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A rectangular specimen consists of two kinds of grains. Each kind has a different thermal expansion
coefficient. The grains are randomly distributed in J rows and K colums of the specimen. The temperature
of the whole specimen is increased and produces internal strains. It is assumed that each grain interacts
with its four neighbours. The interaction force is proportional to the relative displacement. If the relative
displacement equals the extension due to thermal expansion, the force equals zero.

The relaxation method of calculating the equilibrium strains is used. The average maximum strains
are calculated for a large number of numerical experiments. The standard deviations are calculated.

1. MODEL OF THE COMPOSITE MATERIAL

In homogeneous material, thermal stresses are the result of a non-uniform temperature distribution.
A large number of papers and monographs devoted to this kind of stresses appeared about 1960.
In composite materials, thermal stresses are the result of local inhomogeneities of the material. In
this case even a uniform increase in temperature produces internal stresses. The component with
larger thermal expansion pushes other components and all components are strained.

Many papers concern thermal stresses in composites, see e.g. [1]-[5]. In these papers, the stresses
are either calculated or measured for a rather accomplished model. Here we intend to expose the
statistical aspect of the problem and consider a very simple model of composite elastic material
shown in Fig. 1a. The rhombicub-octahedra represent grains. The grains are generally made of
different materials. The octagonal prisms (shaded in Fig. 1a) represent elastic joints between the
grains. Due to the uniform increase in temperature, each grain expands and there arise internal
strains since the thermal properties of the grains are different. Other mechanisms of grain size
change like water evaporation in wet medium could be taken into account. In the present paper
we confine ourselves to thermal effects only.

Let us consider the plane problem, when all grains in the rows in the z-direction are identical.
In this situation, only one plane of grains must be taken into account, Fig. 1b. Initial distances
between each two neighbouring grains are denoted by 2r. A grain in this plane will be identified
by two integers (j, k). In general, the expansion of the grain (j, k) is different from the expansion
of the grain (j,k + 1) and the grain (j + 1,k). Prisms responsible for elastic interaction between
the grains are situated between two neighbouring grains. In this paper, each grain (j, k) interacts
with its four neighbours (j,k - 1), (j,k+ 1), (7 — 1,k) and (5 + 1, k).

Let us denote the displacements of the grain (j,k) in the z-direction and the y-direction by
u7 ) and uj{k, respectively. Let us further denote the expansion coefficient of this grain by R
If no stress is present, then rTa; + rTa; ., is the thermal change of the distance between the
grains (j,k) and (j,k 4 1). The grain (j, k) interacts with the grain (j, k4 1) with the longitudinal

force §7% and the transverse force Sﬁ and the actual change of distance equals uf gy — Uy - The
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following relations are assumed to hold in the model
§% = &0 (W — Wk — (1Tajpq0 + 1Te)] (1)
vz _ y y

S¥ = €x [Wea — "j.k] - 2)

In the relation (1), the longitudinal rigidity £; of the elastic octagonal prisms is taken into account.
The corresponding force $7% acts in the z-direction. In the absence of the temperature increment
T the interaction force ” is proportional to the displacement difference uf, ., — uj,. For T
different from zero the natural stress-free distance equals 2r+rT'a; k+rTa k1 . Foruf, ,—uj, =
rTa;, +rTa;,,, the longitudinal interaction force between the grains (7, k) and (4, k+ 1) equals
zero In the relatlon (2), the shear rigidity &y of the elastic prisms is taken into account. The
corresponding force S;’,k acts in the y-direction.

Let us assume that the properties in the y-direction are the same as that for the z-direction.
Therefore, the grain (j + 1,k) acts on the grain (j, k) with the following force

S;I,!II: 5 £L [ Uir1ke — (TTaJ+1 %+ rTa] k)] (3)

Sik = &r [uf'-u,k 5 ufk] : (4)

The grain (j, k) interacts additionally with the remaining two neighbours. According to the
action-reaction law, the force exerted by the grain (j,k — 1) on the grain (j,k) equals minus the
force exerted by the grain (j,k) on the grain (j,k — 1). Therefore, the above four relations (1)-(4)
allow to calculate the forces exerted on the grain (j, k) by its four neighbours. Note that the y-axis
in Fig. 1 is directed downwards to fit the convention that the row j 4 1 is situated below the row j.

