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A solution to plane and axisymmetric elasto-plastic contact problem with linear hardening of con-
tacting bodies, taking into account microstructural features of the contact zone is presented. A new
quadratic-isoparametric contact element involving the irreversible nature of friction is developed. An
incremental constitutive friction law, analogous to the classical theory of plasticity, is used. Several nu-
merical examples are considered. The influence of parameters defining the contact stiffness interface on
the distribution of displacements and stresses on the contact surface is discussed.

1. INTRODUCTION

Machine tools are not generally manufactured as one continuos fabrication. Such constructions
necessitate connections between the basic elements of the machine and these can be classified as
fixed (e.g. bolted or flanged) joints and sliding (e.g. shrink-fitted or conical) joints. Machine tool
rigidity is defined by both rigidity of the parts of machine tool structure and joint stiffness. The
stiffness of joints, defined by the deflection at the interface of their elements, is of great importance
for the precision machine tool. The deflections of joints are of great importance in machine tools
due to the following reasons:

— calculation of the normal stiffness and pressure distribution in the joints under the assumption
that the structural components are rigid (perfectly smooth bodies) gives the normal displace-
ments several times smaller than those obtained with a normal contact stiffness; the effect of
roughness increases with decreasing contact pressure,

— the surface roughness of the joint has a significant effect on the contact stiffness as it determines
the global behaviour of the machine joint,

— the contact areas are large so that deviations from ideal shape are inevitable (flatness deviations,
ovality, etc.),

— the elastic (reversible) tangential displacements take place within the specific range of loads.
For a further increase of the shear force exceeding the limit, the resulting displacements are
elasto-plastic followed by macro-slip. Irreversible (plastic) tangential displacements give the
rise to friction corrosion and can result in early wear of the machine.

Most numerical investigations in the field of contact mechanics have been performed for the
classical Coulomb’s law excluding local micromechanical phenomena within the contact interface.
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Much of the work carried out on establishing the characteristics of machine tool joints has concen-
trated on the normal compliance of contacting surfaces and its dependence on surface topography,
hardness, interface pressure and materials.

Recently, the frictional phenomena have been considered within the framework of the theory of
plasticity. Elasto-plastic relations for frictional problems have been proposed by Fredriksson [12],
Michatowski and Mréz [26], Curnier [10], Cheng and Kikuchi [7,8], Plesha [28], Plesha et al. [29],
Wriggers [40] and Wriggers, Vu Van and Stein [41]. The assumption that the normal contact stresses
are known implies an associated sliding rule, see e.g. Fredriksson [12], Cheng and Kikuchi [7,8].
If no assumption of the contact normal pressure in the contact area is made a non-associated slip
rule results [11, 14, 18, 20,24, 26, 28,29, 31, 40, 43] which leads to a non-symmetric tangent stiffness
matrix, and a finite element solver for unsymmetric matrices has to be adopted. In order to take
into account the influence of roughness upon the contact pressure and shear stress distribution
different analysis methods may be used. Some of the methods are based on the discrete model in
which the asperities have simple geometrical forms, e.g. that of a cylinder, wedge, sphere, etc. In
these methods the analysis resolves itself into the investigation of influence of the microgeometrical
morphology and mechanical material properties on the interaction of the contacting rough surfaces
[35,37,42). Another approach to the analysis of the contact problem consists in the experimental
determination of the load-displacement characteristics for real surfaces and the substitution of
simple mathematical expressions for them. Such a method has been employed in the present study.
Back, Burdekin and Cowley [1,2] were the first who used experimentally determined parameters
(normal compliance condition) in the calculation of examples of simple machine tool joints by the
finite element method. Kops and Abrams [23] discussed the additional effect of the shear and
normal stiffness of the interface on the thermal deformation of machine tool structure. An effective
model of frictional interface behaviour was proposed by Villanueva-Leal and Hinduja [39]. These
authors were first to successfully employ the incremental formulation to solve 3D-bolted joints with
both the normal and tangential contact stiffness. The values of shear forces were constrainted by the
Coulomb law of friction. The elasto-plastic contact problem with the contact stiffness was presented
by Bloch and Orobinski [4] and Buczkowski and Kleiber [5]. Cheng and Kikuchi [7,8] presented
an elasto-plastic problem of unilateral contact in which the elasto-plastic law was extended to
large deformations typical of some metal forming processes. Wriggers [40] and Wriggers, Vu-Van
and Stein [41] took advantage of the expressions describing the nonlinear behaviour of the contact
surface in the normal and tangential direction. They reported the solution to two-dimensional
static and dynamic problems under large deformations and a nonlinear friction law.

