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This paper presents the results of an extensive investigation evaluating and improving the development
of artificial neural network (ANN) models for turbomachinery design purposes. A set of 1100 differing
axial compressor geometries based on 5 single-stage compressor rigs was prepared. Computations with
the mean line analysis tool AXIALTM took place to determine the according compressor maps defined by
15 operating points each. The challenge of ANN model development in terms of dimensionality reduction
(feature selection), data normalization, defining the networks necessary plasticity, and network training
is discussed using the example of three different models. As a result, the first model is able to predict
the total pressure loss of the rotor blade row with a mean magnitude of the relative error (MMRE) of
3.6%. The second model predicts the total pressure ratio with an average accuracy of 0.8%. The third
and last model was trained to predict basic geometrical parameters by presenting the load level and the
performance data as an input. The achieved MMRE varied between 2.4% and 5.6% in respect of the
particular output variable. The results show that ANNs are applicable to develop efficient models for
turbomachinery design and analysis purposes, respectively.

1. INTRODUCTION

The importance of findings and developments within the field of neuroinformatics for an application
in the field of turbomachinery has increased over the last years. Several research activities were
conducted determining a great potential to improve and accelerate the design process. However,
publications focus on the application of ANNs for design purposes while neglecting the challenge
of developing and optimizing the prediction model. In this paper the authors present a standard
procedure for ANN model development for turbomachinery design. Thus, first a short overview
on ANN research work in turbomachinery is given followed by theoretical considerations of model
development from a mathematical and neuroinformatical perspective.

Benini and Toffolo (2002) [4] demonstrate ANNs’ (which are universal function approximators)
ability to predict the performance of compressor cascades. For that purpose, the inlet Mach number
as well as the stagger angle and the incidence were used to predict the outlet flow angle, the outlet
Mach number and the static pressure ratio separately with three self-contained ANNs, to increase
accuracy. Uelschen (2000) [39] applied and successfully trained an ANN to design airfoils for axial
compressors. Nine boundary conditions, taking geometry and aerodynamic parameters into account,
acted as input variables to determine an optimum set of further nine geometric and aerodynamic
parameters of interest. A different approach to optimize compressor geometry was investigated by
Ahmed (2005) [1]. Instead of training an ANN to predict optimum geometry values directly, the
ANN was trained to review the large number of geometry descendants generated by a genetic
algorithm. In case the ANN determined that a specific descendant (varying compressor geometry)
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had a reasonable chance of improved performance, an accurate CFD simulation was performed. In
this manner, the number of descendants to be reviewed could be enlarged tremendously, due to
the time saving computation by an ANN compared to a CFD simulation. A very similar approach
had already been successfully pursued by Van den Braembusche et al. [32, 33] to optimize radial
impeller geometry. In their aproach candidate geometries are proposed by a genetic algorithm and
their performance is estimated with an ANN model. After completing the first iteration of fast
optimization the optimized geometry is verified with a 3D Navier-Stokes (NS) solver. In case the
results deviate, an ANN model based on the new set of pattern is trained and again the geometry
is optimized. The iteration ends as soon as the predicted performance agrees with the NS solver
results. Centrifugal compressor design with an ANN is also the focus of Pazzi et al. (2002) [31] and
Japikse et al. (2004) [25]. While in [31] there is a focus on the interaction between the geometry
of the return channel and the performance, [25] uses various foremost geometry parameters to
determine variables of design calculation models (“two elements in series” and “two zone” model).
Both publications have limited significance, while in [31] there is no information on the volume of
applied data (a very critical factor when modeling with ANNs), some of the predicted variables
presented in [25] have an error of up to 86%.

The great advantage of ANNs is their ability to find and represent mathematical dependencies
within data. While conventional solvers compute a solution to a specific problem using a prede-
termined algorithm, an ANN is able to learn the solution to a pattern of input data by training
with the according data. Hence, an ANN reaches its limits of performance capability in respect of
the data applied. This circumstance also demands that the data presented for training contains
the necessary information to determine the output parameter(s) of interest. One of the main issues
of applying artificial neural networks for turbomachinery design, results from the great number of
explanatory variables. Unfortunately, too many governing parameters decrease the ANNs’ ability to
approximate the function of interest, [5, 6]. This issue can easily be understood if e.g. it is considered
that the necessary volume of data exponentially increases with the increase of the input dimension
(defined by the number of employed entirely independent explanatory variables) if a steady data
density within the mathematical space shall be maintained. Bellmann (1962) [3] was the first to
entitle this issue as the “curse of dimensionality”. For example, if for a 2-dimensional input vector
every dimension can be sampled sufficiently with 3 evenly-spaced samples, a data volume of 9 pat-
terns is needed for a sufficient coverage of the input space. However, if an extra dimension is added
to this vector and the additional dimension can also be sampled sufficiently with 3 evenly-spaced
samples, the necessary data pattern increases up to 27.