The specimen is the rectangle 1 < j < J, 1 < k < K. Let us derive the total force acting on the
grain (j, k). For the grain situated inside the specimen, the stresses between the grain (j,k) and
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four grains (j,k— 1), (j,k+ 1), (j — 1,k) and (5 + 1, k) must be taken into account. According to
the above relations, the z-component of this force is given by the relation

QFi = & [ufhor = 254 + Wipy + 1T 4y = 1Ty | + 6r [uiois — 203, + i) . (5)

Other expressions hold in the case of the grains situated on the boundary, since there the number
of neighbours is smaller than 4. Here we consider the model in the form of a rectangle with the
edges (1,1), (1, K), (J,1), (J, K). The boundary grains are the ones on the sides of the rectangle.
We write only the expressions for the forces in the z-direction. For the grains (1,k) and (J, k)
situated in the first and last row, respectively, (1) and (4) lead to the following expressions for the
force acting on such grains

T x x 3
Qix = &L [u:{:,k—l —2ui g+ ui gy + 1Ty g — TTal,k+1] +&r [uz,k = ul,k] )

& : (6)
Q5k = &g [W5ho1 — 205 + W +1Tagu s - 7‘Ta.l,lc+1] i [uJ—l,k = uJ,k] ;
kel Bt

For the grains (j,1) and (j, K) situated in the first and the last columns, respectively, the forces
are

Wi =0 [Uf2 —ujy —1Ta;, - TTaj,l] +&r [Uf—m - 2uj, + "f'+1,1] ; :
(7

Qix = &L [u;':,K—l —ujg +rTojx 1 + TT%’,K] +ér ["f-l,K - 2uik + uf+1,x] ;
$5 Sedicis bl
Finally, the forces acting on the four corner grains are determined by the relations
11 =& |uig—uiy—rToy, - TTal,l] +&r [“3,1 - “fl] ’
Qi1 =& T“ﬁ,z —ujy — 1Ty, - TTaJ,l] +&r [u§—1,1 2 "3.1] )

(8)

T Zon [ T z z
Qix = &L U1,k-1 — Y1,k t rTay g4+ TTO‘1,K] + & ["2,1\" = ul,K] 3

s [z z
Qik = & |usk-1 — Uik +Tagk 1+ TO‘J,K] + {7 [uJ—l,K = "3,1\-'] ,

Note that for each 7,k the force Q“E ' depends only on uf 7k and not on uY & The components
in the y-direction may be calculated by an appriopriate change of the suffices. In further calcu-
lations the expressions for the forces in the y-direction are not needed and we do not quote the
corresponding expressions for the y-components Qy Evidently they depend on uY 5 & only.

We consider the case when only internal forces act on each grain. The whole specxmen is free
from external load. The equilibrium of the grain (j, k) demands that Q% k= Q & = 0. In the system
of equilibrium equations @7, = 0 the unknowns are u7 ) , and in the system of ethbrlum equations
Q?’ = 0 the unknowns are u? - 1t can be seen that the equilibrium equations for the z-direction
dlffer from the equilibrium conditions for the y-direction. Further analysis will be confined to the
z-component only. The system of equations for the y-component may be obtained from the system
for the z-component by means of an obvious change of suffices.

Let us write the above relations in a slightly different form. Let us denote

1 £
v;-”’k = ;ufk 5 dik =Ta;y, K= 2% (9)

{L

where & is a material constant, and d;x is the incompatibility produced by the temperature 7.
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The equilibrium equations for the z-direction may now be written in the form of J x K linear
non-homogeneous algebraic equations (one for each grain)

Rjj = vip—1— 205k + Vikpr + djk-1 — i1 + K [”f—x.k — 205 + ”f+1,k] =0,
.. d 1. 523, ... R =1,

(10)
Rip = 05y — 2054 + 05ap +dipcr — i + 5 [0 — o] =0, k=28, K-1.
Rup = v3uiy — 2054 + V3kps + dagr — dippr + 5 [0 — 03] =0, k=23, K-1.

