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The available methods and solutions of problems in discrete optimum structural design are reviewed.
They are classified into the following categories: branch and bound methods, dual approach, enumeration
methods, penalty function approach, simulated annealing and other methods. For the majority of prob-
lems, none of the methods is guaranteed to give the exact solution from the mathematical point of view.
However, “good practical” solutions can be obtained at an acceptable cost.

1. INTRODUCTION

In many cases, modern technology is based on prefabricated products composed in different ways,
which form different engineering systems. Rolled beams, metal sheets, prefabricated concrete ele-
ments, bolts, motors, gearboxes, electronic units are good examples of such products. Therefore,
modern designing consists to a great extent in composing a system from a set of prefabricated
elements specified in specialized catalogues. In most of the available methods of computer-aided
optimum structural design, a very necessary practical requirement that the optimum design should
employ only the standard discrete component sizes is omitted; it is assumed that components are
available in a continuous range of sizes. The omission of this very practical requirement has been
one of several contributory factors to the lack of use of computer-aided optimum structural design
methods in engineering practice. Due to this fact, discrete optimum structural design has received
considerable attention from researchers for the last few years. The first international symposium in
this particular field, sponsored by the International Union of Theoretical and Applied Mechanics,
was organized in Zakopane, Poland, in 1993 [Gutkowski and Bauer, 1994a).

Discrete structural optimization problems may be expressed mathematically in the following
form:

— Minimize or maximize
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Equation (1) is the objective function and is a function of design variables z;. Equations (2)
and (3) represent constraints which the design must satisfy. Equation (4) states that each design
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variable z; must be selected from the finite set S; which contains M; discrete sizes. In some
structural designs it may be necessary for only a certain number of the design variables to be
chosen from a discrete set while the other variables may take any continuous values. This type
of mixed discrete-continuous problem is not the main purpose of this paper although some of
the methods presented here also apply to this class of problems. A survey of methods for mixed
discrete-continuous problems has recently been presented in the introductory chapter of the paper
[Zhang and Wang, 1993a).

The purpose of this paper is to summarize methods for discrete optimum structural design. We
confine ourselves to discrete variables. The variables that must have integer values (in some cases 0
or 1) can be considered as a special case of discrete variables. Due to the fact that the discrete space
is disjoint and nonconvex, traditional optimization approaches which are gradient-based cannot be
applied directly. Our discrete optimization problem (1)-(4) contains a finite number of feasible
solutions. It could then be suggested that such a problem should be solved by means of the ezplicit
enumeration method. But simple calculation shows that even for a simple case of 10 variables
with the list of available values (the catalogue) containing 10 parameters the number of possible
combinations is 101°. If checking one combination took one second only (solution of equilibrium
equations and verification of constraints), the enumeration of all possible combinations would last
over three hundred years! A natural development of the explicit enumeration method are methods
of implicit enumeration or the branch and bound method which are described in the next sections.

A simple solution suggested quite often for structural design is first to solve an equivalent problem
without constraints on discreteness of variables, and then round the design variables to the nearest
allowable discrete or integer values. But the rounded solution is not always the optimum and may
in fact be infeasible [Maciulevicius, 1968a], [Bauer et al., 1984a).

Most proposed methods appear to work well on selected problems since they generate an exact
or sufficiently good approximate solution, however, none of them claims to work well on all prob-
lems. The computational complexity [Nemhauser and Wolsey, 1988f], [Walukiewicz, 1991d] of an
algorithm for solving a certain problem is defined as the maximum number of computational steps
performed to solve any instance of the considered problem measured as the number of elementary
bit operations performed on an input string of length s. A polynomial-time algorithm (P) is the
one whose complexity is limited by a polynomial p(s). A deterministic algorithm is the one in which
the result of every operation is uniquely defined. A non-deterministic algorithm is the one in which
the result of each operation is not defined uniquely but belongs to a specified set of possibilities.
Discrete optimization problems are A/P-class problems (ANon-deterministic algorithm that runs in
Polynomial time). Computational complexity for minimum weight trusses with discrete member
sizes is given in the paper [Yates et al., 1982a)]. Truss weight minimization with deflection constraint
and with a catalogue of cross-sectional areas of bars is a A/P-hard problem.