Fortunately, ANNs are not as susceptible to the “curse of dimensionality”. That is because input
parameters are usually not entirely independent and correlate among one another, respectively
leading to the coverage of a subspace instead of the full mathematical input space and additionally
the explained variable usually does not vary arbitrarily from one input to another, [5, 6]. Still, the
data density and the coverage of the mathematical space are crucial to an adequate approximation
of a function and the volume of the data available is generally finite. Therefore, the number of input
variables needs to be minimized and the dimension of the input vector needs to be as low as possible,
respectively. This problem calls for an adequate preprocessing of the respective data. Two general
approaches with good prospects are conceivable, feature/variable selection and feature extraction.
The first approach minimizes the dimension of the input vector by reducing the input variables
to a crucial amount. The selection algorithms usually allow to order the input variables according
to their importance for the dependent variable. Carried out as a stepwise regression (based on
multivariate statistical analysis) this method allows the selection of explanatory variables according
to their ability to account for the variability of the dependent variable, by means of an automatic
procedure. Unlike feature selection, feature extraction methods reduce the dimensionality of the
input vector by searching for the low-dimensional representation (LDR) of the high dimensional
space, [22]. This approach may apply auto associative bottle-neck Multi Layer Perceptrons (MLP)
(auto-encoder), to perform dimensionality reduction. Since the number of neurons within the hidden
layer is less than the number of input neurons (and the output neurons, respectively) the application
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of such an ANN leads to a data processing comparable to a method of multivariate statistics, the
principal component analysis. Although both approaches induce a loss of information in the input
vector, they lead to an improvement of the obtained model, due to the limited training data. An
overview on methods for dimensionality reduction is given in [17].

If the crucial explanatory variables have been determined, the ANN model can be developed. In
order to obtain a sufficient ANN model several criteria and procedures ought to be considered. To
demonstrate the procedure in this paper the research activity employed a large set of performance
data. The data was obtained by means of varying the rotors of five actual single-stage axial compres-
sors (referred to as basic configuration in this work) and performance calculations computed with
the mean line analysis tool AXIALTM. The computations determined the respective compressor
maps, defined by 15 operating points each, for a record of 1100 differing axial compressor geome-
tries. In this research work three different ANN models were developed. The first predicts the total
loss coefficient and was therefore applied to remodel the semi-empirical loss-models for mean line
analysis, see Sec. 3.2. Furthermore, the method stepwise regression for dimensionality reduction was
evaluated during the model development as well as the importance of evenly sampled data widely
covering the input space. The second predicts the pressure ratio and accents the potential of ANNs,
as it is able to remodel the mean line flow analysis. And the third MLP was trained to predict
general geometric parameters in respect of the desired operating point and further aerodynamic
boundary conditions as an investigation on requirements of ANNs for the application as a design
tool.

2. THE MULTI LAYER PERCEPTRON

ANNs are information processing models of diverse complexity and construction. They are composed
of artificial neurons (nodes) interconnected in a certain way to allow communication. Each neuron
operates as a simple processor. Its ability is limited to a rule for processing the output oi, of other
neurons i connected with the respective neuron j, to an own input netj and a transfer function
to process this input netj into an output oj . This output can be propagated to further nodes k
by means of weighted connections (wjk). In addition to the terms of data processing by the single
neurons, it is the network structure that has a significant impact on the character of an ANN. The
Multi Layer Perceptron (MLP) which was applied for this research work is a feed-forward ANN,
stating that the information presented is propagated through the network in strictly one direction,
from the input neurons to the output neurons, [35]. Furthermore, the network nodes are ordered in
different layers. There is an input layer, one or two hidden layers and an output layer. The input
layer has no processing features and merely operates as an interface for the data input. Thus the
number of nodes for the input layer (N) is equal to the dimension of the input vector R

N and the
number of applied explanatory variables, respectively (the number increases in case of categorical
variables, this is described in more detail in Sec. 4.2). The hidden layer processes the input data
according to the weighted connections and the predefined transfer function. The optimum number
of hidden layers and neurons (H) within the hidden layers cannot be determined a priori and is
generally determined empirically. The output layer also consists of processing neurons and presents
the networks output. Thus the number of neurons for the output layer (M) is defined by the
dimension of the output vector R

M and the number of dependent variables, respectively.
The design of MLP neurons is quite simple. Neurons beyond the input layer compute their input

from the weighted outputs of the prior nodes, connected with the respective node, by summation.
Subsequently, the output of the neuron is computed by the transfer function:

oj = aj = fact(netj) = fact

(
I∑

i=0

wij · oi

)
. (1)

Different transfer functions can be applied in MLPs. The neurons within the input layer should
apply a linear transfer function with a constant of proportionality of one. This specific function
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is termed identity, due to the processed information being equal to the input information. The
hidden layer nodes apply sigmoid transfer functions that are continuously differentiable, such as the
logistic function or the hyperbolic tangent, to introduce nonlinearity to the model and to meet the
conditions for most training-algorithms, e.g. “Backpropagation”. The output layer nodes generally
apply either linear or non-linear transfer functions.

The MLP is an ANN that is trained by supervised learning with a data record that contains
the input pattern and the according output pattern (teacher). Given that the neurons are designed
prior to network training and in respect of the applied transfer functions, the networks weights are
the only adaptive parameters involved in the training process. The Backpropagation algorithm is
commonly applied for MLP training and therefore was chosen for this research work. This numerical
method is based on gradient descent; hence the gradient of the error function is calculated in respect
of the modifiable weights by means of backwards propagating the error. In this way the randomly
initialized weights wij are being adapted,

∆pwik = −η ·
∂pE(w)

∂wik

, (2)

to reduce the error E and to minimize the error function, respectively:
The error function E(w) accounts for the deviation of the computed output y at the output node

k from the according output ŷ (teacher) for a pattern “p” and is defined as:

pE(w) =
1

2
·

K∑

k=1

(pŷk −p yk)
2. (3)

Figure 1 displays single neurons in a three layer MLP (input, hidden and output layer). Their
characteristics are assigned the manner of propagating information and information processing, [34,
40].

