Computer Assisted Mechanics and Engineering Sciences, 1: 177-189, 1994.
Copyright © 1994 by Polska Akademia Nauk

An application study of parallel processing
to the particle transport simulation

Makoto Sasaki
The Japan Research Institute, Nuclear Engineering Group, Ltd.,

16, Ichibancho, Chiyoda-ku, Tokyo 102, Japan

Masayuki Nakagawa, Takamasa Mori
Japan Atomic Energy Research Institute, Tokai Research Establishment,
Tokai Mura, Ibaraki-ken 319-11, Japan

(Received August 1, 1994)

New methods of the neutron and photon transport Monte Carlo simulation suitable for vector computers
have been investigated and general purpose multigroup and continuous energy codes have been developed.
On vector supercomputers, the codes achieved high speed-up gains of an order of ten or more compared
with the conventional scalar codes. To achieve more speed-up, the Monte Carlo codes are applied to
three types of parallel processing environments; (1) a massively parallel computer, (2) a vector-parallel
type supercomputer, and (3) a cluster of workstations connected to a network. On the massively par-
allel computer and the vector-parallel supercomputer, speed-ups almost proportional to the number of
processors are achieved by simply assigning particles uniformly to each processor, and the speed-up with
the vector-parallel supercomputer is enhanced by vector processing. On the other hand, in the worksta-
tion cluster, the computational power of each workstation may differ and the simple particle assignment
may not be successful. By modifying particle assignment methods, effective parallel processings are made
possible in such an environment.

1. INTRODUCTION

The particle transport Monte Carlo method is widely used as a powerful tool in nuclear engineering.
Neutron and/or photon transport Monte Carlo codes are used to obtain solutions as precisely as
possible in reactor core neutronics analyses, radiation shielding calculations and design calculations
of radiation measurement equipments, etc. The Monte Carlo method, however, generally requires
much computation time to reach an acceptable statistical uncertainty level even if the fastest large
computers now available are used.

Fortunately, neutrons and photons can be treated as non-interactive particles so we can simulate
flights or reactions of more than one particle concurrently, that is, the problems are suited for
parallel processing.

Vector processing is a SIMD type parallel processing. General-purpose Monte Carlo codes,
however, have shown speed-ups of < 2 in spite of efforts to vectorize conventional codes such
as MORSE-CG, KENO-IV, VIM and MCNP [1,2,3,4]. The algorithms used in the conventional
Monte Carlo codes are ill-suited for vectorization because the statistical nature of the calculations
requires coding a small number of loops and many conditional “IF” statements which inhibit vec-
tor processing. However, it was demonstrated that Monte Carlo calculations could be successfully
vectorized by adopting appropriate algorithms for vector computers [5, 6, 7, 8].

We developed two general-purpose codes; GMVP [9, 10, 11], which uses multigroup cross-section
data, and MVP [12], which uses continuous energy cross-section data. The codes accomplished a
speed-up of about ten to several tens on the vector supercomputers FACOM VP-100 and VP-2600
compared with their scalar versions or other conventional scalar codes in many problems including

178 M. Sasaki, M. Nakagawa and T. Mori

reactor core analyses, criticality calculations, fusion reactor analyses and shielding calculations.
The codes are designed to be applicable to various types of nuclear engineering calculations by
adopting a powerful geometry description method (combinatorial geometry and lattice geometry)
and several variance reduction methods. They have a flexible user-interface which makes them easy
to use for unaccustomed users. The main capabilities of the codes, which include most functions
for production use, are as follows:

1. Problem to be solved: eigenvalue problems of neutron transport, and fixed source problems of
neutron and/or photon transport.

