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The aim of the present paper is to revisit some known truss optimization problems by applying the genuine
Strongin and Sergeyev’s algorithm of the global search [8]. By employing the space-filling Hilbert-Peano-
type curves, the wide class of non-convex and multidimensional constrained global optimization problems
is reduced to one-dimensional ones. Then, the global minimum of the objective function in one-dimensional
problem can be effectively found by means of Multivariate Index Method (MIM) that can be treated as a
special version of one-dimensional Global Search Algorithm (GSA) over the set of open intervals adopted
to constrained problems.

1. INTRODUCTION

Global optimization tools became very important components of effective algorithms in science,
economics and engineering. Due to the existence of multiple local optima that differ from the
global solutions, many problems in engineering design and control cannot be solved by classical
nonlinear programming techniques. During the past few decades many new theoretical, algorithmic
and computational tools of global optimization have been proposed and elaborated. We mention
here only about few new ideas. The most popular algorithms base on statistical methods. The
evolution and genetic algorithms (see e.g. [6]) are still regarded as the most effective and simple in
implementation. Another very interesting branch of global optimization techniques has its source in
real interval analysis [3]. More mathematically advanced methods base on Morse Theory, Karush-
Kuhn-Tucker points and Chebyshev Approximation [4]. Yet another method of global optimization
bases on very original idea of reducing multidimensional constrained optimization problems to one-
dimensional ones. The foundation of this method is the theory of space-filling Hilbert-Peano-type
curves [8]. The aim of the present paper is to put forward a short description of the idea of the
latter method and show its application in finding the optimal shapes of latticed shells, parameterized
by small number of design variables being coefficients of the Bernstein polynomials used to model
the overall shape of the structures. It turns out that this method compares favorably with other
available global optimization methods. As to the best author’s knowledge the method discussed has
never been applied to structural optimization.

2. ONE-DIMENSIONAL GLOBAL OPTIMIZATION UNDER NON-CONVEX CONSTRAINTS –

SHORT DESCRIPTION OF THE INDEX APPROACH

The aim of this section is to recall the most important ideas of the one-dimensional global opti-
mization method basing on Chapter 6 of the monograph [8].
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Let us consider the constrained one-dimensional global minimization problem

φ (x∗) = min
x∈[a,b]

{

φ(x)
∣

∣ ∀1 ≤ i ≤ m gi(x) ≤ 0
}

(1)

where the objective function gm+1 = φ and constraints functions gi (i = 1, . . . ,m) are assumed to
be Lipschitzian with constants Li (i = 1, . . . ,m,m+ 1), i.e.,

∀i ∈ {1, . . . ,m,m+ 1} ∃Li ∈ (0,∞) ∀x′, x′′ ∈ [a, b]
∣

∣gi
(

x′′
)

− gi
(

x′
)
∣

∣ ≤ Li

∣

∣x′′ − x′
∣

∣ (2)

and, in general, are assumed to have many local minima which is characteristic for non-convex
functions. Additionally we assume that each function gi (i = 1, . . . ,m) is defined and computable
only in the following subinterval Qi (i = 1, . . . ,m,m+ 1) of the domain [a, b]:

g1 : Q1 → R, Q1 = [a, b] ,

g2 : Q2 → R, Q2 =
{

x ∈ Q1

∣

∣ g1(x) ≤ 0
}

,

...

gm : Qm → R, Qm =
{

x ∈ Qm−1

∣

∣ gm−1(x) ≤ 0
}

,

gm+1 : Qm+1 → R, Qm+1 =
{

x ∈ Qm

∣

∣ gm(x) ≤ 0
}

.

(3)

Introducing the empty set Qm+2 = ∅ we have the obvious inclusions:
[a, b] = Q1 ⊃ Q2 ⊃ . . . ⊃ Qm+1 ⊃ Qm+2 = ∅ (4)

and we can rewrite the problem (1) as

φ (x∗) = min
x∈Qm+1

gm+1(x). (5)

For each x ∈ [a, b], it is convenient to define the number ν = ν(x), called index, by the relations

x ∈ Qν ∧ x /∈ Qν+1 (6)

and the maximum value M of index ν(x) over [a, b]

1 ≤M = max
x∈[a,b]

ν(x) ≤ m+ 1. (7)

The introduced above notions, allow us to define an auxiliary problem

g∗M = gM (x∗M ) = min
x∈QM

gM (x) (8)

which always has a solution because the set QM is non-empty. It can be proved very easy that
incompatibility of the constraints of the problem (1) (i.e. when M < m+1) implies g∗M > 0. In the
case when M = m+1 (a well defined problem (5)) the solution g∗M of the problem (8) is the solution
of the primary problem (5) and any three relations: g∗M < 0 ∨ g∗M = 0 ∨ g∗M > 0 are possible
and admissible. The main idea of Strongin and Sergeyev’s approach is to rearrange the conditional
problem (8) to the unconstrained problem:

Φ (x∗) = min
x∈[a,b]

Φ(x) (9)

where

Φ(x) =

{

gν(x) for ν = ν(x) < M,

gν(x)− g∗M for ν = ν(x) = M.
(10)