In the first papers on discrete variable structural optimization, the cutting plane method for
linear programming problems (the Gomory algorithm) was used [Maciulevicius, 1968a], [Toakley,
1968b). Small scale engineering optimization problems for truss and frame structures were solved.
Toakley concluded that because of convergence difficulties the Gomory algorithm cannot be used
with confidence. In some cases, linear discrete programming problems are transformed to (0-1)
linear programming problems and well-established numerical algorithms of logical programming
are applied.

A survey of methods for discrete structural optimization has been presented by Bauer et al.
(1981a], Bremicker et al. [1990h] and Vanderplats and Thanedar [1991c]. The methods reviewed in
the papers mentioned above are the branch and bound method, the cutting plane method, decompo-
sition methods, dynamic programming methods, enumeration methods, heuristic (approximation)
techniques and “ad hoc” methods. In the present paper, the numerical methods for solving discrete
optimum structural design problems are classified as follows:

(a) Branch and bound method
(b) Dual approach
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(c) Enumeration methods
(d) Penalty function approach
(e) Simulated annealing

(f) Other methods — heuristic methods, genetic algorithms, integer gradient direction methods,
etc.

The methods are described in the subsequent sections.

2. BRANCH AND BOUND METHOD

A detailed explanation of the branch and bound approach is available in monographs [Korbut and
Finkelsztejn, 1969a], [Garfinkel and Nemhauser, 1972a). First, a problem without constraints on
discreteness of variables is analysed. This gives a starting point, as well as a lower boundary (in the
case of a minimization problem) on the discrete solution. If this solution is discrete (all obtained
values are in the catalogue), the process is terminated. If one of the desired variables is not discrete,
its value lies between two discrete values, e.g. s; ; < z; < 8; j+1. Now two subproblems are defined,
one with constraints z; < s;; and the other with z; > s; ;;1. This process is called branching. It
eliminates part of the continuous feasible region which is not feasible for the discrete problem. It
does not eliminate any of the discrete feasible solutions. The two subproblems are solved again and
the process is repeated. The general framework involves decomposing the original problem into
subproblems, modifying constraints to enlarge feasible domains, and finally a process referred to
as fathoming. This involves checking a solution for feasibility and establishing optimality.

The method has been applied by Cella and Soosar [1973a] in the optimization of a space frame
and a box-shaped beam and by Haftka and Walsh [1992c] in the optimization of the buckling
of laminated plates. A modified version of the branch and bound method for a mixed integer
and discrete programming problem has been used by Hajela and Shih [1989d] in the optimization
of a cantilever composite laminate beam for minimum weight and with constraints on strength,
displacements and natural frequencies. The main disadvantage of the branch and bound method
is that a multitude of nonlinear optimization tasks must be performed, which is very expensive.

3. DUAL METHODS

Dual concepts are the most popular ones among all discrete optimization approaches. For con-
tinuous sizing problems, an approximation scheme creating a series of strictly convex, separable
problems obtained by approximating the original problem is often used. The approximate problems
can be solved by means of dual methods. Dual functions are concave and differentiable so that the
optimum primary solution can be constructed from the dual solution. For a discrete sizing prob-
lem, a similar scheme creating a series of discrete problems approximating the original problems
can be used [Schmit and Fleury, 1980a], [Ringertz, 1988a]. The dual functions are still concave
but piecewise linear, not everywhere differentiable and standard gradient methods cannot be used
in the maximization of the dual function. Further, solving the dual problem is not equivalent to
solving the primary one, since the primary problem is nonconvex. This fact can create the so-called
duality gap. In maximizing the dual function, various methods are proposed, e.g. the gradient
projection method [Schmit and Fleury, 1980a] and the steepest subgradient method [Sepulveda
and Cassis, 1986d]. Among the dual approaches one can distinguish a family of methods that
might be described as Lagrangean relaxation combined with subgradient optimization. Reviews
of this method can be found in [Fisher et al., 1975a], [Shapiro, 1979a], [Nemhauser and Wolsey,
1988f], [Walukiewicz, 1991d]. These methods proceed in the following manner. We construct the
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Lagrangean function by including in the objective function complicating constraints priced by La-
grangean multipliers. The Lagrangean function in terms of Lagrange multipliers is a continuous,
not everywhere differentiable, concave function. In solving the dual problem, the ascent method
is constructed with the use of the subgradient. The application of the above mentioned approach
in the optimization of truss structures has been given by Jonsson and Larsson [1990a] and in the
optimization of plastic circular plates with step-wise varying thickness by Bauer [1992d]. The
dual approach is efficient in mixed discrete-continuous programming problems [Schmit and Fleury,
1980a], [Ringertz, 1988a).