Fig. 1. MLP configuration
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3. GENERATING THE DATA

To generate a large database, performance calculations had to be executed for a wide range of com-
pressor geometries. The applied software tool for this purpose was AXIALTM by ConceptsNREC [20]
which is based on a reduced-order through flow preliminary compressor design system [11]. This
preliminary design system uses the equation of momentum in radial direction for the calculation of
enthalpy, entropy and the velocities of the flow at the inlet and exit of the blade row (e.g. rotor
inlet and rotor exit) by assuming inviscid flow in-between the bladed segment. Based on the simple
radial equilibrium, only the influence by the circumferential velocity as the primary component of
the centrifugal force is considered. The influence of the streamline curvature is neglected. With
respect to a better representation of the compressor performance, modified loss models (for airfoils
and for endwalls as well as for stall and for deviation) were used. The advantage of this calculation
method is its ability to predict aerodynamic performance parameters in the first approximation
and its marginal computational effort. Allowing to embed empirical information on a large scale,
mean line analysis is sufficiently accurate to design main geometric parameters on a preliminary
basis, [8]. For further information on the theory of axisymmetric annulus design for compressors
please see [11, 24]. To approximate the efficiency of a compressor several semi-empirical loss models
for different loss sources can be found in literature. The most commonly applied models are imple-
mented in AXIALTM and the choice for applying a specific model to sufficiently predict efficiency is
dependent on the analogy between the compressors (and operating points, respectively) contained
in the empirical set of data on which the model is based and the target compressor design. An
overall evaluation of divers models for the design loss and off-design loss (as well as models for the
determination of minimum loss incidence and deviation angles) and an improved off-design correla-
tion is presented in [9]. The loss model configuration applied for performance computations in this
research work was chosen consistently for all computations and independently of the compressor
geometry to achieve a uniform set of data with equal governing parameters and equal associations
between input and output for network training. The concrete selection was made in respect of the
best response to the measured performance data for all basic configurations.

3.1. Axial compressor geometries

In this chapter the five single-stage axial compressors in their basic and varying configurations
are discussed. The basic geometric configurations and the according compressor maps were taken
from the literature. Due to missing information some of the parameters had to be assumed. The
tip clearance was set to 0.3 mm uniformly for all rotors, the blade surface roughness was assumed
1.6 · 10−3 mm. The compressors were: E/CO-3, [15]; E/CO-4, [12]; KOM-130, (compressor at the
Institute of Jet Propulsion and Turbomachinery); NASA Rotor 37, e.g. [38] and [10]; first stage of
BBC/Sulzer, [19].

From these basic configurations two data sets were created. The first data set contained 132
derived geometries for each of the compressors. Prior to varying the 43 different geometrical param-
eters, a minimum and maximum geometry configuration for each of the compressors was determined.
Subsequently, every single parameter adopted the minimum, basic and maximum configuration value
independently for all three configurations and five compressors. Hence, the first data set consisted of
660 varying compressor geometries. The parameters that were varied (some of them independently
for the hub-, mean- and tip position as well as for the leading- (LE) and trailing edge (TE)) are
airfoil type, chord length, max. blade thickness, blade angle, axial width, LE/TE thickness, hub
to tip ratio, hub radius, and blade number. The second data set was created in much the same
way, yet only two configurations were the basis for a further variation of geometrical parameters.
These two configurations consisted of mean values between the minimum and basic configuration
and between the basic and maximum configuration. The second data set was therefore made up
of 440 varying compressor geometries. Since the compressor maps computed for every compressor
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geometry contained 15 operating points each, the total number of the first set added up to 9900
tuples and the second data set contained 6600 tuples. The distinction between the two data sets was
necessary to point out the importance of widely covering the input data space to allow the MLP to
generalize. This issue will be discussed in detail in Sec. 4.3.

3.2. Applied loss models

The loss models with significant impact on the total loss coefficient (according to the results pre-
sented by the AXIALTM performance calculations) which were applied for the computations are as
follows.

“Blade Profile Loss” model by C. C. Koch and L. H. Smith, Jr. (1976) [26]: This model accounts
for “[. . . ] blade profile losses due to surface diffusion and trailing edge thickness [. . . ]” and thus
determines the total loss coefficient ω∗T at minimum loss incidence i∗. It is based on compress-
ible boundary layer theory and is an extension of the low-speed correlation presented by Lieblein
(1956/1959) [27, 29] “[. . . ] into the Mach number and Reynolds number regions that are of interest
to compressor designers.” The profile loss is predicted by application of the suction surface diffu-
sion ratio which is associated with the cascade geometry, blade thickness, annulus contraction and
compressibility effects as well as corrections taking the Mach number, Reynolds number and stream
tube height ratio into account.

“End-Wall Loss” model by C. C. Koch and L. H. Smith, Jr. (1976) [26]: This model presents an
approach to predict efficiency decrease resulting from end-wall effects. For that purpose two prop-
erties of an end-wall boundary layer, the displacement thickness and the tangential-force thickness
are related to the according efficiency loss. In this manner the displacement thickness accounts for
the resulting mass flow deficit and the tangential force thickness represents the reduction of the
tangential component of the blade force, due to the presence of the end-wall boundary layer.

