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A new method is proposed to identify the distinct mechanisms derived from a given kinematic chain in
this paper. The kinematic chains and their derived mechanisms are presented in the form of a flow matrix.
Two structural invariants, sum of the absolute values of the characteristic polynomial coefficients (SCPC)
and maximum absolute value of the characteristic polynomial coefficient (MCPC) are determined using
the software MATLAB. These invariants are used as the composite identification number of a kinematic
chain and mechanisms and clearly identify the distinct mechanisms derived from the family of 1-F, 8-links
and 10-links KC as well as 2-F, 9-links simple joined KC. This study will help the designer to select the
best possible mechanism to perform the specified task at the conceptual stage of design. The proposed
method does not require any test for isomorphism separately. Some examples are provided to demonstrate
the effectiveness of this method.
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1. INTRODUCTION

In a mechanism design problem, systematic steps are type of synthesis, structural number synthesis
and dimensional synthesis. Structural synthesis of the KC and mechanism has been the subject of a
number of studies in recent years. One important aspect of structural synthesis is to develop all the
possible arrangements of KC and their mechanisms derived for a given number of links, joints and
degrees of freedom, so that the designer has the liberty to select the best or optimum mechanisms
according to his requirements. In the course of development of KC and mechanisms, duplication
may be possible. For this reason, many methods have been proposed by many researchers to check
for duplication or, in other words, to detect the isomorphism among the kinematic chains. Most of
these methods are based on the adjacency matrix [1] and the distance matrix [2]. Determining the
structurally DM of a KC, the link disposition method [3], the flow matrix method [4] and the row
sum of extended distance matrix methods [5] are used. Minimum code [6], characteristic polynomial
of matrix [7], identification code [8], link path code [9], summation polynomial [10] etc. are used
to characterize the KC. With regard to these methods, either there is a lack of uniqueness or they
take too much time. Row sum of the extended adjacency matrix method [5] identifies 10 distinct
mechanisms derived from the family of 6-links, 1-F kinematic chains but it distinguishes only 69
DM derived from the family of 8-links, 1-F, KC instead of the 71, reported by other researchers.
Hence, there is a need to develop a computationally efficient method for determining the DM of a
KC. In the present work, a new method is proposed to determine the DM of a KC and a flow matrix
has been defined. Two structural invariants SCPC and MCPC are derived from the flow matrix,
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based on their characteristic polynomial coefficients, using the software MATLAB. These structural
invariants are the same for identical or structurally equivalent mechanisms and different for DM.
Hence, in this way, it is possible to identify all DM derived from the given KC. These invariants
may also be used to detect isomorphism in the KC having simple joints and even the KC having
co-spectral graph. The method is explained with the help of examples of planner KC having all
simple joints and the results of all the DM derived from the family of 1-F, 8-links and 10-links KC
as well as 2-F, 9-links simple joined KC summarized in Table 3 and 4.

2. DEFINITIONS OF TERMINOLOGY

The following definitions are to be explained clearly before applying this method. Various definitions
with their abbreviations are given below.

Flow Path Value. It is defined as the minimum number of joints between two links under con-
sideration. For example in Fig. 1, the minimum number of joints between links 1 and 7 are 2, so
the flow path value between link 1 and 7 will be 2.

Link Flow Matrix. For an n-link KC it is defined as an n× n square matrix,

FM = {Fij}n×n,

whose element Fij is a minimum number of joints between link i and j, and is equal to zero if i
is equal to j. Of course, all the diagonal elements Fii = 0.

FM =















0 F12 F13 . . . F1n

F21 0 F23 . . . F2n

. . . . . . . . . . . . . . .

. . . . . . . . . . . . . . .

Fn1 Fn2 Fn3 . . . 0















.