(11)
Riy = —vfy + 95— din— dig+ & [vFy 5 — 208, +v5p1,] =0, i gl T
Rix =65~ vig+djk-1+dik +K [v;-”_l,,‘ 207 g + Vi, ,\] s B LR s 5§

(12)
Ry = —vi1+via—-din—dia+k [v{l - va] £ 04
R\ = ~v5,+ vig—dyi—dia K {”3—1.1 e v.’;,l] =0, 13)

Rk = vig_ - Vg tdik1+dik+k [”f,K ” ”f,K] =0,
Rik = vjx-1— ik +dik-1+dik + 5 [vf-l,x - vf,x] =0.

The above system of algebraic equations may be solved, provided the incompatibilities d; are
known.

Note that in the speCIa.l case of constant a;, = a = const we have d;x = aT'. In this case,
constant temperature T' causes uniform thermal expansion in a free specimen,

v, = 2akT. (14)

2. INTERNAL STRESSES AND THERMAL EXPANSION

Let us confine the calculations to the case when the composite consists of only two different kinds
of grains. They may be distributed either randomly or according to a deterministic law. Each
kind of grain has a fixed thermal expansion coefficient. Due to interaction between the grains, the
expansion of the j-th row of the model is not a sum of the expansions of separate grains in the j-th
row.

Generalization to three or more kinds of grains is immediate. In the limiting case all grains may
be different.

Let us assume that the equations (10)-(13) have already been solved. Then uf, and vj, are
known. This suffices to calculate the thermal expansion of the model. In order to snnphfy the
notation, the z-suffix in the next chapters will be omitted, e.g. instead of v, we shall write v, , .

The length increment of the j-th row equals (u; g — u;;). Since the initial length of this row is
2K, the average thermal expansion coefficient is

% 4o
YRR (15)
In terms of the function Vg the above relation reads

b, & ik

FeRnE (16)
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Relations (1)-(4) must be taken into account in order to calculate the stresses. Since we consider
only the forces due to the displacement in the z-direction we take into account only § ”,';' and S bip
The forces in the y direction must be calculated separately. The longltudmal stress 77f and the

transverse stress T k are

1 1 |
=350, Tl=5-S7, (17)

respectively, since the area (unit thickness) equals 2r. According to (1) and (4) we have

Tla:z =&LEjk T;Z =€k (18)
where
1 : : :
€k = 5 [vf'k_'_l —'vak = dj,k+1 = dj’k] 5 (19)
1
Yik = 9 [v;:+1,k Ty ”;’c,k] ) (20)

are the longitudinal and shear strains, respectively, produced by the incompatibility d] % s

Let us assume that we have already calculated the reduced displacement field V7 satlsfymg
Egs. (10)—(13) for a given d;. Let us replace d; by djx+ D, D = const. The new field v, +2Dk
satisfies the equlhbnum equations. The stress field corresponding to v?¥ 'k T 2Dk is exactly the same
as the stress field corresponding to v7, . It follows that the replacement of djx by (djx + D) does
not influence the stress field. This mmphﬁes the calculations. Since we are interested here in the
stress field only, by adding an appriopriate D we reduce the calculations to the situation where
some d;; are equal to zero, and the other d;; > 0. Since the model consists of only two kinds of
grains and a, < a,, then d; equals either 0 or T(a; — a,).

3. NUMERICAL SIMULATION

Let us assume that we deal with a set of N numbers z,, ¢ = 1,..., N. For such a set, the mean
value z,, and the standard deviation o may be calculated as (each summation from 1 to N)

1 .
das = ﬁqu, (21)
o .= \/Nl—_l S (& o) (22)

Let us consider the rectangular model with free sides. There are J grains on two sides, and K
grains on the other two. Let p be a fixed number 0 < p < 1. The model consists of pJ K grains
of the first kind with the expansion coefficient a; and (1 — p)JK grains of the second kind with
the expansion coefficient a,. Let us generate random distribution of the pJ K grains of the first
kind. For the points j, k, which the grains of the first kind are situated at, we take d;; = 1. This
is equivalent to performing the calculations for T'(a; — a,) = 1, cf. the remark at the end of the
previous Section. If T'(a; — ) # 1, further results must be multiplied by T'(a; — a,).

