 + q_(;’_g) + Ribo (1 + f%—)]

with R' = R/a, R" = R/b, s = 3/b, ¢ = {/a, and the subscripts refer again to points shown in
Fig. 1. The coefficients d; in (4) are expressed as

do = Doo + Do2h?,

di/3 = D10 F Diih + Dyph® £ Dlsh—;, ds/e = Dso + (Ds11 & DSIZ)g : = Dszﬁ;,
dyja = D30 F Darh + Dysh® £ Dzsh—;, d7/8 = Dso — (Ds11 D512)g + Dsz%z

and the coefficients Dqg, ..., Dss have the form
Doo = 20Ds0 = 20(ao + bo) , Dip-= 10ag = 2by;
Doz = 2[ao(go® — 240 + bieo — Soano) + bo(S0® — 2850 + apy0 — Gobko)],  Dao = 10bg — 240,
D11 = Go(5 — bp) + 2a0bgg D12 = ao(g0® — 2g¢0) — alod0 + arnobo s
Day = 30(5 — ag) + 2boayg , Doy = bo(s0® — 200) — bgodo + bieoo ,
Di3 = aoqogeo + Sodp0 — (@0geco + bodrno) » Ds11 = 2boa,g — So(ap + 1),
D23 = GoSgo + bososyo — (@os¢eo + bosnno) Ds12 = 2a0bfo — Go(bo + 1),

Ds3 = Gosg + 8040 — 2(a0szo + bodno) »

where b’ = b/a, a' = a/b, s’ = 3/a, ¢’ = G/b, lower indices £ and 7 denote differentiation in the
corresponding directions and subscript 0 on the right hand side corresponds to point 0 in Fig. 1.
fé=z, n=y,wehaveq. =G=¢g=¢, ss =8§=s=¢, a=>b=1,and all derivatives of a
and b vanish. In this case, the above formulas for d;, (j = 0, -, 8), are reduced to those derived by
Dennis and Hudson [2]. The special case of £ = f(z) and n = g(y) is equivalent to the generation
of a non-uniform rectangular grid in the original flow domain (z, y) with a uniform square grid in
the computational domain (¢, 7).

All the first and second derivatives of coefficients a, b, @', b', s, &', q, ¢’, necessary to evaluate
coefficients d;, can be calculated with the usual second-order finite-difference formulas without
compromising fourth-order accuracy of the scheme (cf. [4]). All coefficients, however, have to be
evaluated with fourth-order accuracy (cf. [2, 4]). This means that fourth-order formulas for the first
derivative of the streamfunction are required to calculate ¢, and s. in (4). Such accuracy can be
obtained by means of both the streamfunction and the vorticity grid data.

ACKNOWLEDGEMENTS

This work has been supported by the NSERC (Natural Sciences and Engineering Research Council)
of Canada.



Parallelization of the compact methods 157

REFERENCES

[1] S.C.R. Dennis, J.D. Hudson. A difference method for solving the Navier-Stokes equations. In: C. Taylor et al.,
eds., Proceedings of the First International Conference on Numerical Methods in Laminar and Turbulent Flow,
69-80, Pentech Press, London, 1978.

[2] S.C.R. Dennis, J.D. Hudson. Compact h* finite-difference approximations to operators of Navier-Stokes type. J.
Comput. Phys., 85: 390-416, 1989.

[3] M.M. Gupta, R.P. Manohar. Boundary approximations and accuracy in viscous flow computations. J. Comput.
Phys., 31: 265-288, 1979.

[4] J. Rokicki, J.M. Floryan. Multiprocessor implementation of the compact finite-difference method for the
Navier-Stokes equations. Ezpert Systems in Fluid Dynamics Research Laboratory, Report ESFD - 3/93, De-
partment of Mechanical Engineering, The University of Western Ontario, London, Ontario, Canada, 1993.

[5] J. Rokicki, J.M. Floryan. Compact fourth-order algorithm for the Navier-Stokes equations in terms of general
orthogonal coordinate system. Ezpert Systems in Fluid Dynamics Research Laboratory, Report ESFD - 5/93,
Department of Mechanical Engineering, The University of Western Ontario, London, Ontario, Canada, 1993.

[6] J. Rokicki, J.M. Floryan. Flow simulations on massively parallel computers. Ezpert Systems in Fluid Dynamics
Research Laboratory, Report ESFD - 1/94, Department of Mechanical Engineering, The University of Western
Ontario, London, Ontario, Canada, 1994.

[7] J. Rokicki, A. Styczek. How to calculate pressure out of velocity and vorticity fields. Archiwum Budowy Maszyn,
XXXIX, 74, 1992.



