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In both boundary element methods and Trefftz-type finite element methods a partial differential equation
in some domain is treated by solving a discrete problem on the boundary of the domain and possibly
the boundaries between subdomains. We consider a Trefftz element formulation which is based on the
complementary energy functional, and we compare different regularizations of the interelement continuity
conditions. Also starting from the complementary energy functional, mixed finite elements can be con-
structed such that the stresses satisfy equilibrium a priori. We describe a coupling of these elements with
the by now classical symmetric Galerkin-BEM.

1. INTRODUCTION

Trefftz’ method from the year 1926 [30] as well as the dual Ritz method from the year 1909 for
the approximate solution of elliptic boundary value problems of second order are in case of more
complicated domains and boundaries feasible and efficient only if test and trial functions in finite
subdomains — finite elements — are introduced for treating direct or discrete variational problems.
This is the reason why only much later, namely since 1943 by R. Courant and then 1956 by the
engineers M. J. Turner, R. W. Clough, H. C. Martin and L. J. Topp the idea of discrete variational
calculus could begin its great career in the form of the Finite Element Method (FEM), a Ritz
or Galerkin method with finite subdomains. This career was enabled and amplified by the fast
growth of electronic computer technology. There is of course a big mathematical step from Ritz’
and Galerkin’s original work to FEM because Sobolev spaces are needed for the test functions of
finite elements fulfilling only weak differentiability conditions at the interelement boundaries. The
convergence theory and especially the error analysis for adaptive FEM is more complicated than
for the original Ritz and Galerkin method.

Trefftz’ method did not have a similar strong development like FEM directly, but in an indirect
sense the boundary integral equation method (BIEM or simply BEM) with test and trial functions
for boundary elements became competitive in the 1980s and can also be understood as a Trefftz
method in principle, using the singular fundamental solution in the Green-Gauss formula in order
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to obtain boundary integral equations. But it is of course possible to realize the idea of Trefftz’
direct variational method for the approximation of boundary conditions, too. There is however the
problem of regularization of non-conformities between the chosen field functions (represented as
displacement or stress functions and fulfilling the differential equations) and the Trefftz Ansatz
functions at the boundaries. Therefore hybrid-type Trefftz methods were proposed by different
authors [15,20, 22, 26, 33].

Unlike Ritz’ method, Trefftz’ method cannot easily be extended to partial differential equations
of fourth order like the biharmonic Kirchhoff plate equation or the corresponding Kirchhoff-Love
shell equations. In general consistency of the approximated displacements can only be achieved by
at least one additional least square term at the boundaries [25,31]. The important research work
by Jirousek, Zielinski, Herrera, Piltner and Feixeira de Freitas over the past ten years showed the
frontiers of enhanced Finite-Trefftz-Element methods. We believe that also [20] contributed to this
state of the art.

Another field of applications of Trefftz’ idea can be seen in the development of sophisticated
mixed finite elements, especially based on the dual Hellinger-Reissner variational functional, aim-
ing at equal convergence orders for displacements and stresses. The first element of this type was
Pian’s so-called hybrid stress element [21]. Over the last two decades rather complicated so-called
dual mixed elements were developed with ansatz functions for the stresses lying in H(div, .)-spaces,
such as the PEERS element [2] and the BDM-element of Stenberg [29], for which a posteriori error
analysis for adaptive mesh control was given in [3] and further applications in [5,17]. The idea
behind these elements is an optimal balance of trial functions for displacements and stresses in
order to get improved convergence orders for the stresses and to guarantee stability in the sense of
the Ladyzenskaya-Babuska—Brezzi condition. The conformity of the stresses is most conveniently
achieved by Lagrange multipliers on the element boundaries, i.e. by a hybrid technique. We will com-
ment on the relation between Trefftz’ idea and these elements. They arise from extended variational
functionals in order to fulfill consistency and stability requirements, which leads to quasioptimal
convergence and robustness, namely insensitivity against changes of model and element parameters.

Another feature of Trefftz’ method can be seen in recent error estimators for FEM using a
postprocessing to get improved boundary tractions. This idea was also used by Ladeveze and
treated in [27] in this volume.