The present study deals with the solution to a plane stress and axisymmetric elastic-plastic con-
tact problem with linear hardening of the basic elements taking into account elasto-plastic interface
model. The nonlinear problem is solved by using an incremental-iterative Newton-Raphson pro-
cedure. The present solution method is illustrated by three numerical examples. The structure is
discretized by eight node quadratic elements of the serendipity family. The elasto-plastic behaviour
at the contact interface is designated below by (e-p) whereas the elasto-plastic deformation of the
contacting bodies A and B by (E-P).

2. MODELLING OF INTERFACE SURFACE ROUGHNESS

1. Normal behaviour

Many researchers have observed that in the presence of surface asperities the relationship between
the interface pressure and the approach of the surfaces in contact can be expressed by the following
nonlinear power equation [25]

Uy = CN PN (1)
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where uy is the deflection of the asperities, py is the mean interface pressure and the parameters
cy and m are coefficients depending upon the materials in contact, matching process, height of
the asperities, relative orientation at the surface layers, hardness, flatness deviation and size of the
contact area.

2.2. Normal stiffness

The use of the incremental method is unavoidable because it makes it possible to gradually adjust

the slope so that the resultant curve u, — py follows the experimental curve desired. The stiffness

value corresponds to the slope of the pressure-deflection characteristics at the working interface
pressure. The power law relationship in Eq. (1) gives the stiffness per unit area as

(1-m)
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A calculation method of the contact stiffness for the first and the next loading steps is given in
Villanueva-Leal and Hinduja [39]. For the description of loading and unloading processes Eq. (2)
applies with different values of the coefficients ¢ and m.

2.3. Tangential behaviour

In addition to the normal loads the joint may be subjected to a tangential loading. The behaviour
of the interface loaded in the tangential direction was reviewed in' Buczkowski and Kleiber [5]. The
elastic displacement takes place within the specific range of loads. For a further increase in the shear
force above the limit the resulting displacements are elasto-plastic followed by a macro-slip. The
plastic displacements of the asperities and macro-slip (slip displacements) are difficult to separate
so that it is convenient to combine them into plastic (irrecoverable) displacements. It was found
experimentally in Back et al. [2] that the shear stiffness depended upon the surface finish and it was
decreasing with the decrease of the normal pressure. The relationship between the shear stiffness
and the normal interface pressure in the elastic range was presented as

S
- PN
L DN 3
= BB ®
where § and R are parameters dependent upon both the materials and the surface finish [2].

In view of the results of Fredriksson [12] the normalized coefficient of friction may be related to
the irrevesible (plastic) displacement as :

LE _ 1~ (1= ) exp -] @

where 4., is macroscopic (or static) coefficient of friction, 3 defines the initial coefficient of friction,
n is the degree of slip hardening and uf. = \/uf.uf. = ||uf|| is the effective sliding (or accumulated
plastic) displacement. The parametres n and § should be determined experimentally.

2.4. Calculation of tangential contact stresses

The basic characteristics of the contact problem model is the form of its sliding function F', which
is specified in terms of the contact stresses p; and p, . We assume that there exists a generalized
Coulomb isotropic slip function

F(pr,pn,kr) = |IPrll + trpN pn <0, (5)
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where the normal stress component is given by py = (n ® n)p = (pn)n = pyn, the tangential
one by p; = (1 - n® n)p = p — pyn, p is the total contact stress vector, up is the coefficient of
friction, t and n are the unit vectors tangential (in the direction of slip) and normal to the contact
surface, respectively and ® denotes the tensor product of two vectors. The friction coefficient is
determined by Eq. (4).