The problems (8) and (9) have the common sets of global minimizers, since function Φ(x) is strictly
positive at all points which are not a solution of (8), while it vanishes at points which are a solution.
Below, the very short description of the index method of global optimization (IMGO) is presented
(see [8], p. 385).
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IMGO Algorithm

Rule 0. The first trial is to be carried out at an arbitrary interior point x1 ∈ (a, b). The choice of
the point xk+1, k ≥ 1 is determined by the following rules:

Rule 1. Renumber the points x1, . . . , xk of the previous trials by subscripts in increasing order of
the coordinate, i.e.

a = x0 < x1 < . . . < xi < . . . < xk < xk+1 = b (11)

and juxtapose to them the values zi = gν (xi), ν = ν (xi), 1 ≤ i ≤ k computed at these points.
Points x0 = a, xk+1 = b are introduced into the series (11) as the additional ones with undefined
values z0, z1.

Rule 2. Classify all subscripts i, 1 ≤ i ≤ k in the series (11) with respect to the number of
constraints met at the corresponding points xi by constructing the sets

∀ν ∈ {1, . . . ,m+ 1} Iν =
{

i ∈ {1, . . . , k}
∣

∣ ν = ν (xi)
}

. (12)

Boundary points x0 = a, xk+1 = b are interpreted as having zero indices, i.e. ν (x0) = ν (xk+1) =
0 and their numbers constitute the set

I0 = {0, k + 1} . (13)

Rule 3. Find the sums of the above sets

S1 = I0,

S2 = I0 ∪ I1,

...

Sm+1 = I0 ∪ I1 ∪ . . . ∪ Im−1 ∪ Im,

(14)

and construct the sets

T1 = I2 ∪ I3 ∪ . . . ∪ Im ∪ Im+1 ∪ Im+2,

T2 = I2 ∪ . . . ∪ Im ∪ Im+1 ∪ Im+2,

...

Tm+1 = Im+2,

(15)

where Im+2 = ∅.

Rule 4. Compute the running lower bounds

µν = max
i,j∈Iν

{ |zi − zj |
xi − xj

∣

∣

∣

∣

i > j

}

(16)

for the unknown Lipschitz constants Lν of the functions gν , 1 ≤ ν ≤ m+1. If the set Iν contains
fewer than two elements or if µν = 0, assume that µν = 1.

Rule 5. For all non-empty sets Iν , 1 ≤ ν ≤ m+ 1, find the values

z∗ν =

{

min
i∈Iν

zi if Tν = ∅,
0 if Tν 6= ∅.

(17)
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Rule 6. For each interval (xi−1, xi) , 1 ≤ i ≤ k + 1 compute the descriptor R (i) as follows

R (i) = ∆i +
(zi − zi−1)

2

r2νµ
2
ν∆i

− 2 (zi + zi−1 − 2z∗ν)

rνµν

if i− 1 ∈ Iν , i ∈ Iν

R (i) = 2∆i −
4 (zi − z∗ν)

rνµν
if i− 1 ∈ Sν , i ∈ Iν

R (i) = 2∆i −
4 (zi−1 − z∗ν)

rνµν
if i− 1 ∈ Iν , i ∈ Sν

(18)

where

∆i = xi − xi−1, 1 ≤ i ≤ k + 1 (19)

rν > 1, 1 ≤ ν ≤ m + 1 are the input parameters of the algorithm, which allows us, by proper
choice of rν , to use the product rνµν as an upper bound for Lipschitz coefficient Lν .

Rule 7. Select the interval (xt−1, xt) with the maximal descriptor

R (t) = max
1≤i≤k+1

R (i) (20)

and execute the next trial at the middle point of the interval if the end-points indices are different,
i.e.,

xk+1 =
xt + xt−1

2
, ν (xt−1) 6= ν (xt) . (21)

Otherwise, execute the next trial at the point

xk+1 =
xt + xt−1

2
− zt − zt−1

2rνµν
, ν (xt−1) = ν (xt) . (22)

These rules may be appended with the termination criterion

xt − xt−1 ≤ ε (23)

where ε > 0 is the preassigned accuracy of search.

Theorem 1 (sufficient convergence conditions). Assume that the following conditions are satisfied:

1. Each domain Qi, 1 ≤ i ≤M , is a finite union of positive length intervals.

2. Each function gi(x), x ∈ Qi, 1 ≤ i ≤M , admits a Lipschitzian (with the constant Li) extension
throughout [a, b], i.e., gi(x) = Gi(x), x ∈ Qi, 1 ≤ i ≤M .

3. Since some step (i.e. if k in (11) is sufficiently large) the values µν, 1 ≤ ν ≤ M satisfy the
inequalities

rνµν > 2Lν , 1 ≤ ν ≤M. (24)

Then:

I. Any limit (cluster) point x of the sequence
{

xk
}

generated by the decision rules of the IMGO for
the problem (8) at ε = 0 in the termination criterion (23) is the solution to this problem. It is
the solution to the problem (1) if M = m+ 1.

II. Any point x∗M from (8) is the limit (cluster) point of the sequence
{

xk
}

generated by the IMGO.