2. Geometry description: combinatorial geometry with rectangular and hexagonal lattices (avail-
able geometry objects: right parallelepiped, arbitrary polyhedron, cylinder, sphere, cone, ellip-
soid, triangular prism, hexagonal prism and elliptic torus)

3. Particle source type: fixed (energy-, angle-, time- or space-dependent) and fission sources for
eigenvalue problem.

4. Cross-section type: multigroup Pr and double differential (GMVP) and continuous energy
cross-sections (MVP).

5. Variance reduction technique: Russian roulette kill and splitting, importance sampling, and
weight window.

6. Boundary condition: perfect and white reflection and vacuum.

7. Estimator: track length and collision for flux, reaction rates and eigenvalue. Point detector for
flux and reaction rates.

Recently, applications of MIMD or non-vector SIMD parallel processing to the transport Monte
Carlo calculation have been reported [21,22,23]. We have studied the speed-up of the codes in
parallel processing environments including a massively parallel processor, a vector-parallel super-
computer and workstations connected as a virtual parallel machine. Our codes achieved-high per-
formance both in parallel processing and vector processing.

In Section 2 of this paper, we describe vectorization methods used in the GMVP and MVP
codes and examples of calculation performed with their use. Applications to parallel processing
environments are described in Section 3.

2. VECTOR PROCESSING IN PARTICLE TRANSPORT MONTE CARLO CALCULATION
2.1. Method of vectorization

Scalar Monte Carlo codes track the history of one particle at a time. In the vectorized Monte Carlo
code, many particle histories are tracked simultaneously. By resolving histories into “events” such
as free flight, collision and boundary crossing, each event can be presented as a vector whose compo-
nents correspond to the particles waiting to be processed for that event. This vectorization method
is called an “event-based” algorithm and the conventional method is called a “history-based” al-
gorithm. The difference between the event-based and history-based algorithms is shown in Fig. 1.
All vectorized Monte Carlo codes use an event-based algorithm, but differences in individual ap-
proaches to vectorization significantly affect the performance of the vectorized codes. For the MVP
and GMVP codes we developed a method named “stack-driven zone selection method”.

Particles have 13 descriptors: Cartesian coordinates (z,y, z), flight direction (u,v,w), weight,
energy or energy group, geometry zone, time and descriptor for lattice geometry. Memory areas
storing descriptors of particles are called the particle bank. Random walk processes are resolved into
the following basic tasks: source particle generation, collision, free flight, next zone search, lattice,
reflection, leakage or kill. A “stack” is used to memorize particles queued for a task. Connections

Parallel processing in particle transport simulation 179

Vector

Vector E:gzl

Vector

Fig. 1. Comparison of scalar and vector processing methods of Monte Carlo calculation. Left: history based
scalar algorithm, right: event based vector algorithm

Retlection ——j

T h— Lattice
Search ——J

Source —Pp{ Flight ————p| Leakage or Kill

Collision

Fig. 2. Connections between Monte Carlo calculation tasks in the GMVP and MVP codes

between tasks are shown in Fig. 2. All particles are generated from fixed sources or by fission
reactions and all their descriptors are determined in the source task. In the following step, the
flight task calculates the free flight distance to the nearest boundary of the present zone and
determines whether a particle crosses the boundary or collides with the matter in that zone. For
particles crossing the zone boundary, the neighbouring zone that a particle enters is found in the
search task. Depending on the next zone, the search task scatters particle pointers to three other
tasks: flight, reflection or lattice. The reflection task calculates reflected flight directions on the
reflective boundary and the lattice task processes particles entering or escaping from a lattice
region, or moving from one lattice cell to another. The collision task determines outgoing directions
and energy groups for colliding particles.