By limiting the maximum shear force transmitted through the joint, the coefficient of friction
defines the position at which the tangential loading stops and the plastic slip occurs. The plastic-slip
occurs when the shear stress increment p, acting at contact surface exceeds the limiting value of

pF|py|-
The following additive equations are assumed for the incremental elasto-plastic sliding model

Aup = Aug + Aufp, (6)
Auy = Auyy + Aulyy,

in which the contact displacements denoted by ‘e’ corresponds to the elastic (reversible) part and ‘p’
one to the plastic (irrevesible) part. The constitutive law for the elastic part of the displacements
corresponds to the negative value of the sliding function F (see Eq. (5)) while the constitutive
relationship between the contact displacements and contact stresses can be expressed by

e Ee Aup | _[kF O Aup (7)
ApN it AUN 2 0 k?v A'U,N :
in which k% and k§; are the coefficients of the constitutive elastic diagonal martix E§ obtained
from Egs. (3) and (2), respectively.

The plastic contact incremental displacement AuP = {Auf,, Au};} is calculated by adopting a
non-associated interface contact stress potential in the form

Fl A

AuP = AX B (8)
Adopting the associated slip law in which G = F would yield as a rule a non-zero value for the
uplifting normal incremental plastic displacement Au}; (which is due to the dilatancy phenomena
— thickening of an interface due to the larger volume of space ocuppied by the rubbled asperity
material relativy to its initial, intact volume). Since such behaviour for metallic bodies finds no
experimental support [18,40,41], a non-associated slip law should be adopted in which F # G. The
non-associated slip rule is considered in the following investigation by setting Au}, = 0, [18,46].
The plastic/slip potential G, whose gradient gives the direction of the slip, is assumed as

G = |lprll- (9)

The plastic displacements are then obtained as follows

Aul = Az\ﬁ;— = AXsign(pr) . (10)
Opy

The elastic domain is defined by an updated sliding surface F (pT,pN,/LF) < 0. Loading and
unloading conditions may by expressed by requiring that

F(p,ur) <0, AX 2> 0, AM F(p,pp) = 0. (11)

These are the so-called Kuhn-Tucker unilateral constraints conditions. Note that if ' < 0 then
AX = 0 and the sliding surface F' is not active (sticking contact). If AX > 0 then F = 0 and
the sliding surface F' is active. In the latter case A) is a proportionality factor known as the
plastic/slip multiplier which is determined by requiring that AF = 0 (the so-called consistency
condition). From the above condition we get

oF oF OF dup Oub.
AF = ——Apr+ =—Apy + =——L—LAwP = 0. 12
Opr = Opn i Foud 0uy T (12)
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From (12) and (10) the plastic/slip multiplier is given as

or" oF
Ax= 22T Iy : (13)
OF dup 0ul. OG
M P 6u‘1’- ouf. Opr
while from (4)
) aids
“EE = iy (1 - B) exp(-nuf) . (14)
BuT
Taking into account that
OF _ 0G oF oF e
P — = sign —_—= i —_—= . —5 = sign(us), 15
apT apT g (pT) apN 195 al‘F PN . aug‘ g ( T) ( )
by (13), (14) and (10) AX can be rewritten as
AX= Apy sign(py) + rApy py < 0. - @6)

~pbmn(1 — B) exp(—nuF) sign(py) sign(uf)

Equation (16) is nonlinear with respect to AA which leads to alocal iteration procedure to solve (16).
In our case the regula-falsi was used with normally 3-4 iterations sufficient to reach convergence in
practical computations.