In monograph [8] one can find also specific methods of acceleration of the search with local tuning
for solving problems with non-convex constraints, which can significantly improve effectiveness of
the presented algorithm IMGO.
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3. APPLICATION OF THE SPACE FILLING CURVES IN OPTIMIZATION PROBLEMS WITH

ARBITRARY NUMBER OF DESIGN VARIABLES

Let us consider the constrained global minimization problem

φ∗ = φ (w∗) = min
w∈S

{

φ(w)
∣

∣ ∀1 ≤ i ≤ m gi(w) ≤ 0
}

(25)

where

S =
{

w = [w1, . . . , wN ]T ∈ R
N
∣

∣ ∀j ∈ {1, . . . , N} aj ≤ wj ≤ bj

}

. (26)

It appears that much more convenient is to examine the following constrained global minimization
problem

φ∗ = φ (y∗) = min
y∈D

{

φ(y)
∣

∣ ∀1 ≤ i ≤ m gi(y) ≤ 0
}

(27)

where

D =

{

y = [y1, . . . , yN ]T ∈ R
N
∣

∣ ∀j ∈ {1, . . . , N} − 1

2
≤ yj ≤

1

2

}

. (28)

Simple transformation (see [8]) of the hyper parallelepiped S onto D allows us to keep up the domain
of search (28) (which is assumed to be the standard one) instead of the domain (26).

Similarly as in (1), the objective function gm+1 = φ and constraints functions gi (i = 1, . . . ,m)
are assumed to be Lipschitzian with constants Li (i = 1, . . . ,m,m+ 1), i.e.,

∀i ∈ {1, . . . ,m+ 1} ∃Li ∈ (0,∞) ∀ y′ =
[

y′1, . . . , y
′
N

]T
, y′′ =

[

y′′1 , . . . , y
′′
N

]T ∈ D

∣

∣gi(y
′′)− gi(y

′)
∣

∣ ≤ Li

∥

∥y′′ − y′
∥

∥ = Li

√

√

√

√

N
∑

j=1

∣

∣

∣
y′j − y′′j

∣

∣

∣

2 (29)

and, in general, are assumed to have many local minima (non-convex functions).
A possible way to present the problem (27) by its multi-dimensional equivalent, which may be

effectively solved using the techniques similar to those presented in IMGO algorithm is to employ
a single-valued Hilbert-Peano curve y = y(x) continuously mapping the unit interval [0, 1] on the
x-axis onto the hypercube (28), yielding the equality

φ∗ = φ (y∗) = φ [y (x∗)] = min
x∈[0,1]

{

φ [y(x)]
∣

∣ ∀1 ≤ i ≤ m gi [y(x)] ≤ 0
}

. (30)

A brief history of the mapping problem: interval → square

In 1878 Georg Cantor constructed the mapping

y : [0, 1]→ [0, 1] × [0, 1] ⊂ R
2 (31)

which is injection

∀x′, x′′ ∈ [0, 1] x′ 6= x′′ ⇒ y
(

x′
)

6= y
(

x′′
)

(32)

and surjection

∀z ∈ [0, 1]× [0, 1] ∃x ∈ [0, 1] z = y(x) (33)

(bijection from [0, 1] onto [0, 1] × [0, 1]). The mapping y is not continuous.
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In 1890 Giuseppe Peano and in 1891 David Hilbert constructed the mapping (31) which is a
continuous surjection,

∀x ∈ [0, 1] ∀ {xn} ⊂ [0, 1] lim
n→∞

xn = x⇒ lim
n→∞

y (xn) = y(x) (34)

but is not an injection

∃x1, x2 ∈ [0, 1] (x1 6= x2) ∧ [y (x1) = y (x2)] (35)

In 1911 Luitzen Brouwer proved that a continuous mapping

y : [0, 1]→ [0, 1] × [0, 1] ⊂ R
2 (36)

which is injective, surjective and y−1 : [0, 1]× [0, 1]→ [0, 1] is continuous does not exist.
Finally, the following definition of the space-filling curve was adopted in [8]: the single-valued

continuous correspondence y(x), mapping the unit interval [0, 1] on the x-axis onto the hypercube
D from (28), is said to be Hilbert-Peano-type curve (HP curves) or space-filling curve. The various
computable approximations to the HP curves were suggested in [8]. The family of the piece-wise
linear mappings play the fundamental role

lM : [0, 1]→ D ⊂ R
N , M = 1, 2, . . . (37)

They map the closed interval [0, 1] ⊂ R into the hypercube D ⊂ R
N including some bijections

approximating the HP curve with an arbitrary accuracy dependant on the level of precision M .
The construction scheme of the lM family in R

N , N ≥ 2, is fairly complicated and depends on the
proper linking between the two systems of numeration:

1. numeration of the family of subcubes originated in the process of division of the hypercube
D ⊂ R

N into 2MN subcubes with edge length equal to 1
2M

,

2. numeration of the family of subintervals originated in the process of division of the closed interval
[0, 1] ⊂ R into 2MN subintervals of length equal to 1

2MN .