The task processing order depends on the number of particles queued in the stacks. The principle
is to select a task with the greatest number of particles to process an event with the largest vector
length. When the task is selected by simply comparing the total number of particles in each stack
irrespective of zones they belong to or surfaces they lie on, the selection process is called the

180 M. Sasaki, M. Nakagawa and T. Mori

“event selection” method. This selection method is applied to tasks other than flight and search
tasks. In the cases of flight and search tasks, the “zone selection” method is applied, that is,
the zones with the greatest number of particles are found out for each stack and the number of
particles in the zone is compared with those in other stacks. In other words, the zone selection
algorithm treats particles belonging to different zones as queued in different stacks. The merit of
the zone selection algorithm is the simplification of processing by limiting it to particles in the same
zone. Otherwise, time-consuming list vector access to geometry data or classification of particles
by zone geometry may reduce processing efficiency. Of course, the zone selection method may
cause smaller vector lengths and lower vectorization efficiency than the event selection method.
However, the comparison of performances in both methods has shown that in most cases the merit
of simplification overcomes the demerit of smaller vector lengths. In particular, for problems whose
geometries can be described as repetition of spatial cells, the lattice geometry capability of the MVP
and GMVP codes substantially contributes to speed-up because the vector length of the selected
task and zone becomes the summation of all particles in the same type of zone in the lattice by the
zone selection method applied to the flight and search tasks.

Other effective vectorization methods are developed for the treatment of reactions with the use
of continuous energy cross-sections and the point detector capability which is useful in radiation
shielding calculation. The details of these implementations are described elsewhere [12,13].

2.2. Performance of the vectorized Monte Carlo codes

The performance of a vectorized Monte Carlo code is affected mainly by the number of source
particles to be processed concurrently. In MVP and GMVP this number is called the “batch” size.
It can be said that a large batch size makes the code run faster than it does in the case of a smaller
batch size, but the dependence of performance on the batch size varies with problems solved or
vector computers on which the codes are run [9,10,11,12]. But, in general, MVP and GMVP
run about ten or several tens faster than their scalar runs or other conventional scalar codes. We
show an example of performance for a benchmark problem of the deep penetration of a 14 MeV
neutron proposed by Hendricks et al. [15]. The problem is solved with both the MVP code and a
scalar Monte Carlo code MCNP [16] and the result and the calculation speed are compared. The
problem is simply an infinite 3 m thick slab of pure iron as shown in Fig. 3. Monoenergetic 14 MeV
neutrons enter perpendicularly on one side of the infinite slab. Neutron spectra and the averaged
cross-sections were evaluated at various positions in the slab. The computation times of both the
MVP and MCNP codes on the FACOM VP-2600 supercomputer are compared in Table 1. In the
second case, 10 cm thick iron and concrete slabs are placed repeatedly. The “CPU/track” means the
total CPU time divided by the total numbers of collisions and boundary crossings. The speed-up
of the MVP code compared with the MCNP code is 15-21 in this problem.

Table 1. Performance of MVP and MCNP for the deep penetration problem®

Material Performance MVP MCNP
Iron CPU/track (us) 2.19 47.6
Speed-up 21.8 1.0

Vectorization (%) 98.0 -
Iron+concrete CPU/track (us) 3.34 52.4

Speed-up 15.7 1.0

Vectorization (%) 98.0 -
a) on FACOM VP-2600

Parallel processing in particle transport simulation 181

Perfect reflection surface

S
14 MeV \ /
Flux tally
zone (1cm)
10 50 70 100 150 200 250 270 290 (cm)

Fig. 3. Calculation model of deep penetration problem

2.2.1. Whole core calculation of LMFBR

The application of the Monte Carlo codes to whole core calculations in full detailed geometry
has been limited by the fact that the reactor core generally has very complex geometry, whose
calculation consumes much computation time to achieve a required accuracy. We performed whole
core calculations of a prototype LMFBR core and a commercial size pressurized water reactor
core with the GMVP and MVP codes [14]. In this paper we report the calculation of an LMFBR
core. The core includes 463 fuel assemblies and more than 40 000 fuel pins. The core geometry is
represented in a pin by pin model, and the hexagonal lattice capability of our codes is used for
assembly placement representation in the core (lattice level 1) and for fuel pin placement in each
assembly (lattice level 2). Figures 4a and 4b show the calculation geometry model. Four cases of
calculation are carried out. In the first reference case, all control rods are withdrawn. In the second
case, whole sodium is removed from the inner core. In the third case, a central control rod cluster
is inserted and in the last case three control rod clusters are inserted. The sodium void reactivity
worth and the reactivity worth of three control rod clusters are calculated and the results are shown
in Table 2. In the core with three control rods inserted, power distribution was calculated at three
assemblies in the inner and outer cores and in the radial blanket whose locations are shown in
Fig. 4a. The assembly and single pin powers obtained are shown in Table 3.