Here we consider square specimens, J = K. The numerical experiments have been performed
for 0.1 < p < 0.9. pJK random points at which d;; = 1 were generated first. At the remaining
points d; x = 0. In a particular realisation we have e.g.

e e G
o i e bl M
=T 18D 0 0,1 -0 1

L )

g e 11
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In the next step, the displacements v;, were calculated from the system (10)-(13). Since the
number of unknowns was large (e.g. 3600 for J = K = 60), the relaxational approach was adopted
instead of solving the linear system (10)—(13) directly. The successive approximations v;,(m)
(m =1,2,3,...) of the displacement field were assumed to satisfy the relations

v;x(m + 1) = v (m) + vR;k(m), (23)

where R; x(m) are the left-hand sides of (10)-(13) calculated for v; , = v; ,(m). The above method
of solving the static equations (10)-(13) is based on the assumption that the subsequent approxi-
mations of Vjk for m = 1,2,3,... are displacement fields for successive time instants. The velocity
of the grain is proportional to the instantaneous external force R;x(m). The numerical results
converge, provided v is sufficiently small. Since there is energy stored and R; is the derivative
of the stored energy with respect to v; ; , the relation (23) is in fact based on the steepest descent
method.

Obviously, a possibly large » must be taken. It has been found that v = 0.2 leads to numerically
converging results. The calculations are performed until the forces R;x(m) are sufficiently small.
Let us denote the maximum value of R;x(m) (for all j,k) by R(m). For small specimens, e.g.
J = K = 10, after only about m = 100 time steps the value R(m) < 0.001 is obtained. For larger
specimens, e.g. J = K = 60, several thousand steps are necessary to achieve R(m) < 0.001.

Let us perform N (fixed N) numerical experiments. In each experiment, strain fields ¢; and
v;k are obtained. Their values are functions of the pairs (j,k). The minimum and maximum
longitudinal strains are denoted by ¢~, €%, respectively. The minimum and maximum transverse
strains are denoted by 7~, 7%, respectively. In general, e*, ¢~, v+, v~ correspond to different
grains (4,k). In each experiment a different set of four values e*, =, 7%, 7~ is obtained. On the
basis of N experiments (N has the same meaning as in (21)) the average values ¢~, ¢*, y~, 7™ are
calculated as

o 1 - 1
_J_V-Zs ) 5:v=ﬁz€+,

1 1
Mo 509 5 Y052 101 v = v

Obviously, we obtain generally different averages ¢~, ¢*, =, 7% in each set of N experiments.

Let us first consider a material for which §;, = {;. Figure 2 shows the average values of the
maximum strains for J = K = 10. The absolute values are plotted. It can be seen that the
longitudinal strain s;v attains the lowest (negative) value for p equal approximately 0.25. The
longitudinal strain ¢}, attains the highest value for p = 0.75. The curves are symmetric with
respect to p = 0.5. The absolute values of Y~ and 7, are approximately equal to each other and
have the maximum at p = 0.5, Fig 3.
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The numerical experiments allow us to calculate the standard deviations oy , 03, 03, 04 (not to
be confused with stresses) corresponding to the above results. Let us define

o =y\Ra (e — ), oa= /R (e - eh)?,
os= R 0 —1a),  oa= g (1t -1k

o4 equals o3 with great accuracy. In Fig. 4, the values of oy, 03, 03 are sketched versus p.
For smaller p, the compressive strains have larger standard deviations. In contrast to this, both
extensional and shear strains have small standard deviations. In other words, they are better
predictable than the negative strains. The opposite situation occurs for large p.

(25)
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The inspection of the strains £k , vjx (in one typical experiment) in the whole specimen proves
that the maximum strains on the boundary grains are generally different from the maximum strains
inside the rectangle. Let us calculate two sets of maximum strains separately. The strains for the
grains situated in a single boundary layer (boundary row or column of the whole J x K rectangle)
will be marked with the suffix ‘e’. Let us disregard the two outermost rows and columns of the
specimen and thus obtain the inner (J — 4) x (K — 4) rectangle. The maximum strains for the
grains situated in this inner rectangle will be marked with the suffix ‘’. Note that strains in some
grains, e.g. those in the second row and the second column, are disregarded. The eight sets (¢7);,
(), (V)i ()i (€7)es (€%)e, (77)e and (y1), will further be numbered 1,2,...,8. According
to this convention, the standard deviations o have the suffices 1, 2, 3, 4 for the inner grains as in
(25), while for the outer ones they have the suffices 5, 6, 7, 8.