4. ENUMERATION METHODS

The enumeration method for solving discrete problems often has advantages over other methods.
Obviously, since the variables take on discrete values only, they can be listed easily, although they
may be numerous. For the procedure to be manageable, the enumeration should be ordered in such a
way that solutions are obtained with the minimum amount of calculation. Thus, a certain strategy
for eliminating some of the solutions is necessary. A possible method, suggested in [Greenberg,
1971b], may consist in examining the solutions in such a way that monotonicity of the objective
function is ensured. The first encountered solution satisfying the constraints is the solution of
the problem. But the algorithm presented by Greenberg is practically of no use because of its
memory requirements and time consumption. A significant improvement of the algorithm, which
significantly reduces memory requirements and allows us to start with any value of the objective
function, has been presented by Iwanow [1981e and 1990e]. The algorithm in [Iwanow, 1990e] has
been described with details for both 0-1 variables and real variables from a finite catalogue. Some
applications of the algorithm in discrete optimum design of truss structures have been presented
in [Gutkowski et al., 1986b and 1994a (17)] and [Gutkowski, 1992h].

A systematic search procedure in the application of the backtrack method in discrete optimum
structural design has been presented in [Farkas and Szabo, 1980b]. This combinatorial method
can be successfully applied to problems with nonlinear objective functions and constraints. In the
algorithm, a partial search is carried out for each variable and if the possibilities are exhausted, a
backtrack and a new partial search are performed. This scheme has been used for several optimum
structural problems such as hybrid I-beam or portal frames [Janczura and Sieczkowski, 1986¢],
[Janczura, 1994a(23)]. The accuracy and efficiency of this method has been demonstrated with
standard numerical examples [Yuan et al., 1990d]. An efficient implicit enumeration method with
systematic elimination of nonoptimum solutions has been applied by [Hua, 1983b]. The optimum
design of four- and ten-bar trusses and an eighteen-member wing box has been demonstrated.

5. PENALTY FUNCTION APPROACH

By applying the penalty function method, we create a pseudo-objective function by combining
the original objective function and the constraint equations. The constraints are added to the
objective function in such a way so as to penalize it if the constraint relations are not satisfied.
The main idea has been presented by S.S. Rao in his monograph [Rao, 1978d]. Its application
in discrete optimum structural design has been presented by Shin et al. [1988e and 1990b]. A
simple penalty approach combined with the extended interior penalty function technique has been
given. The procedure has been demonstrated on well-known benchmark problems: three-bar truss,
ten-bar truss and twenty-five-bar truss. The improved penalty function method has been presented
by Cai and Thierauf [1993b]. Efficient solutions have been obtained for ten- and twenty-five-bar
trusses under static loading and a 44-element plane frame under dynamic loading. In both cases,
the authors conclude that further numerical tests with more complex problems are required to
use the penalty method techniques with confidence. The penalty function has been applied in the
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transformation of a nonlinear integer programming problem into a global optimization problem [Ge
and Huang, 1989g]. The authors investigated unconstrained nonlinear integer programming and
mixed nonlinear integer programming.

6. SIMULATED ANNEALING

The method makes use of the connection between statistical mechanics (the behaviour of systems
with many degrees of freedom in thermal equilibrium at a finite temperature) and combinatorial
optimization [Kirkpatrick et al., 1983c].

