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The paper presents a heuristic method of node renumbering for wavefront reduction of the coefficient
matrix of a linear system of equilibrium equations obtained in Finite Element (FEM) or in Finite Difference
(FDM) methods for regular rectangular domains. From among all the node renumbering techniques for
the Banachiewicz-Cholesky triangular ‘decomposition of an assembled matrix with a compact (the least
sparse possible) profile, the method presented herein assures the best reduction of matrix wavefront and
time of decomposition. :

1. INTRODUCTION

In the paper [7] a heuristic method of alternating directions of element renumbering for frontal
solution of systems of linear equilibrium equations in FEM was presented. It was found that the
method assures the best reduction of the mean and root-mean-square wavefront as well as of the
solution time of the system for regular domains. Theoretical formulae for wavefront reduction were
derived and corresponding numerical tests confirming the theory were presented.

In this paper we describe a corresponding method of alternating directions of node renum-
bering and its influence on the solution of a linear system of algebraic equations by the
Banachiewicz-Cholesky decomposition of fully assembled matrices obtained in  FEM and.FDM
for regular domains. We present an analysis of such characteristics of the triangular factor of the
matrix, as wavefront and fill-in, which have the greatest impact on the efficiency of the solution
process. The comparison of the presented method with other methods of node renumbering shows
that it gives better results than any other method preserving the compact profile of the matrix.

2. SURVEY AND COMPARISON OF NODE RENUMBERING METHODS

It is well known that the efficiency of solution of a system of linear algebraic equations obtained in
FEM or FDM analysis with preliminary assembly of the coefficient matrix depends upon the node
numbering of the discrete model mesh. The existing methods of evaluating the best possible node
renumbering can be divided into two groups: :

1. Methods with a compact profile of the matrix, where its non-zero elements are located in the
closest possible vicinity of the main diagonal in the form of a band or a sky-line. We can include
here such methods, as Reverse Cuthill-McKee (RCM) method [4], Sloan and Randolph method
[10], method of analysis of geometric configuration of the discrete model [3], and method of
decomposition of the node adjacency graph, associated with the mesh, with respect to a path
of nodes [8].

2. Methods with a sparse profile of the matrix, where its non-zero elements are scattered in a
special, sophisticated way, ensuring that the number of zero elements becoming non-zero during
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the process of matrix decomposition into triangular factors is the least possible. We can include
into this group such methods, as minimum degree [4], refined quotient tree [4], parallel dissections
[4], and George’s nested dissections methods [4]. All these methods are based on decompositions
of the node adjacency graph and defining such a renumbering of the vertices of the graph (nodes
of the mesh) which results in the minimum fill-in of the matrix. During the solution of the
system of equations only the non-zero elements of the matrix and those of its fill-in are stored
and operated upon. :

It was proved theoretically [4], that the nested dissections method is the most effective one.
For example, for a square n - n mesh of nodes with one unknown at each node, it enables the
decomposition of the corresponding matrix into triangular factors by the Banachiewicz-Cholesky

method using only approximately % n3 operations, whereas row-by-row or column-by-column

numbering of nodes requires approximately %n“ operations. The George’s method reaches the

minimum order of the number of required arithmetic operations, which, as it follows from the
computational complexity of the problem [6], in the above example is n3.

Nevertheless, it is striking that, despite all its advantages, the nested dissections method is
hardly ever used in finite element method systems, the more so as its effectivity increases with the
number of unknowns. It seems that the following factors are responsible for this situation. Firstly,
all finite element method systems from their very beginning were oriented at the use of frontal [5],
front-skyline [2] or matrix partitioning methods [1]. George’s method, however, requires a sparse
matrix storage which is a completly different approach. Secondly, the nested dissections method
requires a considerable number of preliminary operations that must be performed before matrix
assembling in order to decompose the graph associated with the mesh and define the numbering of
nodes [4]. Finally, George’s method results in a considerable increase in efficiency only for matrices
of large dimensions. '

In the case of regular rectangular domains, considered later in this paper, all methods of group
one, except for the RCM method, give identical numbering of nodes.

3. MATRIX WAVEFRONT FOR RECTANGULAR DOMAIN FOR EXISTING NODE NUMBER-
ING METHODS

For a given symmetric square matrix A = [A;;] of dimension n - n let us define after [4]
fi(A) = min{j: A;; # 0}, '
Bi(A) = i — fi(A).