In total, many sophisticated methods in BEM, FEM and coupled methods use Trefftz’ idea, but
hybrid and mixed regularization of the “dual Ritz problem” are necessary in order to get proper
and competitive methods.

2. ASPECTS OF TREFFTZ’S IDEA IN BEM FORMULATIONS

The basic idea of the Trefftz method presented in 1926 [30] as an alternative to the Ritz method
is the use of trial functions which satisfy a priori the governing differential equation. Substituting
these trial functions into the according variational principle leads to an expression which contains
only boundary integrals. This integral equation is discretized and solved for the boundary unknowns
like in conventional boundary element algorithms.

The Trefftz formulations can be classified into the direct and the indirect formulations, and a
similar classification is used for boundary element methods. In this section, we will briefly summarize
the relations of Trefftz methods as boundary-type methods and standard boundary element methods.
A comparison of Trefftz methods with BEM can be found in [16].

2.1. Direct methods

We consider the two-dimensional linear elasticity problem in a domain Bp. A free energy function
is postulated in the form

\Ilz%s:([ls, (1)
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with the elastic strains € = §(Vu + (Vu)T) and the symmetric and positive definite elastic tensor
€. Then the stresses follow as

o = 0.U(e) = Ce. (2)

In the direct BEM, we start from Kelvin’s fundamental solution which for plane strain reads

G (x,y) = ST =2)C {3 —4v)In(r)di; — rr;} (3)
with
r;
=Y =X, = (T’ivri):ly—xL T"i:?.

G is the shear modulus and v is Poisson’s ratio. The traction on the boundary I'p of the BEM
domain is denoted by t(y) = Tyu(y). For simplicity we assume vanishing body loads. The dis-
placements at any interior point of Bp are given by the Betti formula

u(x) = ¥ G (x,y) t(y)ds(y) — /FB (T,G (x,)) " u(y)ds(y) , (4)

where the traction operator T is applied columnwise to G. Taking the limit x —I'p we obtain the
boundary integral equation [18]

lu=Vt-Ku. (5)
Here,
(Vt)(x) LS r G(X, y) t(y) dS(y) ) X € 1—‘B )

is an integral operator with logarithmic singularity and

(Ku)(x) = /F (T,G(x,y)" u(y)ds(y), x€Tp,

is Cauchy singular. Applying the traction operator T, we get another boundary integral equation
=K't — Wu (6)
with the adjoint of K,

(K't)(x) = i T,G(x,y)t(y)ds(y), x€lp,

and the hypersingular integral operator

(W) epesy 7 1%, G, y) u(y)ds(y), x€Ts.
B
In the above direct boundary integral formulation the singular fundamental solution is taken as
a weight function. On the other hand, in the direct Trefftz formulation, the regular T-complete
function (see [13]) which satisfies the governing equations is taken as the weight function. The
direct Trefftz method was first presented by Cheung et al. [8] for the two-dimensional potential
problem and extended to more complex problems like linear elasticity in [14].

Boundary element methods and the direct Trefftz method lead to boundary integral equations
which can be solved by different numerical methods, among them collocation, Bubnov-Galerkin,
Nystrom and least-square method. All of them lead to a fully populated system matrix which
is nonsymmetric in the case of collocation and symmetric but in general indefinite if a Bubnov-
Galerkin method with both integral equations is used. For this reason, special iterative solvers for
nonsymmetric and/or indefinite linear systems of equations should be used.
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2.2. Indirect methods

In the indirect formulation, the solution of the problem is approximated by the superposition
of functions satisfying the governing equation. The unknowns are then determined so that the
approximate solution satisfies the boundary conditions either in some special points (collocation
method) or in an integral sense (Galerkin method, least-square method). Obviously, the original
Trefftz method [30] can be classified as an indirect method. In the field of elastic analysis, the
so-called singularity method was first presented by Kupradze [18] in 1965. This method is identical
to the indirect boundary element method which is much less used in engineering computations than
the direct one.