Figure 5 shows the maximum strains for the outer and inner grains for J = K = 20. The
maximum strains for the grains situated inside the rectangle are shown separately; two outermost
rows and columns are not taken into account. Two results are essential. For p < 0.5, the maximum
compressive strains, (¢7); and (¢7),, are larger than the maximum dilatational strains (et); and
(e*). , respectively. For p > 0.5 the situation is opposite: the maximum compressive strains are
smaller than the maximum dilatational ones. The second result is the observation that the internal
longitudinal strains, (¢7); and (et);, are larger than the external longitudinal ones, (¢7), and
(et). , respectively. In contrast to the above results for longitudinal strains, the maximum positive
and negative shear strains (y7),, (1), are almost the same (see Fig. 6). Moreover, the maximum
shear strains on the boundary grains and inside the specimen are almost the same, (7). = (v7);-
Figure 7 gives the corresponding standard deviations.

For all strains the standard deviations oy, 03, 03, 04 for the inner grains are much lower than
o5, 0, 07, 0g for the outer grains. In general, the standard deviations for transverse strains are
smaller than those for longitudinal strains. It follows that the maximum shear strains are better
predictable, i.e. in all specimens the maximum shear strains are closer to each other than the
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maximum longitudinal ones. It is necessary to note that this result has been obtained for y; = v,
e Jor = 1. .

For many materials (metals), the ratio of the shear and longitudinal elastic moduli equal ap-
proximately x = 0.4. For such materials, stresses have a very similar dependence on p, as that
shown in Fig. 5 and Fig. 6 for k=1. The differences are only quantitative. In order to save space
we do not.quote the corresponding curves and give the data for p = 0.3, k = 0.4, J = K = 20. The
internal strains are

(€7); = —0.507, (¢%); =0.382, (y7); =—0.495, (7%); =0.497.
The corresponding standard deviations are

o1 = 0.061, o, =0.043, o3 =0.056 ,04 =0.048.
The boundary maximum strains are '

(7). =—0.353 (c).=0.272, (7). =-0.522, (7%),=0.521.
The coresponding standard deviations are

os = 0.065, o¢ =0.043, o7 =0.088 ,03=0.092.

The important qualitative result is: for p = 0.4 the maximum internal longitudinal strains are
larger than the maximum boundary longitudinal strains. The internal shear strains are smaller
than the boundary shear strains.

The standard deviations for the internal and external longitudinal strains for p = 0.4 are of
the same order of magnitude. In contrast to this, the standard deviations for the internal shear
strains are smaller than for the external ones. The external shear strains are more scattered, than
the internal ones. Since the averages are almost the same, the actual maximum shear strains on
the boundary are much larger for some realisations than the maximum internal shear strains. This
conclusion may be of great importance for the explanation of crack formation.
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4. SKEWNESS AND CORRELATION

For a set of N numbers z,, the skewness ( is defined by the relation

=3[ | (26)

a

where o is the corresponding standard deviation.
For two sets z,,y, of N numbers the correlation coefficient 4, is, [7],

E(zq — ZTav)(Yg — Yav) ;
\/Z(zq — Tav)? \/E(yq ~ Yav)?