The number 3;(A) is called the i-th bandwidth of the matrix.
The wavefront of matrix A for column 7, or the number of active rows in column i, is defined as

{k>i:_\/ Akl#O} : (2)

I<i

(1)

wi(A) =

The maximum (Wmax(A)), mean (Wmean(A)) and root-mean-square (Wmnsq(A)) wavefronts of
matrix A are given by

wmax(A) e i=Ilr,12a,‘x...,n wi(A) 3 (3)
wmean(A) == %zj:wt(A) s (4)

Wmnsq(A)

.‘ L3 ul4). Q
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The profile P(A) of matrix A is defined as the following subset of matrix elements
P(A)={A;;: fl(A)<j<i}. (6)

The number of elements of P(A) will be called the magnitude of the profile.
The following equalities hold

IP(4)] = 3 Bi(A) = }_: o (1)

g==1

If Nonz(A) denotes the number of non-zero elements of the profile P(A), the fill-in Fill(A) of
the profile of A is given by

Fill(A) = Nonz(L) — Nonz(A) , (8)
where L is the lower triangular factor of A resulting from the Banachiewicz-Cholesky or Gauss
decomposition

A=TLL", : (9)

A=LU. : (10)

Let us consider now a rectangular domain discretised by FDM or FEM with the help of a
rectangular mesh with n -1 nodes (I > n). If we apply the column-by-column numbering of nodes
as shown in Fig. 1, we can derive the following values for maximum, mean and root-mean-square
wavefront of the matrix of coefficients of the system of linear equations obtained by FEM (4-node
elements) or FDM (9-node differential schemes) with one unknown at each node

Wmax = N+1,
n?l—n24+nl-1
Wmean = = ) (11)
%@L—@ﬁ+ﬁa—lm2+03—30n—m—6
Wmnsq = .
3nl
A l B
<»—<r——Jr—J{—J(—J>——J 05 SN o—0
n<( O :r—q-—h——Jr——p
[, S8 R S TR | p——‘( Yol ;-—J)——Jr
EEERSEREEEN
D Aod ~ N A C
Fig. 1. Mesh for a rectangle with n - I nodes — nodes numbered column-by-column
In the case of a square (I = n), we have
n? -1 1
Wmean = ===y
n n
(12)

3nt 4+ 2n3 — 9n2 + 10n — 6
Woings . :
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If supernodes are located on one of the longer sides of the rectangle (AB or DC in Fig. 1),
which means that supernodes are assigned the last numbers and the matrix decomposition will not
be performed with respect to their corresponding rows and columns of the matrix, the values of
maximum and mean wavefront are given by

Wmax = n+i-1,
13
wmemzi(2n21—2n2+nlz—nl+2n—12—l). (13)
2nl
In the case of a square, these formulae reduce to
Wmax = 2n—1,
3n®—4n? +n (14)
Wmean = ‘—2"3— .
n

If supernodes are located on two adjacent sides of the rectangle (e.g. AB and BC in Fig. 1), we
have

Waax = B +1-1,
| 15
wmean—':L(2n21—3n2+nl2—3n1+5n—l2+l—2). (15)
> 2nl o
For a square, they become
Wmax = 2n — 1 )
it (16)

Wimean = g7 (3n° = Tn® 450 -2) .

For the RCM method of node renumbering [4], in the case without supernodes, we obtain

Wmax = 21,
1 17
Wmean = —(6n21+6nl—61+2n3—33n2+n+30) : (1)
6nl
In the case of a square, the mean wavefront is
1 : : y o
Wmean = 53 (8n® 1 27n - 6n + 30) A | (18)

For a slender rectangle (! > n), both. RCM and column-by-column numbering methods are,
in principle, equivalent, because Wmean & n + 1 in both cases, and only the maximumn wavefront
Wmax for the former method is twice as large as for the latter one. In the case of a square domain,
however, the column-by-column method (wmax = 7 + 1, Wmean & n + 1) is much superior to the

RCM one (Wmax = 27, Wmean ~ %n - 5)'

4. DESCRIPTION OF ALTERNATING DIRECTIONS OF NODE RENUMBERING METHOD

Let us now change the column-by-column numbering of nodes in the following manner. First, we
number row-by-row the k < = columns of nodes, next we number column-by-column the | — 2k
following columns, and, finally, we number row-by-row the last k£ columns of nodes. We can derive
then the following values for maximum and mean wavefront

19
wmean:%[2k2(n_1)+k(_n2"n+2)+n2l+nl—l—’n ( )
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The minimum value of wWyean Will be reached for

LA (20)
4
the same as in the case of alternating directions of element renumbering [9].
For a square, for k given by (20), we have for large n
7 5
Wmean ~ gn it § ) (21)

which results in 12.5 per cent lower mean wavefront and over 23 per cent time reduction for matrix
decomposition into triangular factors. This reduction is obtained at the cost of local increase in
the maximum wavefront (cf Fig. 3) of up to 25 per cent.

The evaluation of the root-mean-square wavefront wmnsq is much more complicated, but it leads
to the value of k, which for n < 100 differs only slighty from the one given by (20). Therefore, this
formula may be used without much loss of generality.

Applying the described method to a rectangle with supernodes on its longer side we have,
accordingly

Wmax = n+1—-k+2,

siodd % [k —2) + k(=202 +2n 4 4) 4 202 bl —nl—m 4 2—1],  (22)
n+1

k = 98—,

and with supernodes on its two adjacent sides

Wmax = n+1-1 )

Wmean = ﬁ [k2(n - 2)+ k(-n?+2n)+ 202 —2n2 + ni® - 3nl + 2n — 1% + 1] : (23)
n

k . &

For a square (I = n), for large n, we have, in the case of supernodes on its longer side, Wmean ~

3 ‘ % S
l—ln, and in the case of two adjacent sides wmean & =n, as compared t0 Wmean = 35 for the

column-by-column numbering of nodes, which gives the mean wavefront reduction of 16.7 per cent
and 8.3 per cent, accordingly. The decomposition time will be then reduced by 30.5 per cent and
16 per cent.