For A) known the accumulated (effective) plastic slip is given by

(F),,, = (F), +1auhl = (F), + 22, (17)

where n denotes the global iteration counter.
By substituting (16), (10) and (7) into (6) and by assuming that u}, = 0, we have

(o = {2 J+{5F e {400 ) 9

where the inverse elasto-plastic interface matrix [E% P]~! is given as

— = ? 1 [sign(pr)sign(p:r) pp sign(uf) L (19)
0 & |7 —py 22k siga(py) siga(uh) 0 0

After inversion of the flexibility matrix in Eq. (19), the constitutive interface relationship can be
expressed in the form

Apr | _ pe-p AUT}
ool g Bk | )

in which the expression for the constitutive elasto-plastic interface matrix E¢ ® is given by

s (kS.)? —k%sz,%Ii sign(pr)
7 7 Em (87 =
e - kS, — ;—F-——-_g sign(p) sign(uy) kS — g:; 5—{} sign(py) sign(uwf) , (21)
0 kn

where a equals 0 or 1 depending on local loading/unloading behaviour.
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As a consequence of the non-associated slip rule the constitutive matrix (21) is non-symmetric,
and does not easily fit into existing finite elements codes. Pande and Pietruszczak [27] proposed a
very attractive method for obtaining a symmetric formulation in the case of non-associated plas-
ticity, which may also turn out effective for solving the non-associated contact problem. Another
possibility to avoid non-symmetric interface matrix may be achieved by assuming the normal con-
tact stresses as known (see Eq. (21)) which implies automatically the associated slip rule [40]. This
approach leads to a two-step algorithm. In the first step, the normal contact stresses are solved for
and in the second one the frictional stresses due to the known normal stresses are calculculated.
Such an algorithm needs as a rule a considerable number of iterations to ensure convergence. The
latter algorithm was used in the present study.

3 FINiTE ELEMENT FORMULATION
3.1. Geometric mapping of the interface element [3, 29, 36]

We consider a two-dimensional problem with two bodies in contact. Each of the bodies is discretized
into quadratic continuum finite elements, and the contact surfaces are discretized into quadratic
interface elements. One such element, together with geometry of the reference element, is shown in
Fig. 1. Since the interface element is restricted to small displacement analysis, only one face of the
element is required to define the geometry of the element. The global coordinates of the bottom
face of the interface element connected with the body B are given parametrically in terms of the
reference geometry shown in Fig. 1 and the reference (or natural) coordinate £ by the mapping

xz? . N] 0 N2 0 N3 0 xB 29
v2 =1L 0 N 0 N, 0 N3] y®? (22)
with the shape functions given by
1 1
M =341~ 0), Ny=1-¢, Np =366 #+1). (23)

These are the shape functions of the eight node serendipity element reduced by assuming 7 = —1
for body A or n = +1 for body B.
Expressions for z# and y# are identical to Eq. (22) except that B is replaced by A.

n

Fig. 1. Geometry of quadratical 6-noded interface element. Geometry of reference element
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The unit vectors t and n tangential and normal to the contact surface are given in terms of the
slope s by, respectively,

it . | ' (24)
V1t+s2’ \/1-}—32’

where i and j are the unit vectors in the global z and y directions, respectively, and

‘ NEyB ; ‘
. 0= ——0. 25
s = tan N ¢ xB (25)

The kinematic variables used in the constitutive law are the relative surface displacements in the
tangential and normal directions that are defined as i

up = (u? — u?)t, uy = (u? —u?)n, | (26)

where u” and u” are the displacement vectors of the points associated with the bodies A and B,
respectively.
Eqgs (26); and (26)2 can be rewritten as

ur = (u:? - u:)it G 5 (uf £ u;)jta (27)
uy = —(ug — uz)in + (uy — u))jn,
in which it = cosf =¢, jt =sinf=s, in= —sinf = —s, jn=cosf = c.
Combining Eqgs. (23) to (27) yields
u
ur \ _[-¢c ¢ =s s ul (28)
N fT e T =s e e i
i - d uf
so that we arrive at
u F
{ u; } =B [ulzv Uyy s Ugg s Uy s Uzg s Ugyy Ugy ) Ugy ) Usg ) Usy  Ugs y usy] A0 (29)
where B = TM with
—-c ¢ -5 s
o [ s -8 —c¢ ¢ ] £39)
and
N, 0 N; 0 N3 0 0 0 0 0 0 0
s 0 0 0 0 0 0 —N1 0 —N2 0 —N3 0
i T Y s B e AP, Y NN SR U S S T G
0 0 -N; N N