Table 2. keg and reactivity worth calculation of LMFBR calculated with the GMVP and MVP codes

Reference core Reactivity worth
I.C. void Central C.R. 3 C.R.
Number of histories 108 5 x 10° 5x 107 5x 10°
GMVP (multigroup)
kest 1.0411 1.0503 1.0232 0.9989
lo +0.00050 +0.00077 £0.00067 +0.00066
8k /kk' 0.0084 —0.0168 —0.0405
1o (%) 10.5 4.8 2.0
MVP (continuous energy)
kest 1.0379 1.0461 1.0207 0.9982
lo +0.00055 +0.00066 +£0.00066 +0.00068
ok /kk' 0.0076 —0.0163 —0.0383
10 (%) 11.0 5.1 2.3

182

M. Sasaki, M. Nakagawa and T. Mori

Fig. 4. Calculation model of prototype LMFBR, a) whole core lattice model, b) close-up view of prototype

-

o3

o e

%
2

OR

<O

050

Y/ Aelelelel

QOOC

Q0T

INNGZEOOTOL

OrS

EINNGGOD

O0QT

JOO0!

JOC

QC
0
[e]ele ele]e]s
0
QC

el

JOOC

]
NGO OO 20000000, 30
-’} NOOQOOO00C JO0Y g:‘;")14
d 1000000 JOLY, /e DO (o]
N\ eielerereie’e YOC
\OC0000 fo]

\\\eleleleTele

A
OONNQQRO0

YOOOT

00/, OO000C
'y L00000K OO0 00000C O
N/ 000000 feleTolole]s
SO0C0000(L D0000C [efelelels
DOCOO0CO00000Cr, _ O00000C
{00000OGOC) 20 D00
DO00C00000! [e} 000!
{QO00C0000COLC 0) YOOC
\ODOCO00000!])-}qg?-o-o- \ [eYe]e]
AN OO000000L y’n TaTe! JOOC

LMFBR

Parallel processing in particle transport simulation 183

Table 3. Fuel assembly and pin powers in LMFBR

Inner core | Outer core | Radial blanket
Ass.t ., Pin. .} Ass...i:Pin.| Ass: Pin
GMVP (multigroup) | 126 7.84 | 138 8.13 | 13.9 0.182

10 (%) E2- o @fsf i3 iageil- 04 19
MVP (multigroup) | 129 8.04 | 146 8.91|11.5 0.271
10 (%) 15 43| 14 47|93 25

The computation time required in the reference core calculation with MVP is 51 minutes on
FACOM VP-2600 for one million histories and the ratio between that time and the time of the
multi-group calculation is about 1.5. Criticality and assembly power distribution of the whole
reactor core could be calculated within practical computation time. In other whole core calculations
recently performed by Redmond II and Ryskamp for a small scale research reactor ANS [17], it
is reported that the MCNP code required 157 minutes of calculation time on CRAY-2 for 60 000
histories for the core with D;O moderator. So our vectorized Monte Carlo codes are proved to
be very powerful tools compared with other conventional scalar codes. However, to achieve higher
accuracy in small reactivity worth calculation necessary for core design, the required number of
histories is higher than the present one by one order or more.

3. PARALLEL PROCESSING IN PARTICLE TRANSPORT MONTE CARLO CALCULATION

We parallelized our codes on the following three types of parallel processor or parallel processing
environment:

1. Massively parallel processor: This type of processor has many scalar processor units and mem-
ories are distributed on each processor and communication between processors is carried out
by passing messages. Recently, a lot of parallel machines of this type have been provided by
many computer venders. The AP-1000 [18] of Fujitsu corporation described in this paper is an
example of this type.