Another indirect method is the modified Trefftz method by Patterson and Sheikh [19] and
Oliviera [1]. In this formulation, the approximate solution is represented by the linear combination
of the singular fundamental solution. This method is basically identical to the indirect boundary
element method based on the regular integral equation.

It follows that the Trefftz method and the boundary element method have very close connections.
The direct Trefftz method can be seen as the direct boundary element method formulated by
introducing T-complete functions instead of fundamental solutions. The main common aspect is
Trefftz’s idea of using ansatz functions satisfying the governing equations; this leads to a boundary
integral equation which can be solved by the above mentioned numerical methods.

3. TREFFTZ-TYPE FINITE ELEMENTS
3.1. Boundary-type finite elements

Starting from the variational principle with the so-called hybrid stress method the trial functions
for the stresses have to fulfill the Beltrami-equations, that means also the compatibility equations
for the strains. So the divergence theorem can be applied, and one arrives at a pure boundary
formulation in the sense of Trefftz’s method. Beside the resulting variational formulation different
regularizations of the interelement conditions are chosen.

3.1.1. Functional and regularization

The complementary energy functional for a body B which is discretized into n elements B C R?
is given by

® 5 p5l

T ar,fC_la'hdx + Tg — min . (7

2 Jus,
The Treffz elements are based on the introduction of shape functions for the stresses o which
fulfill the homogeneous differential equations A A o, = 0, but not the boundary conditions. The
related strains €(o) in B are integrable and the displacements up(o;) can be derived.

With the shape functions N, the stresses are defined by

O =N " By (8)
With the material law and the integrability conditions, we obtain

en(on) = C7'N, in BeUT,,

up(op) = /[S] epds =70 insaBy U R, (9)

tp(on) =Rop=RN,B8=RB on:' Bgs
The displacements 1y, defined on the surface I, by the nodal displacement vector v as

ip=N,v on T, (10)
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are used as an additional regularization for the interelement conditions.
The continuity of the boundary displacements at the nodes can be described by

n

Jrk =) |upi(on) —tp| =0  (K), (11)

i=1

or another type of continuity requirement is the least-squares method
Jrp = / [uh(ah) =5 ﬁh]2 ds — min (F) (12)
r

or other Lagrangian terms, see Reference [20].
The terms in equations (11) and (12) are nodal and weak coupling conditions of the Trefftz
element domains for displacements or stresses, see Figure 1.

node k ¢ . o, g
Au, defect Au, defect
un(on) un(on)
x(on) x(on)
node j ¢ ¢

—s 0;=u;

) displacement u
displacement u

Fig. 1. Nodal and weak coupling of the displacements

Equation (11) postulates that the continuity of the natural boundary condition is fulfilled ex-
actly in selected node points k at the interfaces of adjacent Trefftz elements via the interelement
displacement functions tiy. This is a strong coupling condition for selected points.

Equation (12) postulates — in contrast to the first one — the minimization of the displacements
u and @ in a quadratic average sense so that the defect on the surface is minimized. This is a
regularization for the natural interface condition u™ = u~.

Table 1 shows the essential/natural and the remaining interface conditions for the different
Trefftz formulations.

3.1.2. Element matrices, elimination of stress parameters

The complementary stress potential
* ]. T =
= = 0,C o dx (13)
2 JuB .
can be written as the surface integral
« 1 T
[opld A (on)tn(on) ds (14)

because the static field equations are fulfilled by the trial function o,
From the symmetric quadratic form for the stress energy of an element

m=TH} (15)
we can derive the matrix H from equations (9) and (14)

1
e 5/ (2R +R"Z) ds = H. (16)
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Table 1. Essential and natural interface conditions for different Trefftz formulations

- Nodal displacement Squared error of
" TonaR errors (K) displacements (F)
Method LB .
Internal complementary Jk = Z u' —a'[ =0 = / (u—1)? dI' — min
energy + constraints i=1 r
1 = =
Tota! complimentary energy S l/ i / oTEdr e 1/ PR A / uTtdr
e=¢(o) 2 . 2 Jy r
Variation of the: ;
Internal complementary B=H'HT'Ggv = Gkv B=Q 'Lpsv=Grsv
energy + constraints (1) (u—u)=0 (u—1)=0
Essential interface condition
Total complementary G;F{HGKV =1 L}:,_gQ—leysv =
: N e’ N i
energy (1) in (2) b b
Natural interface condition (t—-t)=0 (t—t)=0
H -H'G (] -L 0
Matrix representation 0 A = (3 iy s =
G'H 0 v G LF,S 0 v £