BN B .0 0 1.9, =

3.2. Incremental description of the contact problem

We have indicated that for an effective numerical treatment of problems involving material non-
linearities and the irreversible nature of friction it is necessary to use an incremental formulation.
We consider the contact problem in which the contact area during the load increment is assumed
known. For the small deformation, elasto-plastic contact problem the fundamental systems of
incremental equations can be written in the form

(K55 + Ko(u))Au=Q-F -F, | (32)
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where KE;P is the elastic-plastic stiffness matrix given as

KEF = BI_ CE?B,zdV (33)
Vas

in which CE-? is referred to as the elasto-plastic constitutive tensor as presented in Kleiber [21] or

Hinton and Owen [15], for instance, Q is the vector of the external equivalent nodal load, F is the

vector of the internal nodal forces (without the contact nodes) related to the element stresses o by

F= Bl odv : (34)
Vab

and B,j is the strain-displacement matrix. K%3* and F are evaluated numerically by Gauss

integration with 3x3 sampling points. For the path-integration of Eqs. (33) and (34) the explicit
method and the subincrementation technique is applied as suggested in [15].

The contact stiffness matrix and the contact force vector are obtained by the standard procedure
(the work of equivalent contact forces must be equal to the work of the contact stresses on arbitrary
contact displacements). The contact stiffness matrix can be written as follows

KiPe ) BTE{PBdA. (35)
C

whereas the nodal contact forces F¢ are given by
Fo= [ BTpdac (36)
Ac

in which the matrix B is given in Eq. (29) and p denotes the contact stress vector calculated from
constitutive friction law (Eq. (20)). Note the analogy between B and B, (the strain—displacement
matrix used in conventional formulation of finite elements) except that B does not involve the
differential operators applied to shape functions.

The elementary contact interface area for the axisymmetric case is given as

dAc = 2nr det jd¢ (37)

where r is the radial distance to the sampling point under consideration and det j is the determinant
of the transformation Jacobian matrix from global to local coordinates expressed as S

et \/ )’ pifdny (38)

3.3. Integration of the contact constitutive relations

3.3.1. Quadrature integration (three-point Newton-Cotes)

For the evaluation of the contact stiffness martix (35) and the corresponding contact load vector
(36) some numerical integration scheme needs to be employed. The numerical integration becomes
more atractive in the case of curved elements with varying stiffnesses, as encountered in the gen-
eral case of contact problem with interface compliance. It is known that the performance of the
contact elements can depend strongly on the type of integration rule adopted. The full integration
(three-point Gauss) proves to yield undesirable oscillations in computed stress results. As shown
in Gens et al. [13], Qiu et al. [31], Hohlberg [17], the use of the diagonal or lumped contact stiffness
such as those obtained in Newton-Cotes integration, which results in uncoupling of the degrees of
freedom, can be very advantageous. In computations involving the quadratic contact element used
in our analysis, the results obtained by using the three-point Newton-Cotes integration (Lobatto
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rule) were observed to be almost always slighty better (oscillations in stress results reduced) than
the results obtained by using the full integration (three-point Gauss rule) [31]. There are several
ways to construct lumped-stiffness matrices [19, 44]: the nodal quadrature rules, row-sum technique
and special lumping technique. The row-sum technique integration, like the full quadrature, pro-
duces sometimes negative contact stiffness coefficient. This is the case for corner nodes of 20-node
serendipity element [6]. Such an algorithm makes sense only when all the degrees of freedom have
the same physical interpretation. This method has been used successfully in the plane-contact
problem by Buczkowski and Kleiber [5]. The special lumping technique was developed by Hinton,
Rock and Zienkiewicz [16]. The idea is to set the entries of the lumped coefficient matrix propor-
tional to the diagonal entries of the consistent contact element area. This method always produces
positive lumped contact stiffness coefficients. It is only the lumped method that can be recom-
mended for arbitrary contact elements. The special lumping procedure has been used succefully
in solid mechanics (lumped masses) by Hinton and Owen [15, 16]. Unfortunately, no mathematical
theory in support of it has ever been given. The lumped matrix has clear physical interpretation;
it represents the stiffness matrix of a nonlinear spring-contact elements lying between the discrete
contact points.