3. NEW STRUCTURAL INVARIANTS

The characteristic polynomial [1] is generally derived from the (0, 1) adjacency matrix. The roots
of the n-th order characteristic polynomial are the set of n eigenvalues called eigenspectrum. Many
researchers have reported co-spectral graphs (the non-isomorphic graphs having the same eigen-
spectrum derived from the (0, 1) adjacency matrix). The proposed flow matrix contains additional
information about the number of joints existing between two links of a KC. Therefore, it is expected
that the characteristic polynomial and its coefficients will be unique to clearly identify the KC and
even the KC with co-spectral graphs. The characteristic polynomial of flow matrix is given by D(λ).
The monic polynomial of degree n is given by Eq. (1).

|FM− λI| = λn + a1λ
n−1 + a2λ

n−2 + · · ·+ an−1λ+ an, (1)

where n is the number of joints and 1, a1, a2, an−1, an are the characteristic polynomial coefficients.
The two important properties of the characteristic polynomials are:

1. The sum of the absolute values of the characteristic polynomial coefficients (SCPC) is constant
for a FM matrix. i. e. |1|+ |a1|+ |a2|+ · · ·+ |an−1|+ |an| = const.

2. The maximum absolute value of the characteristic polynomial coefficient (MCPC) is also con-
stant for a FM matrix.

Therefore, the proposed structural invariants SCPC and MCPC are unique and used as identifi-
cation numbers to identify the distinct mechanisms of a kinematic chain.
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3.1. Test for isomorphism of kinematic chains

Theorem. Two similar square symmetric matrices have the same characteristic polynomial [12].

Proof. Let the two KC be represented by the two similar matrices A and B such that B = P
−1

AP,
taking into account that the matrix λI commutes with the matrix P and

∣

∣P
−1

∣

∣ = |P|−1. Since the
determinant of the product of two square matrices equals the product of their determinants, we have

|B− λI| =
∣

∣P
−1

AP− λI
∣

∣

=
∣

∣P
−1 (A− λI)P

∣

∣

=
∣

∣P
−1

∣

∣ |A− λI| |P| = |A− λI|.

Hence, if D(λ) is the characteristic polynomial of a matrix, D(λ) of matrix A is equal to D(λ) of
matrix B.

It means that if D(λ) of two matrices FM representing two KC are the same, their structural
invariants SCPC and MCPC will also be the same and the two KC are isomorphic otherwise
non-isomorphic chain.

3.2. Identification of structurally equivalent links and distinct mechanisms

A KC is represented by the matrix FM. When any link of a KC is fixed, a mechanism results.
It means that the corresponding joints of the fixed link work as pivots. If in the matrix FM the
diagonal elements of the corresponding fixed link ‘1’ are changed from 0 to 1 (zero to one), it will
be the representation of the first mechanism with fixed link ‘1’. The structural invariants SCPC-1
and MCPC-1 of this matrix FM-1 are then calculated using software MATLAB. This process is
repeated for the second link ‘2’ and so on. In this way, a set of invariants equal to the number of
the links are obtained. Some of them may be same and others are different. The same structural
invariants represent the corresponding structurally equivalent links that constitute one DM.

4. APPLICATION TO KINEMATIC CHAIN

Example 1. The first example concerns 8-bars, 10-joints, single-degree-of-freedom kinematic chain
shown in Fig. 1.

Fig. 1. Eight-links single-degree-of-freedom kinematic chain
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Link Flow Matrix FM

The link flow matrix FM representing the kinematic chain shown in Fig. 1 is as follows:

Link

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8


























0 1 2 1 2 3 2 1

1 0 1 2 3 2 1 2

2 1 0 1 2 1 2 3

1 2 1 0 1 2 3 2

0 1 2 1 2 3 2 1

1 0 1 2 3 2 1 2

2 1 0 1 2 1 2 3

1 2 1 0 1 2 3 2



























.

Structural invariants of the mechanisms

The structural invariants of the mechanisms derived from the above kinematic chain are listed below
in Table 1.