To get a nodal displacement formulation with the element stiffness matrix fc,
Ty = %leAcv, (17)

one of the regularizations is used.
The transformation matrix G that connects the stress parameters 3 with the nodal displace-
ments v

B =Gv (18)

is calculated as shown below. The order of the row regularity must correspond to the number of
the independent stress parameters.
The Trefftz stiffness matrix is given by

k=GTHG. (19)

In the sequel the matrix G is derived for different terms.
From equation (11)

Jxk=)Y |uf—af|=0 (20)
(k)

with the trial functions
uf =738 in B.; it =Nfv on T, (21)
written for every node k

7 1 ﬂl H11‘ 1
z? B2 H; g

<

<

: Zk ,Bm ch vlc

u
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ZgB =1v (22)
one obtains the transformation matrix G g

8= Z&lv = Ggv. (23)

Equation (12)

Jp = / (up — ﬁh)2 ds — min (24)
Te

with the trial functions

Wilas) =2ZB in-: Be; ap =Nyv on T, (25)
and the stationary condition

‘% ~ 0 (26)
yields the transformation matrix

B=Qz'Lpv=Gpv (27)
with

Qr = : Z'72ds and Lp= : ZTN, ds. (28)

3.1.3. Numerical integration, trial functions
The trial functions for the stresses can be gained from the stress tensor x

o = Ink x = —ejjrerst Xkt js (29)

and has to fulfill the Beltrami-equation
Ink (C~" (Ink x) ) = 0. (30)

This ensures that the equilibrium conditions, the constitutive law and the integrability conditions
for the strains are fulfilled by the stress trial functions in the element domain.

Several solutions for isotropic and anisotropic elastic materials are found for 2d-problems where
a characteristic equation has to be solved which is dependent on the constitutive law.

In this paper linear 2d-stress functions are shown which fulfill the homogeneous differential
equation independent of the constitutive law:

ol = loz 0y o3yl (31)
100 y0

N=]101T 0 0-2
0.0 1:-0 .0

The computation of an element stiffness matrix is performed numerically with a surface inte-
gration technique, using the isoparametric projection.

In contrast to the conventional isoparametric concept, where the trial functions are defined first
in the £, n-coordinate system of the unit surface and then are transformed into the real shape, the
trial functions of the Trefftz elements are defined in the real element domain and then have to be
integrated over the real element surfaces.
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3.1.4. Example

A cantilever beam with a pure bending load is treated, using a distorted element mesh, see Figure 2.
The results of the Trefftz element formulation are shown in Figure 3.

o
] 2 1 2 |1, 1| 4 % |
——1000
E=1500 5
v=025 x
1 —_—
I1 ! 1 ! 2 3 ! 3 .

Fig. 2. System, load and discretization

Oz
P
- 4000 f—————a—XC :
K E, Fiy—--—--—
-3000 e ) - - exact
sty G
-2000 -~ LR SR
—-—-y I
-1000
o F
23 19 /5 1 \7 3
System
ol24 /20 e 12 8 4 =
1000
g i R ey S
2000____1“ "—r‘ — o zasie B |
3000 e J - R 4 - exact
E K .. - |
WO pE=—pmis !
R iy g
Oz

Fig. 3. Stresses o, at the top and the bottom of the beam

The following element formulations are used:

K, F see equations (11) and (12),

E, L S see Reference [20].

The nodal interelement condition (K) seems to be the most accurate formulation.