Applying the above described procedure in a recurrent way, we obtain a multi-step alternating
directions of node renumbering method. The fundamental steps in this method may be summarized
as follows:

Step 1. Assume k; = "+2 Divide the rectangle into 2 extreme rectangles with k; - n nodes each,

and a middle one with (I — 2k;) - n nodes. Assign the nodes of the middle part numbers
from ki -n+1to (I - 2ky)-n in the column-by-column manner. Assign the nodes of the left
extreme part numbers from 1 to k; - n, and those of the right extreme part numbers from
(Il = 2k1)n + 1 to [ - n in the row-by-row manner (the operations of this step correspond
exactly to the one-step alternating directions method).

ki +1

Step 2. Assume k; = . In the extreme parts of the two extreme rectangles from step 1, with

k2 k1 nodes each, switch the numbering method from row-by-row to column-by-column one.

Step 7. Assume k; = Kot 14 the extreme parts of the four extreme rectangles from step i — 1, with

ki - ki—1 nodes each, switch the numbering method from row-by-row to column-by-column,
or from column-by-column to row-by-row, depending upon the direction of numbering used
in step ¢« — 1. Repeat step ¢ until k; becomes less or equal one.
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An example of application of the multi-step method of alternating directions of node renumbering
is shown in Fig. 2 for n = 13, k; = 4, k2 = 3 and k3 = 2. Figure 3 presents a comparison
of the wavefront change for the one-step alternating directions (n = 13 i k; = 4) and for the
column-by-column numbering methods.

For a square, for large n, reduction of the matrix decomposition time achieved when using the
multi-step alternating directions method may reach 27 per cent. Tables 1 and 2 present values of
wavefront, fill-in of the matrix, and matrix decomposition time in the case of a square mesh n = 17
for column-by-column and alternating directions node renumbering methods: Table 1 — for the
matrix obtained by FEM using 4-node elements, and Table 2 — for the one obtained by FDM
using 5-node differential schemes and the Dirichlet boundary condition.

As it could have been expected, the maximum reduction is achieved for the first step of the
multi-step method; the succesive steps give much smaller corrections. Therefore, the application
of the one-step method is often sufficient in practical cases.

Table 1
, Fill(A) Decom-
Nodinlllz}r::)l:iermg Wmax Wmean Wmnsq F1II(A) NOﬂZ(A) pOSition
. 100% time [%)]
column-by-column 18 16.94 | 17.25 3840 285.5 100
alternating
directions 22 15.39 | 16.02 3392 252.2 86.2
kl =9
alternating
directions 22 15.31 | 15.96 3360 249.8 85.6
k’l = 5, kz =3
alternating
directions 22 15.27 | 15.92 3356 249.5 85.2
¥y =b k=3, ks =2
Table 2
: Fill(A) Decom-
Nodin r:tlkrlr:;ermg Wmax | Wmean | Wmnsq | Fill(A) | Nonz(A) | position
.100% | time [%]
column-by-column 15 13.24 | 13.95 2744 371.3 100
alternating
directions 18 12.20 | 12.98 2408 325.8 86.6
kl =5
alternating
directions 18 12.14 | 12.92 2393 323.8 85.8
k=63 k5="3
alternating
directions 18 1271371 12.91 2393 323.8 85.6
k¥ =180k =03, kg =12
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Fig. 2. Mesh for a square with 13 - 13 nodes. Three-step alternating directions node renumbering method
(n =13, k1 =4, k2 = 3, k3 = 2). Arrows show directions of node numbering

Wavefront

column-by-column numbering of nodes n=13
one-step method of alternating directions
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Fig. 3. Change of frontwidth for a 13 - 13 mesh in a square for column-by-column and one-step alternating
directions of node renumbering methods (ki = 4)
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5. CONCLUDING REMARKS

The alternating directions of node renumbering method presented here results in maximum re-
duction of mean and root-mean-square wavefront, matrix fill-in, and matrix decomposition time
as compared with other methods of node renumbering which preserve the compact profile of the
matrix of coefficients. ‘For a square mesh in the square domain it ensures the reduction of time
required for the matrix decomposition into triangular factors of up to 27 per cent.

The method may be straightforwardly applied to all the meshes that are topologically equivalent
to a regular mesh for a rectangle (in the sense of isomorphism of the node adjacency graphs).

Its use may be extended to the case of irregular meshes and domains in the manner similar to
the one presented for the method of-alternating directions of element renumbering for the frontal
solution of the system of linear equations [7].

It appears that extension of the method presented here to the case of three-dimensional meshes
may be even more efficient, taking into account the fact that the described procedure may be then
applied not only in one direction of a two-dimensional mesh, but also in two directions of a space
one. >
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