In the paper [Metropolis et al., 1953a), a simple algorithm introduced that can be used to provide
an efficient simulation of a collection of atoms in equilibrium at a given temperature is introduced.
In each step of this algorithm, an atom is given a small random displacement and the resulting
change, AF, in the energy of the system is compared.

If AE <0, the displacement is accepted and the configuration with the displaced atom is used
as the starting point for the next step.

The case AE > 0 is treated probabilistically: the probability that the configuration is accepted
is

-AFE

P(AE) = exp ( TpT )
where kg — Boltzmann’s constant, 7" — temperature.

Random numbers uniformly distributed in the interval (0, 1) are convenient means of implement-
ing the random part of the algorithm. One such number is selected and compared with P(AE).

If it is less than P(AE), the new configuration is retained; otherwise the original configuration
is used to start the next step. By repeating the basic step many times, the thermal motion of
atoms in thermal contact with a heat bath at temperature 7' is simulated.

Using the cost function instead of the energy and defining configurations by a set of parameters, it
is easy to generate a population of configurations of a given optimization problem at certain effective
temperature with the Metropolis procedure. This temperature is simply a control parameter of the
process. The simulated annealing process consists of first “melting” the system being optimized
at a high effective temperature, then lowering the temperature in small steps until the system
“freezes” and no further changes occur. At each temperature level, the simulation must proceed
long enough for the system to reach a steady state. As in the physical process, the performance
of the simulated annealing algorithm is sensitive to step sizes of moves and the cooling schedule
which includes the determination of the initial temperature, the rate at which the temperature is
reduced and the stopping criterion.

The basic elements of a simulated annealing algorithm are the following (see [Zhang and Wang,
1993a)):

Pk

. configuration: a solution to the problem
neighbourhood move: a transition from one configuration to another
neighbouring configuration: a result of a neighbourhood move

objective function: a measure of how good the solution is

S s e

cooling schedule: how high the starting temperature should be, and the rules to determine (1)
when the current temperature should be lowered, (2) how much the temperature should be
lowered, and (3) when the annealing process should be terminated.

These elements appear in most simulated annealing implementations, however; they may be in
different forms depending on the applications.
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A detailed description of the method with applications to problems arising in the optimum
design of computers (partitioning, component placement and wiring of electronic systems) and
the travelling salesman problem has been presented in the article [Kirkpatrick et al., 1983c]. The
efficiency of the simulated annealing algorithm for mixed-discrete nonlinear optimization has been
demonstrated in [Zhang and Wang, 1993a]. The discrete optimization of a three-dimensional steel
frame has been presented by Balling [1991b]. Certain improvements of the simulated annealing
strategy in the discrete optimization of a steel frame with all strength and serviceability constraints
have been presented in the paper [May and Balling, 1992¢] with non-trivial numbers of variables and
of elements in the catalogues. Seven variables (for columns) with 47 elements in the catalogue and
four variables (beams) with 46 elements in the catalogue give 477 x 46* (approx. 10'®) possibilities.

7. OTHER METHODS AND PARTICULAR APPLICATIONS

A simple genetic algorithm proposed in [Goldberg, 1989h], based on natural genetics, has been
modified to an artificial genetic approach and applied with great success in a number of papers
on discrete structural optimization. Rajeev and Krishnamoorthy [1992b] have solved two standard
problems known from literature and a 160-bar transmission tower. Hajela and Lee [1994a (5)]
presented a genetic algorithm in the topological design of grillage structures. Trompette et al.
[1994a (1)] applied a genetic algorithm in the optimum damping of beams and plates. An application
of the neural network has been presented by Kishi et al. [1994a(3)].