Consider the approximation of the HP curve by the piece-wise linear mapping lM for the least
accuracy defined by M = 1, in two dimensional (N = 2) Euclidean space R

2, see Fig. 1. In the

Fig. 1. The example of the approximation of the HP curve by the piece-wise linear mapping lM in
two-dimensional Euclidean space for the least accuracy M = 1.
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left figure, the four subcubes of the first partition (M = 1) of the hypercube D ⊂ R
2 with centers

at points y0,y1,y2,y3 ∈ D ⊂ R
N=2 are shown. In the right figure, the four subintervals [ν0, ν1),

[ν1, ν2), [ν2, ν3), [ν3, ν4] of the first partition (M = 1) of the unit interval [0, 1] ⊂ R with appropriate
endpoints ν0, ν1, ν2, ν3 are shown. Moreover, the graph of the linear function w : [0, 1]→ R is shown
together with its image under the mapping lM . Four intermediate points ν0

1−2−MN ,
ν1

1−2−MN ,
ν2

1−2−MN ,
ν3

1−2−MN define three equal subintervals that are mapped on three segments y0y1, y1y2, y2y3 ⊂ D

being the first approximation of the HP curve in R
2. The binary representation

∑MN
k=1 αik2

−k of
each of the point νi, i = 0, 1, 2, 3 (left-end-points) is used in coding the indices z1, z2, . . . , zM
identifying all subintervals designated as d (z1, z2, . . . , zM ). Similar notation D (z1, z2, . . . , zM ) is
adopted for subcubes in D ⊂ R

N , but identification of the adjacent subcubes together with their
numeration is not trivial and requires the mathematical formulae answering the questions “when the
vector (z′1, z

′
2, . . . , z

′
M ) precedes the vector (z′′1 , z

′′
2 , . . . , z

′′
M )” and “when the corresponding subcubes

D (z′1, z
′
2, . . . , z

′
M ), D (z′′1 , z

′′
2 , . . . , z

′′
M ) are adjacent” in the sense of the precedence relation.

The space-filling curve y : [0, 1]→ D refers to the approximation lM : [0, 1]→ D as a limit object
emerging in sequential constructions of lM forM →∞. It is very important that the correspondence
y = y(x) fulfils the following condition:

∀M ≥ 1 ∀x ∈ [0, 1] y(x) ∈ D (z1, . . . , zM )⇔ x ∈ d (z1, . . . , zM ) . (38)

Theorem 2. Each mapping y : [0, 1]→ D that fulfils condition (38) has the following properties:

1. y = y(x) is the space-filing curve (HP curve).

2. If g : D → R is Lipschitzian with some constant L > 0

∀ y′ =
[

y′1, . . . , y
′
N

]T
, y′′ =

[

y′′1 , . . . , y
′′
N

]T ∈ D
∣

∣g
(

y′′
)

− g
(

y′
)
∣

∣ ≤ L
∥

∥y′′ − y′
∥

∥ , (39)

then the univariate function g ◦ y : [0, 1]→ R satisfies the following Hölder condition

∀x′, x′′ ∈ [0, 1]
∣

∣g
[

y
(

x′
)]

− g
[

y
(

x′′
)]∣

∣ ≤ 2L
√
N + 3

∣

∣x′ − x′′
∣

∣

1

N . (40)

In particular, this fact implies that the function φ ◦ y : [0, 1]→ R in (30) is not Lipschitzian and
satisfies the Hölder condition

∀x′, x′′ ∈ [0, 1]
∣

∣φ
[

y
(

x′
)]

− φ
[

y
(

x′′
)]∣

∣ ≤ 2 L
√
N + 3

∣

∣x′ − x′′
∣

∣

1

N (41)

which enforces some necessary modifications in IMGO algorithm for finding the global minimum
y∗ = y(x∗) ∈ D, x∗ ∈ [0, 1] of the function φ [y(x)] instead of the function φ(y).

Another important fact should be noticed that it is not possible to calculate the values of the
function φ [y(x)] because we have at our disposal only approximations of the HP curve y(x), e.g.
Hilbert-Peano-like piecewise-linear evolvent lM . This fact implies the obvious suggestion that the
one and only possible solution of the problem (30) can base at most on the approximation of the
HP curve, e.g. lM for some, sufficient big value M ≥ 1. Replacing of the problem (30) with the
problem

φ∗ = φ (y∗) = φ [lM (x∗)] = min
x∈[0,1]

{

φ [lM (x)]
∣

∣ ∀1 ≤ i ≤ m gi [lM (x)] ≤ 0
}

(42)

is possible (and correct) because the following theorem (see [8], p. 488) holds.

Theorem 3. If the function g(y), y ∈ D is Lipschitzian with the constant L > 0, then for each
M ≥ 1 the one-dimensional function g◦ lM (x), x ∈ [0, 1] satisfies the uniform Hölder condition (40),
i.e.,

∀x′, x′′ ∈ [0, 1]
∣

∣g
[

lM
(

x′
)]

− g
[

lM
(

x′′
)]
∣

∣ ≤ 2L
√
N + 3

∣

∣x′ − x′′
∣

∣

1

N . (43)
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A modified version of IMGO algorithm, called Multivariate Index Method (MIM) for functions
with uniform Hölder condition (40) (in particular (43)) together with convergence conditions is
presented in [8]. In the particular case of the unconstrained optimization, the following impor-
tant inequality shows the relation between the solutions of two problems (30) and (42) (without
constraints):

min
x∈[0,1]

{φ [lM (x)]} − min
x∈[0,1]

{φ [y(x)]} ≤ L
√
N

2M+1
. (44)

The HP curve satisfies the Hölder condition being the counterpart of the estimate (41). It is one of
sufficient conditions of convergence of the MIM algorithm. Other curves filling the domain (spirals
and TV evolvents) do not satisfy this condition, which singles out the HP curve in the method
considered.