“Off-Design Loss” model (AGARD Report No. 745 (1987) [9]): The total loss coefficient for
off-design loss is determined by application of simple polynomials plotted as an array of curves,

Table 1. Measures of the loss models

Variables (Loss Models) Abbreviation

Maximum Blade Thickness tmax
Chord Length chord
Radius (in) R.in
Radius (out) R.out
Camber Angle (in) Phi.in
Camber Angle (out) Phi.out
Blade Angle (in) Beta_B.in
Blage Angle (out) Beta_B.out
Blade Height (in) H.in
Blade Height (out) H.out
Solidity Solidity
Stagger Angle StaggerAng
Annulus Area (in) Aann.in
Annulus Area (out) Aann.out
Blade Axial Gap BladeAxGap_Basis
Foil Type FoilType
Roughness Roughness
Relative Flow Velocity W
Reynolds Number RE
Relative Mach Number (in) Mrel.in
Incidence Angle Inc
Deviation Angle Dev
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based on empirical data. While data shows that the airfoil geometry and the inlet Mach number
have significant impact on the total loss coefficient at off-design incidence, the cascade geometrical
parameters have no systematic influence. Hence, the polynomials present the difference between the
total loss coefficient and the minimum total loss (ωT − ω∗T ) against the difference of the incidence
angle and the minimum loss incidence (i− i∗), in respect of the airfoil and the inlet Mach number.

The angles “incidence” at minimum loss i∗ and “deviation” at minimum loss δ∗ used in the loss
models were calculated according to Lieblein (1960) [28]. They substitute the actual flow angles
at the blade and allow a comparison between different airfoils. It is necessary to say that these
variables were considered as possible input variables and not to be determined by the MLP model,
to reduce the model’s complexity.

A summary of measures applied in these loss-models to determine the total loss coefficient is
displayed in Table 1. Hence, these measures complemented with all other geometrical parameters
were considered possible input variables for the MLP model development.

After the two data sets were computed a plausibility check was performed removing all tuples that
had a total pressure loss coefficient not within the boundaries indicated by the AGARD Advisory
Report No.745 [9] (0 < koverall < 0.4). This reduced the first data set to 6988 tuples (from 9900)
and the second data set to 4868 (from 6600).

4. PROCEDURAL METHOD FOR MODEL DEVELOPMENT

After a sufficient volume of data is available for model development, the presented procedural
method is performed, see Fig. 2. First, the dimension of the input vector is reduced by reduction

Fig. 2. Procedural method for model development
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of the explanatory variables to a crucial amount by means of a stepwise forward regression. There-
after, the data is standardized to a predefined interval, to improve the training process in respect
of computing time and the achieved model quality. These first two steps are referred to as data
preprocessing which is necessary to enable an efficient network development. The next step is to
divide the data volume into training-, test- and validation data. This allows an evaluation of the
training process, leading to the achievement of an optimum MLP model. In a final step a large
number of network trainings need to be performed with varying initial weights, learning constants
and neuron quantities to determine the optimum network topology and minimal achievable error
and furthermore assure the ability of generalization.

The detailed theoretical background and the procedural approach of this method for model
development will be presented in the following.

4.1. Data preprocessing

Stepwise regression

The following stepwise regression model (forward approach) presents a statistical approach to select
explanatory variables by means of an automatic procedure, [18, 36, 37]. Based on the linear regression
it is a classical method in statistics to model the relation between the independent variables x0,1,...,n
and the dependent variable ŷ:

ŷp = yp + ǫp = β0 +
N∑

n=1

(βnxn,p) + ǫp. (4)

For this purpose the regression parameters ~β = β0,1,...,n are determined in the manner that the
remaining error ǫp (residual) between the actual dependent variable ŷp (teacher) and the calculated
dependent variable yp is minimized, by partial differentiation, for every tuple p. This approach
follows the method of least squares. To evaluate how well a regression model approximates the
given dependent variable, the coefficient of determination can be applied. In consideration of the
variance decomposition, the coefficient of determination accounts for the explained variance y of
the model in respect of the total variance of ŷ. However, since the coefficient of determination does
not provide any information on the significance of the features selected or possible correlations
between the various input variables it does not support the feature selection. Hence, the stepwise
regression applies a sequence of F-tests to check statistical significance. This test allows selecting
features by an automatic procedure. The procedure starts with no variables included in the model
and determines the first variable to include under consideration of the coefficient of determination.
In the following step a further variable is added and a test of significance is performed to prove the
significance of the included variable. Furthermore, the remaining variables are tested in respect of
the potential to exclude individual variables from the model, without increasing the residual sum of
squares. In this manner the potential explanatory variables are considered one by one to verify their
impact on the dependent variable. Restrictively, it has to be mentioned that stepwise regression
cannot substitute knowledge in the accordant field of expertise. It can only support the user by
reducing the dimensionality of the input vector. First of all the degree of the polynomial for the
regression model needs to be predefined (in this research the degree was unity). Without a doubt
this constraint leads to an insufficiency concerning the ability for automatic feature selection, due
to simultaneously defining the relation between dependent and independent variables a priori. And
secondly, the hypothesis created and the tests of significance have to be performed with the identical
set of data if the data volume is too small to randomly partition it into two subsets. This aspect
can possibly lead to relations found by chance instead of by evidence.