2. Vector-parallel processor: This type of parallel processor has a relatively small number of vector
processor units, each of which shares a common memory space. For example, the CRAY XMP
series of Cray Research, the SX-3 of NEC corporation and the JAERI Monte Carlo Machine
MONTE-4 [20] belong to this category.

3. Workstation cluster: We used the PVM (Parallel Virtual Machine) [19] developed by the Oak
Ridge National Laboratory as software for constructing a virtual parallel processor with dis-
tributed memory.

3.1. Method of parallelization

There are two typical methods to perform the Monte Carlo simulation with parallel processes:

1. Each particle is assigned to one of the parallel processes and the histories of the assigned particles
are processed within the process (particle or history based parallelization).

2. A process treats only a part of random walk events or tasks as shown in Fig. 2. Particles “flow”
from process to process according to their events (event or task based parallelization).

The latter method seems to be suited to our codes because they are designed to be event-driven
for vectorization. There is an example of adapting such a parallelization method to the Connection
Machine by R.S. Baker [23].

184 M. Sasaki, M. Nakagawa and T. Mori

Our parallelization scheme, however, is currently based on the first method because much
inter-processor data communication might occur for the latter case on distributed memory par-
allel environments.

We must mention the difference in the strategies of particle assignment to each process between
the fixed-source problem and the eigenvalue problem. In fixed source problems, all histories are
truly independent and we can assign them to any processors in any order. For example, in process-
ing N histories on n processors, each processor can process N/n histories independently of other
processors. On the other hand, in eigenvalue calculations, the spatial distributions of fission sources
are generally unknown at the beginning of calculations, so a batch of histories which are started
from initial distributions must themselves generate fission sources for the next generation. Because
of this constraint, histories belonging to two successive generations in eigenvalue problems cannot
be processed in parallel. When the total number of histories in non-parallel processing is given as
N = g - Nbin an eigenvalue problem, where g is the number of generations and Nb is the number
of histories in a batch which is a group of histories of the same generation, there are two ways to
parallelize eigenvalue calculations. One is to reduce the number of generations, for example, from
g to g/n and conserve the batch-size Nb for each process, and in the other way, the number of
generations on each processor is not changed but the sizes of the batch are reduced to Nb/n. Since
the number of generations should not be too small to approximate the fission source distribution
of a desired eigenfunction, we adopted the latter way to parallelize eigenvalue problems, but in any
case, flexibility in parallel processing is reduced compared with fixed source problems.

3.2. Parallel processing on AP-1000

The AP-1000 [18] by Fujitsu corporation is a parallel computer of MIMD (Multi Instruction stream
Multi Data stream) architecture. AP-1000 has up to 512 micro processor nodes, and each processor
cell has a RISC type processor of 25 MHz clock cycle and has 16 megabytes of memory. AP-1000
has three sets of networks to achieve both high-speed data transfer and flexibility in processor cell
control. One is for synchronization of processor cells (S-net), one for message broadcasting (B-net)
which is used for communication between the host computer and processor cells, and one is for
inter-processor communication (T-net). Calculations on processor nodes of AP-1000 are launched
by a user program running on the host computer.

The sample problem solved on AP-1000 is an eigenvalue problem of a fast critical assembly shown
in Fig. 5. The assembly consists of 14x14 drawers and has a core region and an axial and radial
blanket. Calculations were performed with a multi-group code GMVP. Two sets of calculations
which differ in the batch size were compared. In the second case, the batch size is ten times larger
than in the first one. Figure 6 shows the speed-up factor versus the number of processors, where
the “total time” is the time elapsed from the start-up on the host computer to the termination of
calculations, and the “random walk time” is the time of performing all random walks. As seen from
Fig. 6, a speed-up of several hundreds is achieved with the use of 512 processors for the case 1,
but the efficiency of the speed-up compared to that of the ideally parallelized case decreases to
about 80% in the random walk time and 70% in the total time when 512 processors are used. This
is because the small number of histories per processor increases the idling time of waiting for the
termination of the slowest processor cell, and because the time overheads for data transfer are no
longer negligible. On the other hand, in the second case, in which ten times larger histories are
performed in each processor, almost ideal speed-up factor is achieved.