The correlation coefficient is the measure of association between the variables = and y. Usually
the definition (27) is suplemented by the relations v¥,; = %,, = 1. Note that { and VPzy are
dimensionless. In practical applications |¢;,| < 0.2 means that the two sets are independent and
|%zy| > 0.8 means that they are mutually dependent. -

In the previous chapter, the average values and the standard deviations of the maximum strains
were calculated. Two additional questions connected with the distribution of the maximum stresses
arise. In each set of experiments we consider N specimens which are generally different. In some
specimens the strains ¢}, are larger than ¢}, , in other specimens &, are smaller than 7, . If
the number of the specimens of the first kind equals approximately the number of the specimens of
the second kind then the distribution is symmetric. The first question concerns skewness, i.e. the
measure of asymmetry in the distribution of ef,,,. The skewness may be calculated not only for
sl-rlax but also for (7r:1ax)e ’ (V;ax)i , etc. ‘

The second question is connected with the relation of the maximum strains (¢~);, (e*);, (v7);,
()i, (€7)es (6%)es (7). and (7). in a single fixed specimen. For example, if the strain (7);
in a specimen labelled as specimen no. 126 is large, what are the expected values of (e*);, (y7);,
(7%);, etc. in the same specimen? In particular, is there a tendency for (Ymax); to be large in
specimen no. 126, if (¢7); is large in that specimen? The components of the correlation matrix are
the measure of this tendency.

Instead of two sets zx, yx (as in (27)) we have eight sets (¢7);, (¢¥);, (v7);, (v1);, (67).,
(6%)es (77)e and (7%),. These sets are numbered from 1 to 8, respectively. In this convention, the
skewness of (¢7); is (; . According to (26), it is defined by the formula

. et it il |
G=%X [——] : (28)

(231

"pzy = (27)

Analogous formulae hold for the remaining seven skewnesses {;, (3, .., (g- :

Let us proceed to correlation coefficients. According to our convention regarding the numbering
of the sets (¢7);, (¥);, (17)i» (1F)is (€7)e» (€¥)e, (77)e and (7F),, the correlation coefficient
between (¢7); and (¢%), is ¥;,. According to (27), we have

,¢] = Z[E: s (E&_V)‘i][e;j- L (E:v)i] :
\/2[6: " (E‘;V)'i]2 \/Z[E;+ - (Eg’v)i]z

Analogous formulae hold for the remaining 55 correlation coefficients 9,3, %4, ;s . ., Yrg. Due
to symmetry 9z, = %y, , there are only 23 different coefficients.

For the specimen discussed above, the following values of the skewness and correlation coefficients
are obtained for p = 0.3

§=-1%107% £ =64%x10"% ¢ =-04%10"5 £, =—0.5%x10"5,
§5=—4%107% £ =04%x10"% & =-9%10"%, £ =233%10"°.

The above data must be compared with a known distribution. The conclusion is that the distribu-
tion is symmetric with great accuracy.

(29)

(30)
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1 0.058 0.084 —0.019 0.023 -0.023 -0.016 —0.123
1 0.120 —0.108 -0.076 -0.014 -0.007 -0.107

1 —0.147 -0.094 -0.063 0.084 -0.151

0.035 —0.014 -0.121 -0.086

Yhs = 1 0.151 —0.072 -0.026 | (31)
1 0.110 —0.056
1 0.178
1

The matrix is symmetric, the values on the main diagonal equal 1. The above values suggest that
(™), (), (7 )i @bl (e )es (e%)e, (7). and (7). are not correlated with one another. In
other words, the fact that e.g. (y~); is large or small in a specimen does not give any information
about the values of (71);, (€7 )e» (€¥)es (77 )e » etc. in the same specimen.

It should be stressed that the actual calculated values of (; and g are not connected with
the physical properties of the random specimen. Only the magnitudes of (g and ¥pg do give some
information about skewness and correlation. In particular, for another N numerical experiments
the maximum strains are almost the same as shown in Fig. 5. In contrast to this, skewness and
correlation are not given by (30), (31) but e.g. by the following relations (data obtained for another
numerical experiment)

£ =—-1%10"%, £ =6x107% £ =-02% 1050 1 ks mk 21015,

£, =34%107%,  £=3%107% & =-8+ 1078, & =0.1%1075.

| 0.778 -0.005 0.147 -0.154 -—0.008 -0.138  0.098
1 —0.018 —0.014 -0.092 -0.041 -0.099 0.076

1 0.071 -0.164 -0.130 0.120 -0.034
1 ~ -0.048 -0.015 0.095 -0.066

YRs = 1 0.096 0.109 -0.376
1 -0.080 -0.111
1 0.002

1

Only the orders of magnitude of (p and 9pg do coincide with those of (30) and (31).
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