In this research work stepwise regression was applied by means of the SPSSTM data-mining
tool ClementineTM (meanwhile PASW ModelerTM) [21], to select the input parameters for the
MLP models predicting the total loss coefficient and the total to total pressure ratio. The results
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presented for determination of the total to total pressure ratio were adopted one-to-one as an input
vector for the MLP model development. Yet, the results achieved to predict the total loss coefficient,
were compared to the explanatory variables identified on the basis of the loss models which were
applied for data generation. Hence, two different sets of explanatory variables were compiled; the
first following the findings of the stepwise regression but excluding 4 of the 17 most significant
parameters due to scientific considerations and the other excluding 9 parameters and adding 5
variables not determined by the stepwise regression although considered essential for an optimum
model. MLP models with the two different input vectors were developed to evaluate the potential
of stepwise regression for feature selection.

4.2. Normalizing the data

In terms of preprocessing, normalizing the data was proven to be helpful or even necessary, depending
on the transfer function applied to the networks neurons. If sigmoid transfer functions are applied
for the neurons of the output layer, normalizing is obviously necessary to assure that the predicted
data lies within the co-domain of the transfer function. But Barron (1991) [2] and Jansen (1995) [23]
could prove that normalizing the output data is recommendable by all means. Also regarding the
input, normalizing the data improves the model and reduces computing time. This is not only due
to removing the problem of initial weights dependence on the input scale to avoid saturation with
sigmoid transfer functions. Normalizing also reduces the chance of disrupting the training process
due to getting caught in local sub optima. For MLP networks no rules regarding the normalization
can be put forth, yet indicators can be stated. The domain of a sigmoid transfer function is an
indicator which, in consideration of the initial weights and the number of input values, helps to
declare the range for normalized values to avoid saturation. That is to say that the values should
not add up to an input netj that lies within the saturation domain of the graph.

Next to the applied transfer function also the levels of measurement indicate how to normalize
(or code) the data and how to present a feature to the MLP in training, respectively, [30].

Nominal measurement. The parameter values of categorical variables are presented to the
network by a “one-of-n” coding or equilateral coding. For the first approach each parameter value
activates a different neuron; the latter approach is similar, yet one parameter value does not activate
any neurons.

Ordinal measurement. n-1 input nodes are necessary for n parameter values of an ordinal
variable. According to the order of the attribute presented to the MLP, between zero and all neurons
are activated.

Interval/ratio measurement. The parameter values are normalized to a defined interval and
presented to the network via a single neuron. While there are several algorithms for normalizing
the interval measured data, in some cases it might be suggestive to maintain the zero point for the
ratio measured data.

The normalization performed in this research work was performed irrespective of the level of
measurement (airfoil is a categorical variable), due to no noticeable improvement of the MLP models,
and to reduce computing time. The normalization was executed by the following equation:

V ∗ =
V ∗max − V ∗

min

Vmax − Vmin

(V − Vmin) + V ∗min. (5)

In this equation V is the variable that is normalized, and max and min indicate the two extreme
values of the variable. The variables indicated with ∗ determine the interval after normalizing

In this research work the ∗ interval was set to [−1.4; 1.4] for the input variables and [−0.9; 0.9]
for the output variables.
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4.3. Partitioning the data

Two separate data sets were created (in the following termed approach I) for training and testing
(+validation) purposes. Test data is necessary to verify the models capability of generalization (the
models’ ability to represent patterns not presented during training), [5, 7, 30]. The training data
includes the performance computations for 660 differing compressor geometries yielding in 9900
(6988 after plausibility check) training patterns under consideration of 15 loading levels per geom-
etry. The test data includes the performance computations for 440 differing compressor geometries
adding up to 6600 (4868 after plausibility check) test patterns which were divided into test and
validation data by a ratio of 9:1 subsequently. The validation data set is necessary, due to the test
data slightly introducing to the MLP model by means of applying the graph of the validation error
in the network development procedure (illustrated in the following chapter). Hence, the additional
validation data is indispensable to assure a purely independent model validation. In a second ap-
proach (in the following termed approach II) the two data sets were combined and the training,
testing and validating datasets were compiled randomly at a ratio of 67:30:3. A comparison of the
models trained with these differently compiled data sets shows the impact of a wide coverage of the
input space.

Please note: Bishop (2006) [6] suggests cross-validation for model validation if data volume is
highly limited. This approach requires partitioning the patterns P into S fractions (with S equaling
P at max (leave-one-out technique)). S − 1 fractions are employed for training while the remaining
fraction validates the trained model. This procedure is repeated S times to validate in respect of
all fractions. Although this method does not assure a purely independent validation it presents a
powerful method if the data volume is highly limited as for measured compressor data or CFD
computed data.

5. DEVELOPING THE MLP

To the course of developing an MLP model several properties need to be defined. The network
structure has to be determined in respect of the applied transfer functions and the network topology
(number of neurons for the hidden layer(s) as well as the number of layers). Additionally the most
suitable learning constant and weight initials need to be identified.

Three different MLP models were developed using the Java based version of the Stuttgart Neural
Network Simulator (JavaNNS ) [13, 41]), to predict the total loss coefficient, the total to total
pressure ratio and general geometrical parameters.