Through parallelization on AP-1000, it was shown that the Monte Carlo code can be parallelized
successfully on a MIMD type massively parallel computer AP-1000, but the parallelization by
distributing histories over many processors may cause a decrease in parallelization efficiency if
the number of histories processed on each processor becomes very small. In the continuous energy
Monte Carlo code, whose parallelization is not described in this paper, a difficulty arises because the
large amount of cross-section data may exceed the local memory limit of 16 megabytes of AP-1000
in realistic problems.

Parallel processing in particle transport simulation 185

Y(cm)
vacuum
70 - -
LAGLLD LAY A G Y
DALLGHLI LAY,
s5 VAKX JURADIAL BLANKET /4
4 y r
DAL INNANT
2GLAGLLY,
reflective // // %// /////
,,A,// /{/{'j vacuum
Ak
;§ ;/2:9 CR: Control Rod
CORE A %/ CRP: Na filled
4 “,/ // control rod
CR* //:/[A position
CR*/CRP* 277
pars
0 A X{(cm)
0 35 45 70
vacuum
0 35 45 70
0 // X(cm)
4
o
BLANKET /
20 %
{ ®
CORE // D
|
A
7
reflective /’ - L
75 L B
L | vacuum
A
N
K
E
CORE 2 8
CRP*
130
AXIAL
BLANKET
150
Z(cm)

Fig. 5. Core configuration of the sample calculation on AP-1000

186 M. Sasaki, M. Nakagawa and T. Mori

600 [I ! ! i
—e—. Total time' for case 1 :
««-<A--- Random walk time for case 1 - 7
500 [- =0 - - Total time for case 2 y
: Ideal parallelization :

400

Speed-up factor

300 [/]

200 [/ :

100

0 100 200 300 400 500 600

Number of processors

Fig. 6. Speed-up factors versus the number of processors for the sample calculation with the parallelized
GMVP code on AP-1000

3.3. Parallel processing on MONTE4

The JAERI Monte Carlo Machine, MONTE4 [20], is a vector-parallel type of supercomputer with
4 vector processor units.

The basic strategy of parallelization is similar to that adopted for AP-1000 in the previous
section, but all processor units of MONTE4 share a single memory space, so a different way of
coding is necessary for this machine. The data in the codes are classified into two categories:
task shared data and task local data. The former is a memory area accessible from more than
one parallel process and the latter is accessible only from a specified process. Data that remain
unchanged during random walk processes such as geometry description and cross-section data are
defined as shared data, and changeable data such as the particle bank, the event stack and tally data
are defined as task local data. A host prz)gram which was necessary for AP-1000 is not needed for
MONTE4 and the process initiated by a user creates its replicas as sub-tasks running concurrently.
Since each process can make vector processing, we can expect speed-up in both parallel and vector
processing.

Eigenvalue calculations for a PWR whole core with 56 000 fuel pins and an FBR assembly with
91 fuel pins are performed on 4 processor units of MONTE4. Table 4 shows the speed-up factors
to scalar calculation by vectorization and parallelization and the total speed-up as product of the
two factors. For comparison with a non-parallel type computer, a speed-up factor of the VP-2600
supercomputer with vector processing is also provided.