The Trefftz elements lead to more accurate results than other hybrid or displacement elements
within the same order of shape functions.
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3.2. Dual mixed elements satisfying equilibrium

Employing an extension of the complementary energy principle, it is possible to derive dual mixed
finite elements such that the constraint dive), = —f is satisfied provided that the body loads f
have sufficiently simple form. We consider the linear elasticity problem

dive = —f in B
c—-Ce(u)=0 in B
u=1 on I,
on=t on I

in a polygon domain B C IR2.
We start from the saddle point problem

inf sup II(o,u), 5
oc€H(div,B)"Y™ ueLzl()B) ( ; B

with the functional

II(o,u) :=%/ o:ClodB+ (dive +f)-udB— [ on-uds.
BF BF Fu

Here the stresses are sought in the space
H(div, B)Y™ .= {‘r € Ly(B)**?:divr € Ly(B)?, 7=7T, n=% on I‘t} ; (34)

In this formulation, u = @ on I, is a natural boundary condition.

It is not trivial to find stable finite element spaces for the discretization of the above saddle
point problem. One approach is to relax the symmetry of the stress tensor. This means a Lagrange
multiplier v is introduced to ensure symmetry of o in a weak form. The functional becomes

(o, u,7) :=(o,u) +/B as(o)ydB

with as (o) := 091 — 012 being the asymmetric part of o. Now we seek the saddle point

inf sup sup II o,u,y). 35
UEH(diV:B)uELzI?B)'yGLzl()B) ( " (33)

The stresses are sought in the space H(div, B) as defined in (34), but with the condition 7 = 7T
dropped. It can be shown that at the saddle point the Lagrange multiplier  corresponds to the
rotation, i.e.

T=2 2\ 8z, Byt

The weak formulation corresponding to (35) reads: Find o € H(div,B), u € Ly(B) and v €
Ly(B) such that

/T:(D_ladB—i-/diV‘r-udB+/as(T)'ydB= Tn-uads V7,
B B B Ty

/Bdiva-vde—/Bf-vdB Vv €Ls(B), (36)
/3 as (o) 0dB = 0 VOELy(B) |

where the test functions 7 satisfy T € Ly(B)?*2, div T € Ly(B)?, and 7n = 0 on ;.
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Next we describe finite element spaces, following Stenberg [29]. The FEM domain B is partitioned
into triangles. Two different triangles share at most a common edge or a common vertex. For each
triangle B, we define a bubble function b.(x) of polynomial degree three which vanishes on the
element boundary 9B,. On the unit triangle with the vertices (0, 0), (1,0), (0, 1) the bubble function
is given by bo(&,m) = én(l — € — ) in local coordinates (£,7). On each element B, the stresses
belong to the 15-dimensional space

0 —b _ib ib 0 0
5(Be) := span { P1(B.)>*?, (b Oe), TR e R IGHE O O L PR
£ 0 0 dy ¢ Oz °

where P;(B,) denotes the space of polynomials of degree < 1 on B,. The discretized displace-
ments are linearized rigid body motions,

Ly = {V < LQ(B) ‘v |Be: (G,,b) + C(—y,fL‘); a,b,ce R Ve} (38)
and for the rotations v we define
Wy, = {6 <3 L2(B) : 0|Be € P (Be) Ve} i (39)

No interelement continuity is required in the definition of £; and W),,. The discretized stresses
satisfy the condition div o, € Lo(B)? if and only if the normal tractions o,n are continuous across
inner element boundaries. This is the only continuity requirement.

In order to avoid expressing the continuity in the definition of the stress space, a Lagrangian
multiplier A, is introduced which lives on the finite element edges only. This renders a hybrid
formulation. It is easily verified that on all edges opn is of polynomial degree one. Thus Aj, must
be of polynomial degree one in order to enforce continuity exactly. At the vertices there are no
continuity requirements for Ay. Hence A; will be in the space

Mpa:={p: plr € P1(T")? for all edges I',
plp € P (1) WV CHR,).