The own implementation of the method of HP curve approximation lM (also few other approxi-
mations) described in monograph [8] is possible, but it demands thorough understanding of almost
all notions and proofs of the theorems used in all steps of mathematical presentation of the algo-
rithm. On pages 499-511 of the monograph [8], the authors revealed the complete code in C++
language of the routines for computing images and inverse images for the suggested approxima-
tions to Peano curves: centers of the M -th partition hypercubes, piecewise-linear evolvents and
non-univalent evolvents (some “cosmetic supplements” such as additional comments in few places
of the code are yet desirable).

In Fig. 2 the five approximations lMof the HP curve in R
3 for various values of M (M = 1÷5)

are shown. Visualization of the approximation of the “classical” HP curve in R
2 is very well known

and can be found in many articles or books on the theory of fractals.

Fig. 2. The approximations lM of the HP curve in R
3 for values M = 1, 2, 3, 4, 5, respectively.

4. TRUSS STRUCTURES. BASIC NOTATION AND FORMULATION OF THE

OPTIMIZATION PROBLEMS

The notation used in this paragraph is independent of the notation used in two previous paragraphs.
Let 0xyz or 0x1x2x3 denote the global Cartesian system of coordinates. Let us consider a truss

composed of M members and N nodes, subjected to the conservative nodal forces Q ∈ R
D where

D = 2N for planar or D = 3N for spatial trusses. The coordinates of nodes constitute a vector
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X ∈ R
D. The deformation of truss structure is determined by the displacements of the nodes,

which form the vector q ∈ R
D. The areas of cross-sections of the members form the vector A =

[A1, . . . , AM ]T ∈ R
M . We assume that all members are made from the same linear elastic material

with Young modulus E. The governing equilibrium equation for the geometrically linear case has
the form

K(A,X)q(A,X) = Q. (45)

Here,

K = K(A,X) =

M
∑

e=1

E Ae

Le(X)
Te(X)⊗Te(X) ∈MD×D (46)

is the symmetric stiffness matrix D ×D,

Le(X) =
√
TeX ·X (47)

denotes the length of the e-th member, the dot (·) implies the scalar product in R
D. The matrices

Te = Te(X) ∈MD×D, e = 1, . . . ,M, (48)

allow to express, for each e-th bar, the differences between the local Cartesian coordinates of end-
nodes, by taking into account, well known in Finite Element Method (FEM), allocation matrix and
using the global coordinates of nodes from vector X ∈ R

D (see e.g. [1]).

The symbol a⊗b denotes the tensor product of two vectors a = [a1, . . . , aD]
T, b = [b1, . . . , bD]

T ∈
R
D, or (a⊗ b)ij = ai bj .

The boundary conditions in (45) and (46) should be properly introduced according to the stan-
dard procedures of FEM.

In the presented examples, the shape of the undeformed shell bar structures (coordinates of the
nodes) were parameterized by the two curvilinear coordinates

(

u1, u2
)

as arguments of the three

scalar functions ϕi
(

u1, u2
)

, i = 1, 2, 3, generating the position vector

r(u1, u2) =

3
∑

i=1

xiei =

3
∑

i=1

ϕi(u1, u2) ei (49)

where {e1, e2, e3} denotes the orthonormal base of the global Cartesian coordinate system.
The axial symmetrical problems to be discussed will be considered within the following conven-

tional parameterizations

• the global Cartesian parameterizations:

(

u1, u2
)

= (x, y) , x1 = x, x2 = y, x3 = ϕ(x, y); (50)

• the spherical parameterizations:

(

u1, u2
)

= (θ, z) , x1 = r(γ) cos γ cos θ, x2 = r(γ) cos γ sin θ, x3 = r(γ) sin γ; (51)

• the cylindrical parameterizations:

(

u1, u2
)

= (θ, z) , x1 = r(z) cos θ, x2 = r(z) sin θ, x3 = z. (52)
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The functions ϕ = ϕ(x, y), r = r(γ), r = r(z) will be expressed in terms of the design variables.
The design variables of the truss structures can be represented by vector A (topology optimiza-

tion), vector X (geometry optimization) or vectors A and X together (simultaneous topology and
geometry optimization). Number of unknowns can be significantly reduced in the case of geometry
optimization if the positions of nodes represented by vector X are dependent on just few parameters,
e.g., on unknown coefficients of Bernstein polynomials. In the case of axial symmetrical, spherical
or cylindrical latticed shells we can assume that

r(γ) = Bn(γ) =
∑

0≤i≤n

rin
n!

i! (n− i)!