Table 1. Structural invariants of various links

Link SCPC MCPC

1 28.6459 14.3467

2 28.6459 14.3467

3 28.6459 14.3467

4 28.6459 14.3467

5 28.6577 14.4099

6 28.6577 14.4099

7 28.6577 14.4099

8 28.6577 14.4099

Identification of the distinct mechanisms

Observing the structural invariants for the above eight mechanisms, it is found that the structural
invariants of links (1, 2, 3, 4) are the same. Hence, they are treated as equivalent links and form only
one distinct mechanism. Similarly, the structural invariants of links (5, 6, 7, 8) are the same, hence
form second distinct mechanism. Therefore, two distinct mechanisms are obtained from kinematic
chain shown in Fig. 1.

Example 2. The second example concerns 9-bars, 11-joints, and the two-degrees-of-freedom kine-
matic chain shown in Fig. 2.
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Fig. 2. Nine-links two-degrees-of-freedom kinematic chain

Link Flow Matrix FM

The link flow matrix FM representing the kinematic chain shown in Fig. 2 is as follows:

Link

1

2

3

4

5

6

7

8

9

1 2 3 4 5 6 7 8 9






























0 1 2 2 2 1 1 2 3

1 0 1 2 3 2 2 3 2

2 1 0 1 2 3 2 2 1

2 2 1 0 1 2 1 2 2

2 3 2 1 0 1 2 3 3

1 2 3 2 1 0 2 3 4

1 2 2 1 2 2 0 1 2

2 3 2 2 3 3 1 0 1

3 2 1 2 3 4 2 1 0































.

Structural invariants of the mechanisms

The structural invariants of the mechanisms derived from the above kinematic chain are listed below
in Table 2.

Table 2. Structural invariants of various links

Link SCPC MCPC

1 32.1521 15.8717

2 32.0081 15.8996

3 32.1521 15.8717

4 32.0313 15.8608

5 31.8374 15.9119

6 31.9491 15.9264

7 32.0313 15.8608

8 31.8374 15.9119

9 31.9491 15.9264

Identification of the distinct mechanisms

Observing the structural invariants for the above nine mechanisms, it is found that the links (1, 3),
(4, 7), (5, 8) and (6, 9) are equivalent links since their structural invariants are the same and form
four distinct mechanisms. Link 2 has the distinct invariants, forms the fifth distinct mechanism.
Therefore, five distinct mechanisms are obtained from the kinematic chain shown in Fig. 2.
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Example 3. The third example concerns the case with 10-links, 12-joints, three-degrees-of-freedom,
co-spectral kinematic chains shown in Figs. 3 and 4. The graphs having the same characteristic
polynomials derived from the (0, 1) adjacency matrix are called the co-spectral graphs.

Fig. 3. Ten-links three-degrees-of-freedom kinematic chain

Fig. 4. Ten-links three-degrees-of-freedom kinematic chain

Link Flow Matrix FM

The link flow matrix FM representing the kinematic chain shown in Fig. 3 is as follows:

Link

1

2

3

4

5

6

7

8

9

10

1 2 3 4 5 6 7 8 9 10




































0 1 2 3 2 3 2 1 1 2

1 0 1 2 3 4 3 2 2 1

2 1 0 1 2 3 4 3 3 2

3 2 1 0 1 2 3 4 2 1

2 3 2 1 0 1 2 3 1 2

3 4 3 2 1 0 1 2 2 3

2 3 4 3 2 1 0 1 3 4

1 2 3 4 3 2 1 0 2 3

1 2 3 2 1 2 3 2 0 3

2 1 2 1 2 3 4 3 3 0





































,
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and the link flow matrix FM representing the kinematic chain shown in Fig. 4 takes the following
form:

Link

1

2

3

4

5

6

7

8

9

10

1 2 3 4 5 6 7 8 9 10




































0 1 2 3 4 3 2 1 2 1

1 0 1 2 3 4 3 2 3 2

2 1 0 1 2 3 4 3 2 3

3 2 1 0 1 2 3 4 1 2

4 3 2 1 0 1 2 3 2 3

3 4 3 2 1 0 1 2 1 2

2 3 4 3 2 1 0 1 2 3

1 2 3 4 3 2 1 0 3 2

2 3 2 1 2 1 2 3 0 1

1 2 3 2 3 2 3 2 1 0
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Structural invariants of the mechanisms