The first step when developing a MLP model is defining which transfer functions to apply for
neurons of hidden and output layer. Although various functions can be applied, the following con-
siderations will indicate potential advantages for particular functions. For the neurons of the hidden
layer the hyperbolic tangent has a great advantage compared to the logistic transfer function when
employing the Backpropagation training algorithm. Since the weight adaption responds to the out-
put of a node (oj) multiplicatively in training, even a highly negative activation leads to an adaption
with the hyperbolical tangent, while the adaption converges to zero for the logistic transfer func-
tion. Hence the hyperbolical tangent can reduce computing time significantly when applied. For the
neurons of the output layer a linear transfer function can additionally reduce computing time. If a
teacher is presented with a parameter value close to saturation, large weight values are necessary
to represent this output. Yet, when applying a sigmoid transfer function, values close to saturation
lead to a very time-consuming weight adaption in the training process, due to the marginal slope
of the curve progression in this area. Thus, a linear transfer function for the neurons of the output
layer can reduce computing time additionally. The MLP models developed in this work uniformly
employed the hyperbolic tangent for the neurons in the hidden layers and linear transfer functions
for the neurons of the output layer.

The second step is to determine the quantity of neurons within the hidden layer(s) and the amount
of weights, respectively. These define the plasticity of an MLP, which corresponds to the MLPs ability
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to model the given function in respect of complexity and stored information, [34]. Hence, too many
neurons lead to an overfitting of the model in training while too few nodes anticipate that the MLP
is able to learn the function enclosed in the data. Since the complexity of the function is generally
unknown the amount of nodes has to be estimated or determined empirically. Goerke (1997) [16]
suggests a purely empirical approach starting with one hidden layer and 10-20 hidden neurons.
Following, neurons are added stepwise until an optimum is found. However, Masters (1993) [30]
suggests the “geometric pyramid rule” to determine the number of neurons (H) for a model in
respect of the number of hidden layers and the dimension of the input (N) and output vector (M).
For a single hidden layer:

H =
√
N ·M. (6)

And for two hidden layers:

H1 = M ·
(
N

M

) 2

3

, (7)

H2 = M ·
(
N

M

) 1

3

. (8)

However, the authors point out that this approach can underestimate the necessary networks
plasticity if the input or output vector is of low dimensionality. When increasing the plasticity of a
network, the remaining initial weights are suggested to be held constant if single neurons are added
to a network, to allow comparison. To determine if a network topology offers a sufficient plasticity
without supporting overfitting, the error graph can be employed. Displaying the sum of square error
against the epoch (single cycle in the teaching process in which all patterns are presented to the
network) for the training and test data, a comparison of the two graphs allows to verify the networks
generalization and its ability to model the function. In this research work the application of the
“geometric pyramid rule” led to an underestimation of the necessary networks plasticity in this
research. Therefore a steady capacity enhancement was performed, leading to the three optimum
network topologies consisting of 10 to 19 hidden neurons divided onto two layers. MLP networks
with two hidden layers generally led to a better performance in respect of the problems dealt with
in this work. Furthermore, investigations showed that the optimum was not restricted to an explicit
quantity but was rather ambiguous in a range of ±2 − 3 nodes. As a resume of the investigations
into network plasticity, it can be stated that a combination of the geometric pyramid rule (for initial
network capacity determination) and a stepwise capacity enhancement proved to be best.

Figures 3, 4 and 5 display the error graphs for three different network topologies and the according
capacities. It clearly reveals that while the MLP displayed in Fig. 3, as a single hidden layer network,
has a too low plasticity to sufficiently model the function. The network in Fig. 4 leads to overfitting
which causes an increased error in the test data compared to training data. Figure 5 shows the
error graph for the network with an optimum topology determined for the respective input and
output vector. The training process was discontinued after 2400 epochs (early stopping) to avoid
overfitting. Hence this topology also indicates a plasticity too large; still topologies with reduced
neuron quantities lead to impairment rather than improvement. Early stopping is always an option
if the optimum network plasticity cannot be determined precisely. It demands to discontinue the
training process as soon as the testing error graph has reached its minimum.

Before a network can be trained with the according data, the weights need to be initialized
randomly. The initial weights constitute the initial function modeled by the MLP. Hence, they are
essentially responsible for the success of the training process, due to defining the initial network
error and the adaption necessary to find an optimum. For reasons of saturation and the associated
computation time, they should also be limited to a small interval (e.g., [−0.3; 0.3]). Numerous iter-
ations with random weights are generally necessary to achieve an optimum model (for the network
to find a sufficient minimum to the error function).
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Fig. 3. Error graph 13-21-1 network topology

Fig. 4. Error graph 13-15-14-1 network topology

Fig. 5. Error graph 13-10-8-1 network topology
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The subsequent training process can be performed either in the manner of batch learning or single
step learning. While the weight adaption is carried out after presenting all training patterns to the
network for batch learning, an adaption is carried out after the presentation of every single pattern
for single step learning. The great advantage of single step learning is a significant computing time
reduction, due to increasing the iterations of weight adaption by the factor P compared to batch
learning. However, if single step learning is employed, the patterns need to be shuffled randomly
before every epoch to ensure efficient learning, especially if the data volume is little, [16]. In this
work the training process was performed by means of single step learning with random pattern
shuffling.

Furthermore, the learning constant η needs to be defined for the training process. It defines
the step length of a single iteration toward the negative direction of the gradient. If the constant
is chosen to high an optimum might be missed during training, yet if the constant is set to low,
the training process might end up in a sub-optimum or even be disrupted on a plateau of the
error function. Investigations showed training improvement when decreasing the learning constant
stepwise. For the work at hand the initial value was set to 0.03−0.04 and was reduced stepwise to
a value of approx. 0.01.