Here Pr: is the Ly projection onto linear polynomials on the edge I'.
Now the discrete space for the stresses is

Hy = {7:7|p, € S(Be) Ve}. (40)

This yields the following discretization of (36) with conforming elements: Find oy € Hp, up€ Ly,
Yh € Wy and A, € My, 4 such that

|70 ondB+ Y [ divrw,dB
B ~ g,

+/as(*r)7th—Z/ ™ -A,ds=0 V1 € Hy,
B e JOBe

S [ divon-vas=- [ £-vds W € L,

e JBe B

/as(ah)0d8=0 V6 € Wi,

B

—Z/ ahn~uds=—/ t-pds | Vi € Mpg.
e JOB It

Note that in Z / Tn- Ay ds all interior edges occur twice, but with n in opposite direction. The
— JoB.

last equation ensures the continuity of oyn.
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The trial spaces satisfy the so-called equilibrium condition: If o, € H;, satisfies the conditions
divey, € Ly (B)? and

A divey-vp,dB=0 Vv, €L, (41)
then there holds diveoy = 0, see Stenberg [29]. In particular, for vanishing body loads f = 0 the
computed stresses satisfy divey, = 0. This reveals a relationship with the Trefftz idea. However,
the method is by no means restricted to the case f = 0.

Concerning a proof of convergence (Stenberg [29]) we remark that the inf-sup condition can
be shown to hold for patches of elements; this implies global stability in mesh-dependent norms.
A mechanical interpretation of the stability conditions was given by Stein and Rolfes [28]. Using
these elements there is no locking as Poisson’s ratio v approaches 0.5.

Since there are no continuity requirements for o, uy and -y, the 15+ 3 + 3 = 21 corresponding
degrees of freedom can be eliminated on each element before assembling the global system. This
leads to element stiffness matrices which are similar to the standard finite element case since Ap
approximates the displacements. It is possible to incorporate the mixed finite element into existing
FEM software as a triangle with two nodes on each side (e.g. at the two Gauss-Legendre points) and
no nodes at the vertices. Since we are dealing with straight-sided triangles, no numerical integration
is necessary and most work can be done analytically. However, it is not possible to implement the
element in a purely isoparametric fashion. A detailed description of the implementation and numer-
ical results can be found in Ref. [17]. A posteriori error estimators are discussed in References (3]
and [5]. An extension to three-dimensional problems is possible [29].

4. COUPLING OF BEM AND DUAL MIXED FEM

In this section we are going to present a canonical coupling of dual mixed FEM and Galerkin-BEM.
The benefit of a Bubnov-Galerkin method is that the matrices are symmetric and the method is
easier to analyze mathematically [9,11]. For collocation (also discussed in [6]) the analysis is still
unsatisfactory [7]. As will be seen, our coupling is in a sense ‘dual’ to Costabel’s coupling [9,11] since
we cannot insert the traces of the displacements in the FEM domain into the boundary integral
equations. Our method and the analysis in [4] answer some questions arising from general coupled
formulations such as those proposed by Polizzotto and Zito [23]. An extension of our method to
nonlinear behaviour in the FEM-domain was addressed recently by Gatica and Wendland [12].

A coupling with other types of Trefftz elements could be investigated in the macro-element
framework given by Wendland [32].

We consider the linear elasticity problem

dive = —f in BpUI'cUBpg

Clo—e(u)=0 in BpUTcUBg (42)
u=20 on I'g UL,

on=t on T'pUTY

The domain B is partitioned into B = Br UT'c U Bp (see Figure 4). The subdomain which is
treated by the boundary element method is denoted by Bp and is assumed to be connected. Its
boundary is I'p = I', UT' UT'¢. In Br a mixed finite element method is employed. We assume that
the body load f vanishes on Bp and that the Lamé coefficients are constant on Bp.

4.1. Variational formulation of the coupling

In analogy to (36) the weak formulation in Bp is

/ T:(D‘IadB+/ divr -udB + as(r)ydB = Tn - uds L,
Bp Br Br Te
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- o

Br Bg
FFt I:‘C 1-‘t
FEM BEM

Fp=TcUI UL,

/424
r

FF,, u

Fig. 4. Notation
dive -vdB = — f-vdB Vv,
Bp Bp

/B as (o) 0dB = 0 ve. (43)

To derive the coupled scheme, the first step is to introduce a new variable ¢ := u|r, in the
trace space

H'/?:={p e H'/*(Tp):9=0 on Ti} (44)

For the tractions t on the boundary of the BEM domain we require equilibrium across the FEM-
BEM interface, more specifically

(0,t) € {(r,x) € H(div, Bp) x H™'/*(Tp)*:
x=—-7n on I'g, x=t on Iy, tn=t on Ig}
=" H(t') X H_l/z.