The characteristic polynomial coefficients are the following. For the kinematic chain shown in Fig. 3:
7.8576, −6.0000, −3.3157, −2.0000, −1.0665, −0.8290, 0.0000, 0.0000, 1.1139, 19.9549. For the
kinematic chain shown in Fig. 4: 7.3117, −6.8284, −3.9025, −1.3372, −1.1716, −0.0000, 0.0000,
0.0000, 0.6751, 19.8762. For the kinematic chain shown in Fig. 3 SCPC = 42.1376 and MCPC =
19.9549. For the kinematic chain shown in Fig. 4 SCPC = 41.1027 and MCPC = 19.8762.

The structural invariants of the two KC having co-spectral graphs shown in Fig. 3 and Fig. 4
are different. Therefore, both the KC are non-isomorphic. Note that by using other method of
summation polynomials [10], the same conclusion is obtained.

Example 4. The fourth example concerns the slider crank mechanisms obtained by 6 link 7 joints
kinematic chains as shown in Figs. 5 and 6, respectively.

Structural invariants of the mechanisms

The characteristic polynomial coefficients are the following. For the kinematic chain shown in
Fig. 5: −2.6885, −2.3430, −2.0000, 0.0000, 0.1408, 7.8907. For the kinematic chain shown in
Fig. 6: −3.8126, −2.8273, −1.3667, 0.0000, 0.3776, 8.6290. For the kinematic chain shown in Fig. 5
SCPC = 15.0630 and MCPC = 7.8907. For the kinematic chain shown in Fig. 6 SCPC = 17.0132
and MCPC = 8.6290. The structural invariants of the both kinematic chain mechanisms are dif-
ferent. Therefore, both the kinematic chain mechanisms are non-isomorphic.

1 1 1

3

4

5

2

 R 

6

Fig. 5. Six-bars slider crank mechanism
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Fig. 6. Six bar slider cranck mechanism

5. RESULTS

Using the proposed method, the number of mechanisms derived from the family of 1-F; 6-link, 8-
link and 2-F 9-link chains are 5, 71 and 254, respectively. These results are in agreement with those
reported already in the literature. The distinct mechanisms derived from the family of 1-F; 10-link
1842. A brief summary of these results is presented in Table 3 and 4.

Table 3. Total number of distinct mechanisms

S. No.
Structural synthesis
and analysis problem

No. of KC DM by Ref. [11] DM by present method

1 1-F 8-links simple-joined KC 16 71 71

2 2-F 9-links simple-joined KC 40 254 254

3 1-F 10-links simple-joined KC 230 1834 1842

Table 4. Description of DM derived from 1-F, KC of 8 and 10 links

Class Group Number of links KC DM Total distinct mechanisms

a 8 9 35

III b 8 5 31 71

c 8 2 5

a 10 50 342

b 10 95 870

c 10 15 126

IV d 10 57 415 1842

e 10 8 64

f 10 3 20

h 10 2 5

6. CONCLUSIONS

In this paper, a unique method has been developed for identifying distinct mechanisms of a kinematic
chain. Two structural invariants SCPC and MCPC are proposed. These invariants are easy to
compute, reliable and capable to identifying all distinct mechanisms derived from a given kinematic
chain and also able to detect the isomorphism among the KC having simple joints and even the
KC with co-spectral graphs. Authors strongly believe that this method is unique and applicable
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to planar chains of any size and complexity. Unique in the sense that it has taken care of nature
and all inherent properties of the mechanisms. It is felt that this paper presents a new concept
on which a new identification system can be based. Such a new identification system would be
extremely selective and would eliminate the possibility of duplicate identification for structurally
different mechanisms. The inherent relation between structural invariants and the mechanisms need
further study.
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