To avoid possible excessive oscillations in narrow minima of the error function or disruption of
the teaching process in sub-optima, several sources suggest Backpropagation with momentum term.
However, according to the findings of the present investigations, initializing the weights iteratively
was more efficient than adjusting the momentum term and led to equal results.

6. RESULTS

To evaluate the achieved models three statistical measures are employed for each of the three data
sets: the mean magnitude of the relative error (MMRE as the measure of central tendency) and
two measures of dispersion, the mean absolute deviation (MAD) of this error and the α = 99% -
percentile (P99) of the error distribution, [14]. In this manner statements can be made concerning
the MLP’s ability to model the according function, its ability of generalizing and the reliability of
the model.

6.1. MLP model to predict the total loss coefficient

The model developed to predict the total loss coefficient is a 13-10-9-1 MLP. This network con-
figuration was trained with patterns of two different input vectors (No. 1 and No. 2) as displayed
in Table 2 and with two different compilations of training-, test- and validation data (approach I,
approach II). The results displayed in Table 3 clearly reveal that the MLP trained with the indepen-
dent variables according to feature selection No. 1 is less accurate in loss coefficient prediction than
the model trained with feature selection No. 2. Hence the stepwise regression did find several of the
most significant independent variables but yet not all. This comparison reveals that a statistical
approach cannot substitute scientific expertise but can support feature selection. The reason for
error values of the same order is made clear if correlations among the input parameters are consid-
ered. Although only 8 features were equal between the two input vectors (No. 1 and No. 2), several
more were strongly correlated. With 3.6% the achieved MMRE was acceptable and the verification
with the test and validation data proved reliability. Still, the high value of the percentile P99 (26%)
reveals that several patterns could not be represented well by the MLP model. This irregular per-
formance can be understood if it is kept in mind that about 30% of the training data was dismissed,
due to the plausibility check. Therefore the density of the data space was very irregular and the
MLP could not adapt to all patterns equally well in the training process, since some geometries were
presented 15 times (once for every operating point) per epoch and others only once (14 patterns
dismissed, due to plausibility). Also a comparison of the results achieved with the two different
data compilations indicates the importance of training data covering the input space. The model
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Table 2. MLP model to predict the total loss coefficient

Sequence of inclusion Exclusion of input variable No. 1 input variable No. 2

of input variable after variable by (K_overall) (K_overall)
multiple regression insignificance

(t_mx/Chrd)(m)∼E.1 (t_mx/Chrd)(m)∼E.1 (t_mx/Chrd)(m) ∼E.1
Inc(m)∼E.1 Inc(m)∼E.1
Mrel(h).in∼E.1 Mrel(h).in∼E.1 Mrel(h).in∼E.1
R.out∼E.1 R.out∼E.1 R.out∼E.1
R.in∼E.1 R.in∼E.1 R.in∼E.1
inc-inc_opt inc-inc_opt inc-inc_opt
Solidity(m)∼E.1 Solidity(m)∼E.1 Solidity(m)∼E.1
Asp_Ratio∼E.1 Asp_Ratio∼E.1 Asp_Ratio∼E.1
Solidity(h)∼E.1
Widt_Thrt(m)∼E.1 Widt_Thrt(m)∼E.1
m.norm∼D m.norm∼D m.norm∼D
M-relativ
N-relativ
Hin/Hout_E.1 Hin/Hout_E.1
Mrel.(t)∼E.1
Athroat∼E.1 Athroat∼E.1

m.norm∼D
BetaB(h).in∼E.1 BetaB(h).in∼E.1

Re(m).in∼E.1
StaggerAng(m)∼E.1
Profil
Aann.out∼E.1
Aann.in∼E.1

Table 3. Results of MLP model for the prediction of the total loss coefficient

model total loss coefficient (K_overall)

selected input variables No. 2 No. 1
network topology 13-10-9-1 13-10-9-1 13-10-9-1
data partition approach I approach II approach I
data set error

mean magnitude of the relative error [%] 3.6435 3.7296 6.8583
training data mean absolute deviation of the error [-] 3.0738 3.0742 5.4539

alpha 99% - percentile P99 of the error [%] 26.6217 21.5970 39.4445
mean magnitude of the relative error [%] 3.4742 4.0031 6.3647

test data mean absolute deviation of the error [-] 2.7287 3.3166 5.3556
alpha 99% - percentile of the error [%] 21.6575 23.9486 35.2057
mean magnitude of the relative error [%] 3.1491 4.4384 6.0244

validation data mean absolute deviation of the error [-] 2.4312 3.6529 4.8069
alpha 99% - percentile of the error [%] 18.6363 31.8824 35.3407

trained with data from approach I has a superior ability to generalize indicated by lower errors for
test and validation data. Not only the MMRE but especially the MAD of this error and the P99

of the error distribution are far lower. That is because while in approach I all test and validation
data was within the boundaries of the training data, the training data in approach II was picked
randomly and hence some of the tuples in the test and validation data was out of the trained range.
These findings are in agreement with the statements found in the literature that MLPs are able to
interpolate very well while having difficulties to extrapolate.
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Fig. 6. Results of total loss coefficient by the AXIALTM solver and the MLP model

To exemplify the achieved results the total loss coefficient determined by AXIALTM and the
coefficient predicted by the MLP model are displayed in a graph against the mass flow for three
constant speed lines (60%, 80% and 100%) for the basic geometry of the Compressor KOM-130, see
Fig. 6.