For a definition of the underlying Sobolev spaces on polygonal boundaries and basic properties of
the integral operators we refer to [10] and [11]. From the first integral equation (5) we know

u=Vt+ (3-K)ep.
This is inserted for u|r, into the right-hand side of the first equation of (43), leading to

/ 7:C lodB + diV‘r-udB-i-/
B

F Br Bp

as (1) 7dB + (x, Vt)¢, + 5 (% ¥)o — (X, K@), =0

for test functions (,x) € H) x H/2 Here we used the notation (x,¢)c, = Jp, X - ¥ds,
(e, = fFCUPu ds. Note that the first integral equation is applied on I'cUI',, where the tractions are
unknown, while the second integral equation (6) will be exploited on I'cUT'; where the displacements
are unknown. We emphasize that on the interface I'c both integral equations are used in order to
obtain a symmetric coupling procedure. We introduce some notation by writing

(Vt) (x) = /F o, GO ) ds) + [ G (63 83) ds(y)

T
= (Vo) () + (Vat) (),
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and treat the other boundary integral operators similarly.
Now the weak formulation of the coupled problem reads: Find

(O',t,(P,u, ’Y) = 7't(t-) X H_1/2 X H1/2 X Ly (BF) X Ly (BF)

such that

(45)
b(o;v,0) =— f-vdB
Bp

for all (7,x,9,v,0) € H(y x H~1/2 x H/2 x Ly (Br) x Ly (Br). The bilinear forms a and b are
defined as

a(o,t,0;7,%,%) = / r:ClodB

Bp
+(x Veut)o, + 3 (6 e)e — (. Kep)e,
+ (¢7WCt90)Ct + % (’l/’,t)c - (1/)’ ’Cut>ct

and

b(a;v,e)':/ divo-vdB+ [ as(c)9dB
Bp Br

and the linear form [ on the right-hand side is

! (Xa ¢) == (XavtE)Cu - % <¢7E)t i <¢’ Kf‘i)ct £

Note that the bilinear form a is symmetric, i.e.

a(a7 t’ ‘P; T? X7 Ilp) = a(T7 X’ w; 0.7 t) ‘p)

since € is symmetric, the operators V and W are selfadjoint and

(x:Keip)o, = (0, Ko, t)g, -

Equation (45) is a typical saddle point problem in the sense of Babuska and Brezzi’s theory. Stability
and optimal order convergence of the coupled scheme are proved in Ref. [4]

4.2. Discrete formulation with interelement Lagrange multipliers

For the conforming discretization of (45) we use the finite element spaces of Section 3.2. For
simplicity, we assume the boundary elements on the interface I'c to be edges of finite elements. On
I'c UT; the trial functions for the displacements are continuous piecewise linear functions, and for
the tractions t; we use discontinuous piecewise linear functions on I'c UT,. Again the continuity
of the interelement tractions is ensured by a Lagrange multiplier. With the same technique the
condition t, = —opn on the interface I'c is enforced. This hybridization does not change the
solution of the discretization of (45).
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4.3. Numerical Examples

Numerical results are given for two plane strain problems. The body load f is disregarded. In Cook’s
problem (Figure 5), on the right-hand edge the traction on = (0,1/16) is applied while the upper
and lower boundary is free of loads. The material parameters are Young’s modulus F = 1 and
Poisson’s ratio v = 1/3 or v = 0.4999. Each mesh refinement step is performed by halving all finite
element sides and all boundary elements.