(

γ − γa
γb − γa

)i (

1− γ − γa
γb − γa

)n−i

(53)

or

r(z) = Bn(z) =
∑

0≤i≤n

rin
n!

i! (n− i)!

(

z − za
zb − za

)i (

1− z − za
zb − za

)n−i

(54)

where n ≥ 1 denotes the fixed degree of the Bernstein polynomial, rin, 0 ≤ i ≤ n, are unknown
coefficients – design variables, γa, γb (γa < γb), or za, zb (za < zb), are lower and upper limits for
angle γ (γa ≤ γ ≤ γb), and vertical coordinate z (za ≤ z ≤ zb) in spherical and cylindrical latticed
shells, respectively.

In the case of Cartesian coordinate system we can similarly assume that

ϕ(x, y) =
∑

0≤i≤n

∑

0≤j≤n

ϕij
n

n!

i! (n− i)!

n!

j! (n− j)!

(

x− xa
xb − xa

)i ( y − ya
ya − yb

)i

·
(

1− x− xa
xb − xa

)n−i (

1− y − ya
ya − yb

)n−i

.

(55)

Here, ϕij
n , 0 ≤ i, j ≤ n, are unknown coefficients – design variables, xa, xb (xa < xb) and ya, yb

(ya < yb) are lower and upper limits for coordinates x (xa ≤ x ≤ xb) and y (ya ≤ y ≤ yb). The
real number of design variables will be even less then n+ 1 or (n+ 1)2 because bottom or bottom
and top coordinates of nodes of axial symmetrical spherical and cylindrical latticed shells could
be treated as constant, similarly as the four extreme edges of latticed shells defined in Cartesian
coordinate system. So, we could have only n, n− 1 or (n− 1)2 real design variables describing the
optimal shape of the latticed shells. It is worth to notice that in such way defined variables allow
us to keep the axial symmetry of the shape of the latticed shell both before optimization as well
upon optimization even in the case of asymmetrical loading (modeling, e.g., the wind load) and no
vector optimization is needed.

All presented examples (except the first one) of the optimization of trusses refer to compliance
optimization with only one functional constraint on entire volume of the bars (limitation on weight
of the structure). The problems will assume the form

φ∗ = φ(w∗) = min
w∈S

{

φ(w)
∣

∣ g1(w) ≤ 0
}

(56)

where the vector w of design variables will have one of the forms:

w = A, or w = X, or w = [A,X]T ,

or w = U =
[

. . . , rin, . . .
]T

, or w = U =
[

. . . , rijn , . . .
]T

.
(57)

The objective function (compliance) φ = φ(w) is defined as

φ : S → R, φ(w) = Q · q(w) (58)
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where q = q(w) is the solution of the equilibrium equation (45), or

q(w) = K−1(w)Q. (59)

The constraint function g1 = g1(w) is defined as

g1 : S → R, g1(w) =

M
∑

e=1

Le(X)Ae − V0 (60)

where V0 represents the upper limit volume (most often assumed as multiple of initial volume Vinit

of the truss, e.g. equal to 2Vinit). The simple box constraints defining the cube S in (56) depend on
type of the choice of vector w.

No sensitivity analysis is necessary in classical versions of the global optimization algorithms
presented in monograph [8], but in some examples, the gradient-based Method of Moving Asymp-
totes (MMA) [9] were additionally applied. Necessary formulae on gradients of the functions φ and
g1 can be found, e.g., in [1].

5. CASE STUDIES

The described in Secs. 2 and 3 method MIM was implemented in optimization problems of truss
structures. The program including the MIM method and statics of trusses was written in C++
language. There were used functions for computing images and inverse images for the HP curves
from [8] (own routines proved to be correct but less numerically effective).

5.1. Statically indeterminate, plane three bar truss

Fig. 3. Weight optimization of the three bar truss

In this example (see Fig. 3) we consider the problem of weight minimization of the symmetric,
planar three bar truss

min
A∈R3,H∈R

{

ρA · L (H)
∣

∣ Amin ≤ A ≤ Amax, Hmin ≤ H ≤ Hmax, σ ≤ σmax, q1 ≤ qmax

}

(61)

with box constraints on cross sections of three bars

5.0 · 10−5
[

m2
]

= Amin ≤ Ae ≤ Amax = 2.0 · 10−4
[

m2
]

, e = 0, 1, 2, (62)

and height of the truss

0.3 [m] = Hmin ≤ H ≤ Hmax = 0.7 [m] . (63)

In Eq. (61) ρ denotes density of the material, σ ∈ R
M denotes the vector of stresses in bars.