6.2. MLP model to predict the total to total pressure ratio

The model developed to predict the total to total pressure ratio is a 13-5-5-1 MLP. The results
displayed in Table 4 show very high prediction accuracy. And again the test and validation data
indicate reliable results. The fact that the ratio of the MMRE to the P99 percentile is comparable
to the total loss coefficient model, confirms that irregular data density is the cause.

Table 4. Results of MLP model for the prediction of total to total pressure ratio

model total pressure ratio (PR_tt)

network topology 13-5-5-1
data partition approach I
data set error

mean magnitude of the relative error [%] 0.8216
training data mean absolute deviation of the error [-] 0.6999

alpha 99% - percentile P99 of the error [%] 5.8005
mean magnitude of the relative error [%] 0.9798

test data mean absolute deviation of the error [-] 0.8870
alpha 99% - percentile P99 of the error [%] 7.4345
mean magnitude of the relative error [%] 0.9235

validation data mean absolute deviation of the error [-] 0.8193
alpha 99% - percentile P99 of the error [%] 7.6526

Figure 7 displays the compressor map of the measured data in comparison with the AXIALTM

computations and the MLP model predicted values for three speed lines (60%, 80% and 100%)
for KOM-130. The authors would like to note that the agreement for the basic geometry of the
KOM-130 is above average prediction model performance.
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Fig. 7. Compressor map of KOM 130 comparing the AXIALTM solver results and the values predicted by
the MLP model

6.3. MLP model to predict basic geometrical parameters

The results achieved with the MLP model to predict basic geometrical parameters are not quite
uniform. The results for the three data sets can be gathered from Table 5. While the radius can
be predicted with high accuracy (MMRE = 2.4%), the error for blade height prediction is more
than twice as high (MMRE = 5.6%). The explanation is reckoned to lie in the mathematical
property of the modeled functional dependency. Since output and input of the actual functional
dependency was exchanged to train the MLP, the performed approximation is of inverse kind. Yet,
to allow the modeling of an inverse function, the actual function needs to be bijective. While it
can be assumed that the function is surjective, it is quite likely that it is not injective within the
whole domain for some input parameters, which would lead to an error increase. To respond to this
assumption doubtlessly, an extensive investigation on the actual function is inevitable but no part
of this research.

Table 5. Results of the three data sets (training, test and validation data)

model geometrical variables

data partition approach I
topology 6-9-9-5

output variables R.In
t_mx

Chrd
Solidity Chord Hblade.in

(m) (m) (m)

data set error

training mean magnitude of the relative error [%] 2.4218 2.8529 4.5034 2.9525 5.6207
data mean absolute deviation of the error [-] 1.8053 2.3634 4.1521 2.4267 4.5178

alpha 99% - percentile P99 of the error [%] 11.9634 18.6227 27.2635 18.3575 39.7277
test mean magnitude of the relative error [%] 2.8035 2.1868 3.6518 2.5099 5.8016

data mean absolute deviation of the error [-] 1.7676 1.8435 2.8553 1.9173 4.1635
alpha 99% - percentile P99 of the error [%] 11.1914 12.1432 20.4341 13.0829 31.2635

validation mean magnitude of the relative error [%] 2.6854 2.1613 3.7071 2.5010 5.5536
data mean absolute deviation of the error [-] 1.6063 1.8888 2.8569 1.9413 3.7340

alpha 99% - percentile P99 of the error [%] 10.6027 11.8212 19.7331 12.2484 25.9722
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7. CONCLUSION

The objective was to present a concept for ANN model development in respect of turbomachinery
design purposes and under consideration of the high dimensional input space as well as computing
time reduction. Hence, this paper contributes to assessing the potential of ANNs in the field of
turbomachinery. The approach was to evaluate different procedures by means of a large data volume
computed with the mean line analysis tool AXIALTM on the basis of five empirically tested single
stage compressors. The results show that stepwise regression can support feature selection, yet
cannot substitute knowledge in the respective field of expertise and application. Further research is
needed to investigate the potential of feature selection and feature extraction methods. The MLP
models developed show in average good performance with high accuracy. The suggested stringent
procedure yields optimum generalization of the MLP models. The error distribution indicates the
importance of high data density in an evenly covered mathematical space to achieve good overall
performance with a narrow error distribution. The results presented in this paper applying MLPs
to predict basic geometrical parameters indicate that further investigations into the application of
ANNs as a design tool for turbomachinery need to be conducted under consideration of the inverse
mathematical problem.
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A. VARIABLES ABBREVIATIONS

Aann Annulus Area

Asp_Ratio Aspect Ratio

Athroat Area Throat

BetaB Blade Angle

Chrd Chord

Dev Deviation

H Number of neurons in
the hidden layer

H.in Blade Height (in)

H.out Blade Height (out)

(h) Hub Position

in Inlet

inc; i Incidence

K_overall;ω Total Loss Coefficient

le Leading Edge

M Number of neurons in
the output layer

M.rel Relative Mach Number

m.norm Mass Flow

(m) Medium Position

max;mx Maximum

min Minimum

N Number of neurons in
the input layer

n Speed Line

opt; ∗ Optimum

out Outlet

Phi Camber Angle

Re Reynolds Number

rel Relative

StaggerAng Stagger Angle

t Thickness

(t) Tip Position

te Trailing Edge

Thrt Throat

W Relative Flow Velocity
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