Among heuristic methods, one can distinguish the method proposed by Yates et al. [1983a] for
the optimization of truss structures. Templeman [1988¢c] proposed an original “segmental member
method” in the discrete optimization of truss and plane structures. This method was also applied
in the reliability based discrete optimization [da Cruz Simédes, 1992g]. Fox and Liebman [1981b]
presented a modified nonlinear simplex algorithm for the constrained optimization problem with
discrete values. The modifications include the incorporation of a one-dimensional search, a new
acceleration and regeneration method and decomposition strategies. Liebman et al. [1981c] con-
verted a constrained problem into a sequence of unconstrained ones by means of penalty functions
and solved the unconstrained discrete problems by means of the integer gradient direction method.

The hybrid method involving both the integer gradient direction method and the modified
Resenbrock ortogonalization procedure has been applied in the papers [Amir and Hasegawa, 1988b
and 1989b] and [Amir, 1989c].

The shape optimization of plastic structures by means of 0-1 programming has been presented
by Zavelani et al. [1975c]. The optimum structural design problem with sizing and shape variables
for truss structures has been solved in [Salajegheh and Vanderplaats, 1993c]. Both sizing and
shape variables can be continuous, discrete or mixed discrete-continuous. Numerical examples
including a 47-bar plane tower have been presented. A semi-analytical approach combined with
logical programming has been applied in the discrete optimization of space structures [Bauer et al.,
1981d and 1984a), [Gawkowska, 1982b and 1987a].

The linearization of nonlinear problems is a popular approach among many researchers. The
sequential linear discrete programming method [Olsen and Vanderplaats, 1989e], [Bremicker et al.,
1990h], [Loh and Papalambros, 1991e] begins with the creation of a linear integer approximate
problem from the nonlinear discrete problem. The existing integer programming techniques are
then used in the approximate problem directly. A series of approximations and optimizations is
carried out until convergence occurs. In some cases, this method is combined with the branch and
bound method [Bremicker et al., 1990h].

Among interesting engineering applications one can distinguish the optimum allocation of sup-
ports or optimum segmentation of structures [Sui et al., 1991f], [Dems and Mréz, 1994a (6)],
[Gutkowski et al., 1994a (17)].

An efficient approximation method for complex problems in the optimization of frames (55
variables, 2718 nonlinear constraints) has been applied in [Kalinin, 1989a]. The problem of optimum



Discrete optimum structural design 33

location of actuators or sensors has been solved by Haftka and Adelman [1985a], Holnicki-Szulc et al.
[1994a (19)] and Korbicz and Ucifiski [1994a(18)]. The application of mixed discrete-continuous
programming in the optimization of machine tools has been presented in [Weck and Kdlsch, 1988d].

Among many versions of enumeration methods applied in discrete design one can distinguish
the following:

— [Reinschmidt, 1971a] — plastic design of frames and elastic design of trusses,

— [Le$niak, 1975b], [Leéniak et al., 1978a] — decomposition strategy in the optimization of steel
industrial buildings,

- [Garstecki et al., 1978b] — optimization of lightweight steel industrial buildings,

— [Relahan and Gaddy, 1978¢] — adaptive random search procedure,

~ [Pyrz, 1990f and 1990g] — optimization of geometrically nonlinear truss structures.
— [Mottl, 1992a and 1994a(2)] — “voting method”.

Efficient applications of the optimality criteria method have been presented in [Grierson and
Lee, 1986a], [Chan, 1992f], [Rozvany and Zhou, 1994a (13)].

A number of papers are devoted to the design of reinforced concrete structures and prestressing
problems [Eimer and Maczyiiski, 1976a], [Choi and Kwak, 1990c], [Marks and Trochymiak, 1991a).

A combination of expert systems with other methods has been applied by Niczyj and Paczkowski
[1994a (10)] and Pyrz [1994a(22)].

All above mentioned papers are devoted to optimum problems with scalar objective functions.
However, in recent years also multicriteria optimization problems have been solved [Eswaran et al.,
1989f], [Jendo and Paczkowski, 1993d and 1994a(21)], [Osyczka and Montusiewicz, 1994a (8)].

8. FINAL REMARKS

For a narrow class of problems some methods like the branch and bound method or the dual
approach have a solid mathematical basis. For the majority of problems none of the methods
guarantees that the global optimum will be achieved. However, these methods quite often provide
reasonable solutions at an acceptable cost.
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