Parallel processing in particle transport simulation 187

Table 4. Speed-ups of 4 process parallel processing on MONTE4 compared to single processor scalar
processing (with speed-ups of VP-2600)

(1) PWR core (2) FBR assembly
VP-2600 MONTE4 | VP-2600 MONTE4
CPU time/10* hist. (s) 7.36 5.7 18.8 21.0
Speed-ups to scalar
vector 12.0 5.0 18.0 4.9
parallel > 3.6 = 3.8
vector & parallel - 18.2 - 18.7

Speed-ups of vector processing of MONTE4 are several times smaller than that of VP-2600.
These differences are caused by the difference in the number of vector pipeline sets per processor
unit. However, speed-ups exceeding 3 in parallel processing make the total speed-ups comparable
to that of VP-2600.

3.4. Parallel processing on workstation cluster

Recent progress in the processing power of small scale computers such as desktop workstations
and personal computers makes high performance calculations closer to each engineer by using
network-connected small computers as a parallel computer. The MVP and GMVP codes are par-
allelized on a cluster of workstations connected with LAN. To construct a parallel processing envi-
ronment, we used the Parallel Virtual Machine (PVM) [19] which provides a machine independent
message passing interface and an environment to control parallel tasks running on machines in a
network.

The basic strategy of parallelization is particle based and similar to those adopted in the cases
of AP-1000 and MONTE4. However, uniform assignment of particles to processes may not be
suited for workstation clusters because the cluster may often be heterogeneous, that is, not all
the processors composing the cluster have the same computation power. Such a situation occurs
when you cannot collect machines of the same CPU power or other user processes are running on
some component machines. In some cases, too large deviation in the lifetime of particles may cause
heterogeneity even in a homogeneous configuration of CPU power. In a heterogeneous environment,
the net processing speed is bounded by the slowest process.

The problem caused by heterogeneity can be solved through load balancing, i.e. assigning parti-
cles proportionally to the processing power of each process, but it is difficult to estimate the relative
processing power before starting calculations in most situations. Another solution is to use a “pool
of task” method. In this scheme, histories to be processed (pool of task or, in our case, pool of
history) are divided into pieces including more than one history and these pieces are assigned one
by one to a process which is in idling state after finishing the processing of previously assigned his-
tories. When the history pool is divided into pieces of proper size — the number of pieces should be
greater than that of processes — processes are kept busy and good load balancing will be achieved.
In current parallelization, a process which serves pieces of history from the pool of history is created
together with processes doing the random walk task. The task assignment process is only to inform
about the number of histories assigned to idling processes or to tell that the task pool is empty, so
the existence of the process does not affect performance of the workhorse processes. It can easily
be seen that fixed source problems are very well suited for this method and implementations on
other codes are reported [21,22]. We show an example of a fixed source problem calculated with
the MVP code on a workstation cluster in Table 5. In this example, 4 workstations with different
performances compose the PVM virtual machine. The timing data of a calculation by the history
pool method are compared with those by the uniform assignment strategy. The time elapsed for
random walk is substantially reduced by the history pool method.

188 M. Sasaki, M. Nakagawa and T. Mori

Table 5. Comparison of timings (s) between two ways of a parallel calculation of a fixed source problem
with MVP using 4 workstations (total number of histories is 80 000. Size of batch is 2000 histories)

History pool Uniform assignment

Time elapsed for random walk 394.6 722.3
Workstation 1

history 10000 20000

CPU time 181.5 359.3

elapsed time 363.2 719.8
Workstation 2

history 22000 20000

CPU time 196.4 178.4

elapsed time 391.4 356.5
Workstation 3

history 34000 20000

CPU time 373.8 228.3

elapsed time 374.3 229.2
Workstation 4

history 14 000 20000

CPU time 375.2 535.3

elapsed time 378.4 538.8

For eigenvalue problems, however, the history pool method may not be so effective because
the size of the history pool should be the size of the batch and the size may be too small to
be divided into an appropriate size of pieces. Moreover, inter-processor data communication may
become necessary to store or exchange particle data in fission sources for the next generation. Load
balancing for eigenvalue problems is currently under study.