In our analysis Eqgs. (35) and (36) have been evaluated by the three-point Newton-Cotes method.
The numerical integration of Fc (Eq. (36)) for the Newton-Cotes with three sampling points (con-
tact points) leads to

3
Fe =21 Y BT (&) p(&) () det (&) W, . (39)

9=1

If the sampling points of the numerical integration are located at nodes then all the shape functions
except N; are zero at any node ¢ and the matrix becomes diagonal. An integration formula at the
contact nodes for submatrix K¢, of the contact stiffness matrix K& P (Eq. (35)) linking the nodes
of the top and bottom interface element takes the form (see Fig. 1).

3
qu - 2m Z Bi(fy) Bj(fg) T(fy) det J(fg) Wg for i = j, (40)

g9=1
0 T+

p and ¢ are the element equation numbers; p > 1 and ¢ < 6, g refers to the sampling point at
which the integral is evaluated, det j is the determinant of the Jacobian transformation, W, are the
appropriate quadrature weights; W) = 2/6, Wy = 8/6, W3 = 2/6, £, is the position of integration
points; & = —1, {&, = 0, £&3 = 1, N; = IN;, i runs over 1,2,3, and I is the 2x2 identity matrix.

If three-point Newton-Cotes procedure is used for the axisymmetric analysis zero stiffness coef-
ficient results for the contact point lying on the axis of symmetry. Zero stiffness contact coefficient
in the axisymmetric case can be overcome by moving the first interface element beyond the contact
node for which r = 0.

Remark: ~ When the degrees of freedom are uncoupled and the constraints are employed in
a point-wise manner this formulation leads to the penalty finite element method. It should be
noted that the penalty finite element method and the mixed finite element method (interpolating
contact displacements and contact tractions with independent fields) give identical stress solutions
at integration points provided both are numerically-integrated by the same rule [31].

3.3.2. Path integration of the contact stresses

Several integration methods have been used in the literature for elasto-plastic constitutive models.
They can be classified as explicit (such as forward Euler) and implicit methods [9, 30, 33,45]. The
limitations of the explicit methods are that the computed stresses may not satisfy the yield criterion
at each time interval, and local errors may accumulate. Therefore, subincrements within each time



104 R. Buczkowski and M. Kleiber

step are often recommended. The implicit methods (backward Euler, generalized midpoint rule,
cutting plan-algorithm, closed point projection) are usually based on the return mapping concept
originally proposed in 1964 by Wilkins. In such an approach stresses are updated in two steps. First
the elastic (or trial) stress predictor is evaluated, which is subsequently relaxed into an updated
yield surface (plastic corrector). Such a plastic relaxation process is completed as soon as the
yield condition is fullfilled. The combination of the frictional interface law with the radial return
mapping was first used by Wriggers [40] and extended by Wriggers et al. [41]. A similar approach
was presented by Giannakopoulos [14]. In this study the radial return method is adopted as well;
Box 1 presents the corresponding flow-diagram of the integration process for our contact model.
The problem is solved incrementally; from a known state (displacements, stresses) denoted by the
subscript (n) we wish to find these quantities at the state (n + 1).

Box 1. Radial return algorithm for 2D-contact friction problem

1. Known: py, , py,. > An
2. Elastic predictor phase
compute trial stress increment
AP = kS Aur
Apn = knAuny
compute trial contact stresses
(tr) s Bitn) (tr)
Pr, g in = APT
PN, = PN, +APN

t t
) =1p80 I+ #rpw,

3. Check sliding condition:
IF (F{) < 0) THEN

t . :
Pr,,, = pg‘;)u (stick, elastic process)

ELSE (return map)

4. Plastic (friction) corrector phase

calculate multiplier plastic/slip increment AX from Eq. (16)

oL an+1
an+1
ENDIF
5. Update

’\n+l = /\n + A/\
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Fig. 2. Plane elastic punch on elastic foundation
4. NUMERICAL EXAMPLES
4.1. Plane elastic punch on an elastic foundation (Fig. 2)