Y
16
N +
FFu
44
N
N st i

L ) 5 >|
16 32

Fig. 5. Example 1, plane strain problem, initial mesh with 4 finite and 8 boundary elements

In Figure 6 the computed vertical displacement at the Point A (see Figure 5) is shown for
increasing number of degrees of freedom in the global system, i.e. in the unknowns A, t, and
¢y The coupled method is compared with three other schemes in which the whole domain is
treated by (i) the mixed FEM, (ii) the symmetric Galerkin BEM, and (iii) standard triangular
P2 finite elements, i.e., with trial functions for the displacements only, having polynomial degree
two. Computed displacements were compared at other points also, showing that the BEM needs
the lowest number of degrees of freedom while the other methods lead to approximately the same
accuracy. However, the BEM matrices are fully populated.
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Fig. 6. Example 1, displacement for v = 1/3
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Figure 7 shows the corresponding results for the almost incompressible case. Now the P2-element
is clearly less efficient than the other methods. This locking phenomenon is even worse when employ-
ing the standard bilinear element, which, for this bending dominated problem, yields unacceptable
results. For a comparison with other mixed finite element methods we refer to [17].

Vertical displacement at Point A
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Fig. 7. Example 1, displacement for v = 0.4999

In Figure 8 the normal stress o1 at the left-hand boundary (I'p, in Figure 5) is depicted. For
all methods, meshes with eight elements on the left-hand boundary were used. Except near the
corners (where singularities are present), the results are almost indistinguishable.
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Fig. 8. Example 1, normal stress at left-hand boundary for » = 0.4999
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For this simple model problem, the coupling does not have an advantage over the other methods,
but the computations show that the mixed element and the BEM suit well to each other.

In the second example we consider two neighboring cylindrical cavities in an unbounded medium
under uniform vertical pressure of magnitude 1. For the radius R of the cavities and the distance
[ between them we take R = | = 1. The material parameters are £ = 1 and v = 0.2. The mesh
refinement is performed uniformly, with the surface of the cavities being approximated by piecewise
linears (see the mesh in Figure 9). In contrast to Example 1, the displacements ¢ on the boundary
of the BEM domain are determined up to a rigid body motion only when the coupled formulation is
used. This exterior Neumann problem is uniquely solvable, but the (linearized) rigid body motions
are in the kernel of the operator W, see [11]. In our example, it is sufficient to fix three suitably
chosen degrees of freedom in ¢y,.

T T T T T
15 | Boundary element mesh &— -
1F o
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1 1 l 1 1
-3 -2 -1 0 i g 3

Fig. 9. Example 2, unbounded medium under vertical pressure with two cavities, plane strain, mesh with
224 finite elements and 64 boundary elements

Figure 10 shows the normal stress o99 on the horizontal line y = 0 in the FEM domain. The
largest stress occurs at the boundary of the cavities and has the value —3.264 according to the
analytical solution in [24]. Our numerical computations show a fast convergence towards this value.

Finally we remark that, in both examples, an improved efficiency can be expected from local
mesh refinement, see Ref. [5].
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Fig. 10. Example 2, stress 022 at y =0
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5. CONCLUSIONS

Three applications and extensions of Trefftz’ method are treated in this paper, first boundary-type
elements based on Beltrami stress functions, fulfilling the field equations. As can be seen from
Table 1, different regularizations of consistency and stability conditions were treated and tested,
exhibiting fairly good convergence properties. It is indeed not trivial to overcome the nonconformity
of the trial functions on the boundaries.

The second method related to Trefftz’ idea deals with dual mixed finite elements arising from
an extended Hellinger—Reissner functional. Here the stresses lie in H(div,.)-spaces, and compu-
tationally this condition is enforced by a hybrid technique. The main goal of these elements is a
higher order of convergence for the stresses. A byproduct of the above described mixed element is
the a-priori fulfillment of equilibrium which again relates to Trefftz.

The third field of application of Trefftz’ idea is the boundary element method. Here we consid-
ered the realization as a symmetric Galerkin scheme and the coupling with the dual mixed finite
element method (BDM-elements). In this approach the optimal balance of convergence orders for
both displacements and stresses in the FEM and the BEM domains is an essential goal of this
contribution.

As stated several times in the literature the combination of both ideas from Ritz and Trefftz
and especially the orthogonality concept of Galerkin were the necessary ingredients for developing
consistent and effective approximation methods over the last decades.
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