4. CONCLUSIONS

For the neutron and photon transport Monte Carlo simulation, new methods suitable for vector
computers and general purpose codes are developed. The vectorized codes achieved substantial
speed-up gains compared to the conventional scalar codes. By using their flexibility in geometry
modelling and the continuous energy method in cross-section representation, the whole core cal-
culations of reactors were performed within realistic time and calculation costs. Along with vector
processing, the applicability of the Monte Carlo codes to a massively parallel computer, a vector
parallel machine and a workstation cluster was studied and high performance gain was observed.

REFERENCES

(1] T. Suzuki, M. Nakagawa, M. Suganuma. Vectorization of MORSE-CG (unpublished) 1985.

[2] K. Asai, K. Higuchi, J. Katakura. Nucl. Sci. Eng., 92: 298, 1986.

[3] M. Suganuma et al. Vectorization of the continuous energy Monte Carlo code VIM. JAERI-M, 86-190, 1987 (in
Japanese).

(4] Y. Kurita et al. Vectorization of the MCNP code. JAERI-M, 87-022, 1987 (in Japanese).

[5] F.B. Brown. Trans. Am. Nucl. Soc., 43: 377, 1982.

(6] F.W. Bobrowicz et al. Parallel Computing, 1: 295, 1984.

[7] F.B. Brown. Trans. Am. Nucl. Soc., 53: 283, 1986.

[8] W.R. Martin, P.F. Nowak, J.A. Rathkopf. IBM J. Res. Develop., 30: 193, 1986.

Parallel processing in particle transport simulation 189

[9] M. Nakagawa, T. Mori, M. Sasaki. Development of Monte Carlo code for particle transport calculation on vector
processor. Proc. Supercomputing in Nuclear Applications, 160, Mito, Mar. 1990.

[10] M. Nakagawa, T. Mori, M. Sasaki. Nucl. Sci. Eng., 107: 58, 1991.

[11] M. Nakagawa, T. Mori, M. Sasaki. Prog. Nucl. Energy, 24: 183, 1990.

[12] T. Mori, M. Nakagawa, M. Sasaki. J. Nucl. Sci. Technol., 29: 325, 1992.

[13] T. Mori, M. Nakagawa, M. Sasaki. J. Nucl. Sci. Technol., 29: 1224, 1992.

[14] M. Nakagawa, T. Mori. J. Nucl. Sci. Technol., 30: 692, 1993.

[15] J.S. Hendricks et al. Nucl. Sci. Eng., 77: 71, 1981.

[16] J.F. Briesmeister (ed.) LA-7396-M, Rev. 2, 1986.

[17] E.L. Redmond II, J.M. Ryskamp. Nucl. Technol., 95: 272, 1991, also idem, Trans. Am. Nucl. Soc., 61: 377,
1990.

[18] H. Ishihata et al. An architecture of highly parallel computer AP-1000. IEEE Pacific Rim Conference on
Communications, Computers and Signal Processing, May, 1991.

[19] V. Sunderam. PVM: A framework for parallel distributed computing. Concurrency: Practice and Ezperience,
2: No. 4, Dec. 1990.

[20] K. Asai, K. Higuchi et al. The JAERI Monte Carlo Machine. Proc. Mathematical Methods and Supercomputing
in Nuclear Applications, 341, Karlsruhe, Apr. 1993.

[21] T. Yamazaki et al. A parallelization study of the general purpose Monte Carlo code MCNP4 on a distributed
memory highly parallel computer. Proc. Mathematical Methods and Supercomputing in Nuclear Applications,
374, Karlsruhe, Apr. 1993.

[22] F. Schmitz, U. Fischer. MCNP4, a parallel Monte Carlo implementation on a workstation network. Proc.
Mathematical Methods and Supercomputing in Nuclear Applications, 384, Karlsruhe, Apr. 1993.

[23] R.S. Baker. Implementation of a Monte Carlo algorithm for neutron transport on a massively parallel SIMD
machine. Proc. Mathematical Methods and Supercomputing in Nuclear Applications, 366, Karlsruhe, Apr. 1993.