Inequalities “≤” used for the vector quantities should be understood as component wise.
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Functional constraints concern stresses in three bars

σe =
E

Le(X)2
TeX · q ≤ σmax = 100.0 [MPa] , e = 0, 1, 2, (64)

and vertical displacement of the node

q1 ≤ qmax = 5.0 · 10−3 [m] . (65)

Remaining data are:

a = 1.0 [m] , E = 7.1 · 104 [MPa] , P = 1.0 · 104 [N] , ρ = 2.8 · 103
[

kg/m3
]

. (66)

The initial values of the design variables are as follows:

A0 = A1 = A2 = 1.0 · 10−4
[

m2
]

, H = 0.5 [m] , (67)

and the initial value of the weight is

Winit = 0.53598 [kg] . (68)

The optimal values of the design variables obtained from MIM are:

A0 = A2 = 5.0 · 10−5
[

m2
]

, A1 = 8.635 · 10−5
[

m2
]

, H = 0.30003319 [m] . (69)

and the optimal value of the weight is

Wopt = 0.23581 [kg] . (70)

The solution is 0.01 times better than the best known (for the present author) solution [10]:

A0 = A2 = 5.05 · 10−5
[

m2
]

, A1 = 8.7 · 10−5
[

m2
]

, H = 0.3001 [m] (71)

with the optimal weight:

Wopt = 0.239 [kg] . (72)

5.2. A cylindrical latticed shell as a simplified truss model of a multi-storeyed building

Are the tulip like shapes of the high-rise, multi-storeyed buildings, proposed few years ago by well
known architects and structural engineers (see, e.g., W. Zabłocki [11, 13] and W. Zalewski [12, 13])
the counterparts of the Michell-Hemp cantilever (see [2]) in three dimensions? Several projects of
such buildings were already realized, e.g.. 30 St Mary Axe, also known as the Gherkin and the Swiss
Re Building, is a skyscraper in London’s main financial district, the City of London, completed
in December 2003 and opened on 28 April 2004. It is 180 meters tall, with 40 floors (see Fig. 4).
The exact mathematical solutions being three-dimensional counterparts of the well known exact
solution in two-dimension are unknown. So, the numerical simulations can only give partial answers
to the above question. The very simplified truss model of a such skyscraper is defined in such a way
that Cartesian pattern, defined in Fig. 5, is projected onto a cylindrical layout of the latticed shell
(envelope structure). The horizontal forces are assumed to be put at all top nodes while all bottom
nodes are supported (“spatial counterpart” of Michell’s cantilever).

Initial data are the height and radius of the cylinder: H = 185.0 [m], R = 30.0 [m], respectively.
The area of each cross section and Young modulus of the bars are: Ae = 0.1

[

m2
]

and E = 1.0 ·
109

[

N/m2
]

. The value of each horizontal force put at the top node of the cylinder is Qi = 3000.0 [N].
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Fig. 4. Sketch of the Michell-Hemp cantilever in two dimensions and skyscraper 30 St Mary Axe in London
(http://en.wikipedia.org/wiki/File:30_St_Mary_Axe,_%27Gherkin%27.JPG)

Fig. 5. Simplified model of a skyscraper as a cylindrical latticed shell

Fig. 6. Initial and optimal shape of the cylindrical latticed shell emulating three-dimensional counterpart of
the Michell cantilever.

Project parameters were defined according to (54) for degree n = 8 of Bernstein polynomial (real
number of parameters = 7).

Level M in (37) of accuracy of the HP curve approximation: M = 6. The values of the radius
R of the axial symmetrical structure can change from 20 [m] to 50 [m]. The initial compliance is
φ = 240772 [Nm], and the optimal compliance equals: φ∗ = 235888 [Nm]. The initial and optimal
shape of the latticed shell is shown in Fig. 6.

The optimal shape can clearly motivate the tulip like shapes of the high-rise building in the
proposed model of latticed shell. The reduction of compliance (increase of stiffness) is not so big as
in the case of classical plane Michell cantilever but the shape of a great deal of trees and many other
plants nearing cylindrical one suggests that its modifications and improvement has significantly
limited range.
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Fig. 7. Initial and optimal shape of the cylindrical latticed shell emulating three-dimensional counterpart of
the Michell cantilever with additional vertical loading put at each top node..

Fig. 8. Initial and optimal shape of the cylindrical latticed shell with only vertical loading applied to all
nodes.

Similar numerical simulation with more realistic additional vertical loading Qi = 10000.0 [N]
put at each top node and for diminished degree of Bernstein polynomial from n = 8 to n = 5
(real number of parameters = 4) with augmented level M in (37) of accuracy of the HP curve
approximation from M = 6 to M = 13 produces the desired effect of optimal shape shown in Fig. 7.
In this case the optimal compliance is equal to φ∗ = 388107 [Nm] in compare with the initial one
equal to φ = 401916 [Nm].

Another numerical simulation relies on replacing the loading only with vertical forces Qi =
1000.0 [N ] put at all nodes of the truss (simplified model of the weight of the structure). The values
of the radius R of the axial symmetrical structure can change from 5 [m] to 35 [m]. Other parameters
remain the same. The initial compliance is φ = 1611 [Nm], whereas the optimal compliance equals
to φ∗ = 1124 [Nm]. The initial and optimal shape of the cylindrical shell bar structure is shown in
Fig. 8.

The following numerical simulation relating cylindrical latticed shell was performed on the base
of the following data of loading and boundary condition: the horizontal forces Qi = 1000.0 [N ] are
put at all nodes of the cylinder with additionally supported nodes at its top (truss model of fully
clamped vertical beam). The values of the radius R of the axial symmetrical structure can change
from 10 [m] to 50 [m]. The degree of Bernstein polynomial n = 6 (real number of parameters =
4). Other parameters remain the same. The initial compliance is φ = 1931 [Nm] and the optimal
compliance equals to φ∗ = 1647 [Nm]. The initial and optimal shape of the cylindrical latticed shell
is shown in Fig. 9.