In order to study the effect of the contact properties on the relative plastic displacements for
different slip rules an elastic punch acting on an elastic foundation is analysed first. The uniform
pressure of pg = 1.2[N/mm?] is applied to the upper face of the punch. The elastic moduli for both
the bodies are assumed to be 4000 [N/mm?] while the Poisson ratio is 0.35. The contact parameters
are assumed as p,, = 0.2, 8 = 0.2, n=275[1/mm]. Our results are compared with the results of
Fredriksson [12]. The results agree very well with the ones obtained there. The amount of slip for
different slip rules is shown in Fig. 3. It can be seen that the slip is greater for the slip hardening
model than it is for the ideal Coulomb model with the same maximum value of the coefficient of
friction. The frictional properties have a great influence on the amount of slip. The hardening
model gives higher values of plastic displacements then the ideal Coulomb model. The value of
u‘}m as given by Fredriksson was taken as 10.4 [um]. The variation of the friction coefficient up
(see Eq (4)) with the plastic displacements for the different slip models is given in Fig. 4.

4.2. Tapered joint (Fig. 5)

Due to the geometry of the tapered joints tangential forces carry in them a large part of the loading
as compared with the flat joints. An important advantage of the tapered joint is a possibility of
controling the pressure on the tapered surface of the joint dependent on the axial force necessary
for pushing in a shaft in the sleeve opening. In this case it is of great importance to know the
influence of the contact stiffness on the axial displacement. It should be noted that a surplus, fixed
value of axial displacement depending on the surface roughnesses is added to calculated theoretical
value of axial displacement to take into account plastic deformations of peaks of the asperities of
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Fig. 3. Plastic displacements for different slip models, example 1; u;m“ = 10.8 [pm]
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Fig. 4. Variation of friction coefficient pp with plastic displacements for different slip models; g, = 0.1,
B = 0.1 (small squares), pm = 0.2, # = 0.2 (middle squares), pm = 0.3, B = 0.3 (big squares). ¢y = 0.0001,
m=0.5R=055=05

the shaft and sleeve [22]. The relationships between the applied forces and the axial displacements
were calculated for the taper of 1/2.5. The results are shown in Figure 6. For the purpose of
comparison, analytical results of Kollmann [22] are also given. The full line indicates the analytical
solution by Kollmann [22] which was obtained without considering the contact stiffness and by
assuming the Coulomb ideal friction model. In both the cases the axial displacements are a linear
function of the applied force. Next, the same problem was considered with the contact stiffness
and friction properties of the contact surface (pn = 0.2, 8 = 1.0, n = 275, R = 1.0, § = 0.5).
Figure 6 shows the nonlinear relationship (the axial displacements as a function of the axial applied
forces) for results with the contact stiffness. The difference between the two curves (with different
cy parameters) gradually increases with the increase of the normal contact stiffness of the joint.
As sugested by Taniguchi et al. [38] the sufficiently accurate results may be obtained without con-
sidering the contact stiffness if the maximum approach of the contact surface is less than half of
the sum of the height of surface asperity of both the bodies. In other cases, in the analysis of the
axial displacements of the tapered joints it is necessary to introduce the contact stiffness.
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4.3. Indentation of axisymmetric punch into elasto-plastic foundation