In the last numerical simulation relating cantilever cylindrical latticed shell was performed on
the assumption that the loading emulates the torque at the top of the structure. The simulation
mimics Michell’s grid sphere with finite number of bars for which the exact solution is known (see
e.g. [1, 5, 7]). But our example refers only to the shape of the truss – not to the cross sections of the
bars (we perform in this case only geometry – not topology optimization). A torque is replaced by
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Fig. 9. Initial and optimal shape of the cylindrical latticed shell clamped on both: top and bottom
horizontal rings with only horizontal loading put at all nodes.

Fig. 10. Initial and optimal shape of the cantilever cylindrical latticed shell with torque emulated by
tangent horizontal, concentrated forces applied to the top nodes of the truss.

“tangent” horizontal, concentrated forces Qi = 1000.0 [N ] applied to the top nodes of the truss. The
degree of Bernstein polynomial n = 6 (real number of parameters = 4). Level M in (37) of accuracy
of the HP curve approximation: M = 13. The values of the radius R of the axial symmetrical
structure can change from 28 [m] to 100 [m]. The initial compliance is φ = 40.7884 [Nm], whereas
the optimal one equals to φ∗ = 14.7942 [Nm]. The initial and optimal shape of the cylindrical
latticed shell is shown in Fig. 10.

It is worth to notice, that the optimal – nearly spherical shape – only confirms well known
analytical solution [5]. The reduction of compliance (increase of stiffness) is here much bigger than
in the first simulation performed on the “cylindrical latticed shell” modelling the “3D version” of the
Michell’s cantilever. Additional topology optimization performed together with the above geometry
optimization would certainly result in nearly exact solution (see also [1]).

5.3. Elliptic paraboloidal grid shell

In the last example we consider the elliptic paraboloidal latticed shell (width× length = 50×50 [m],
rise of arch = 11 [m]) with the nodes at all edges fixed and vertical forces Qi = 1.0 ·104 [N ] assumed
to be put at all nodes.

The degree of Bernstein polynomial n = 5 (real number of parameters = 9). Level M in (37)
of accuracy of the HP curve approximation: M = 6. All “internal” nodes can change only vertical
positions in the range: 7.0÷30.0 [m].

The initial compliance equals φ = 79980 [Nm] and the optimal compliance is φ∗ = 8000 [Nm].
The initial and optimal shape of the latticed shell is shown in Fig. 11. The reduction of compliance
(increase of stiffness) is here the biggest in compare with all presented previous examples.
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Fig. 11. Initial and optimal shape of the elliptic paraboloidal latticed shell subjected to constant vertical
forces at all nodes.

6. FINAL REMARKS

Presented results were obtained by the present author as a result of his first implementation (working
version) of the MIM method of global optimization elaborated by Strongin and Sergeyev in [8]. This
numerical code is still developed and the presented numerical results should be treated mainly as an
illustration of its potential range of application in mechanics (almost all problems were additional
solved using Svanberg’s gradient-base MMA [9] method that gave similar results). The approach
proposed is suitable in the case of arbitrary non-convex optimization problems with arbitrary num-
ber of non-convex functional constraints. The sensitivity analysis in the most of the presented in [8]
various versions of global optimization algorithms is not necessary, but it is also possible to im-
plement additional information about gradients of the functions to increase the effectiveness of the
proposed methods. The main disadvantage of the MIM method (and others) is its efficiency being
significantly lower in the case of six and more design variables for which the obtained “optimal
minima” should be treated rather as the sub-optimal solutions than global ones. The authors of [8]

write on p. 500: “. . . as long as the expansion x =
∑MN

k=1 αik2
−k (see text before Eq. (38) requires

MN binary digits, it has to be mentioned that there is the constraint MN < 56 imposed by the
type double in presentation of x . . . ”. This limitation does not matter in computers with arbitrary
capacity of RAM and registers in processors, but nowadays it is still a serious restriction. Another
disadvantage in MIM method is a difficulty in the proper choice of counterparts of input parameters
rν > 1, 1 ≤ ν ≤ m + 1 that were defined in (18) for IMGO method. The values of parameters rν
should guarantee the satisfaction of the inequalities of the type (24) since some step of the IMGO
method. This is one from some other conditions that suffices for the fulfilment of the convergence
criteria. As significant increase of the values of rν (e.g. rν ≫ 2) – theoretically safe, is rather not
a good practice, as many tests have shown, from the numerical point of view. However, the proper
defined values rν very often produced not only much more accurate results (true global minima)
that was also found very often in much more shorter time. Similar comments apply to few other
coefficients in MIM method (not presented in the paper).

Summing up, the whole arsenal of methods of global optimization presented in [8] should deserve
the highest attention of scientists working in any field of optimization, mainly on account of solid
mathematical foundations of the proposed algorithms. In the nearest future, MIM method will be
implemented by the present author in designing the desirable local properties of the Hooke tensor
in the so called free material design of the elastic bodies.
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