An elastic punch is pressed against an elasto-plastic foundation as shown in Fig. 7. The appropriate
boundary constraints are imposed on the axis of symmetry. For axisymmetric indentation 2a =
20 [mm] and 24 = 80 [mm)] are the diameters of a circular punch (elastic indentor) and a foundation,
respectively, A = 20[mm] and H = 40[mm)] are the heights of the punch and the foundation,
respectively. A uniform pressure pp = 207 [N/mm?] is applied to the upper face of the elastic
indentor. The material properties for both the bodies used for computation are: E = 70000 [MPa],
v = 0.33, and the yield stress of the foundation is o), = 90[MPa]. These values correspond to
the static stress-strain curve for a pure aluminium. Similar contact problems were analyzed in [35]
(elasto-plastic axisymmetric contact problem with ideal Coulomb friction) and in [5] (elasto-plastic
plane rigid punch problem with the hardening Coulomb model). In the present paper the effect of
friction at the punch-workpiece interface is examined with regard to the hardening friction model
(see Eq. (4)) and with assumption that the contact stiffness parametres ¢y = 0.0001, m = 0.5,
and R = 0.05, § = 0.5 in normal and tangential direction, respectively. Such contact parameters
cause the friction to be close to the ideal plastic Coulomb model (no elastic contact displacements
are allowed) and the contact stiffness to be negligible. The load of the indentor is given by a
dimensionless factor 7, where 7 = 1.0 corresponds to the case of the ideal Coulomb model with y,,, =
0.2 and the state of deformation of the foundation with a plastified element in the neighbourhood of
the punch corner. The total external load corresponding to r = 1.0 equals Q = 1.6mapqo [N]. Figures
8 and 9 show the tangential stress distributions along the contact surface for different friction
models: (a) ideal Coulomb model (um = 0.1, 8 = 1.0, R = 0.05), (b) regularized (elastic contact
displacements included) Coulomb model (u, = 0.1, 8 = 1.0, R = 1.0), (c) hardening Coulomb
model (pm = 0.1, 8 = 0.1, R = 0.05). In the three cases (Fig. 9) a decrease of tangential stresses is
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observed as the load of the indentor increases, including the change in sign of the tangential stresses.
It results from the present analysis that the tangential contact stresses are rather insensitive to the
different slip models — only small differences are detected between the results obtained in cases
(a), (b), and (c), as evidenced in Figs. 8 and 9. However, the hardening model extends the slip zone
more then the regularized Coulomb model. A similar effect was observed in the case of the plane
contact problem [5]. To determine the size of the adhesion and sliding zones as a function of load,
next two hardening friction models are analyzed for various friction coefficients, i.e.: (1) pm = 0.1,
B =0.1 and (2) pm = 0.2 and B = 0.2. In both the cases we take R = 0.05 and S = 0.5. The first
case of loading corresponds to the beginning of plastic deformation of the foundation, the second
one is for 7 = 2.0 which corresponds to the total external load of Q@ = 3.2ra?p [N]. It is observed
for both the friction models (gm = 0.1 and g, = 0.2) in the case of lower loading that all the
contact nodes are in the sliding state. The same is observed for the model with the smaller friction
coefficient (4, = 0.1). For g, = 0.2 and r = 2.0 the contact region splits into two parts: an
inner adhesive region and outer annulus of slip. In the latter case there are three outer nodes in
the sliding region. The effect of friction properties on the dimensionless contact stresses for the
ideal Coulomb model is shown in Fig. 10. The contact zone is divided into the region of adhesion
and the region of slipping. The shape of the boundary between the region of slip and adhesion
depends on the value of the friction coefficient. Figure 11 shows the deflection of the upper face of
the foundation versus the material harderning parameter h. With the increase of the parameter h
the overall hardening of the elasto-plastic foundation is observed.

0.20+

O.mllvllv||lrl|lll|||||
000 020 040 060 080 1.00

r/a

Fig. 10. Effect of the friction properties on the nondimensional contact stress for the ideal Coulomb model
and the loading corresponding to initiation of the plastic deformation

5. CONCLUSIONS

1. Constitutive equations for the friction surface may generally lead to an unsymmetric contact
stiffness matrix.

2. Symmetrization of the contact stiffness matrix can be obtained by assuming a known value of
the contact pressure p,, . This approach leads to a two-step algorithm. In the first step, a
solution of the normal contact is found and in the second one the frictional stresses due to the
known normal pressure are computed.
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external load equals Q = 4.6ma’po [N]

3. Because of the ill-conditioned elastic-platic contact stiffness matrix, calculations were carried
out using the elastic contact matrix K¢ analogous to the initial elastic matrix (K&,)° in the
problem of material elasto-plastic deformations. Even though it results in a longer computation
time, it assures stable iterative calculation.

4. When a monotonically increasing load is applied to the cylindrical intendor, the region of contact
splits into an inner adhesive region and an outer annulus of inward slip. The radius of adhesion
for the regularized Coulomb model is greater than that for the hardening Coulomb model for
the same value of the macroscopic friction coefficient.
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