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The recurrent approach constructed via the stochastic central difference (SCD) is a very fast method for
analyzing non-stationary random responses. However, the computational results depend to a great extent
upon the discrete time-step size. A new recurrent approach is proposed in this report. It is based on the
theory of linear differential equations. Theoretical analysis shows that this algorithm is unconditionally
stable for all damped systems. Two examples show that the proposed approach is not sensitive to the
time-step.
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1. INTRODUCTION

Random phenomena exist throughout the physical world. At first these apparent flukes caught the
interest of only a few physicists, including Einstein [1]. However, after a seminal conference orga-
nized by Crandall in 1958, related studies blossomed in the engineering community. Non-stationary
random response analysis was just one branch of random phenomena research that arose as a con-
sequence. Since that conference, many approaches have been introduced or developed in order to
analyze the non-stationary random response [2, 3]. Most of them are time-consuming and are not
feasible for projects that require handling thousands of degrees of freedom. Such large-scale projects
occur indeed frequently in engineering, and can be solved efficiently with the finite element method
or the finite difference method provide that only the deterministic aspect is interested. As modern
design developing, the non- deterministic aspect must be considered also. Therefore, finding effi-
cient approaches to non-stationary response analysis has been enticing researchers from relevant
communities for decades.

Originally, the finite difference method was used to solve a deterministic ordinary differential
equation (ODE) numerically. It was introduced into the random field in 1986 by Prof. To [4], and
is called the stochastic central difference (SCD) method. Analogies to the deterministic case, the
stochastic Houbolt method [5] and the stochastic Newmark algorithms, were also proposed and
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investigated [6, 7]. From a computational efficiency point of view, these finite difference approaches
have advantageous features compared to other methods.

However, when applying the SCD method, the time-step must be chosen with care [4–6, 8, 9].
Prof. To et al. have already suggested some tricks, such as adaptive time schemes [10] and time
co-ordinate transformation [11], to relax the strict requirements of choosing the time-step. Despite
several efforts, the choice of time-step is still unsatisfactory. For example, the time-step in a recent
paper by Chen et al. is still determined by empirical formulas [12].

In this report, a recurrent approach for analyzing non-stationary responses is presented. This
approach is based on the theory of linear differential equations. Its computational efficiency is
comparable to that of the SCD method, but it is not sensitive to the time-step when the time-step
is smaller than a certain threshold. This is instantiated by two numerical examples.

2. RECURRENT RELATIONSHIP

The governing equation of a linear time invariant system excited by the modulated white noise is

{ẏ} = [A] {y} + [B(t)] {w(t)} . (1)

Here {y} is the n-dimension response vector. {w(t)} is a m-dimension excitation vector. The entry
of {w(t)} is assumed as the white noise with the unitary power, and independent of each other.
[B(t)] is an n ×m modulating matrix, whose entries are deterministic functions of the time t. [A]
is an n× n constant matrix determined by the system only.

For an individual realization of the random excitation process, Eq. (1) is a deterministic
ODE set with constant coefficients. The relationship between the responses at instant t1 and
t2 (Δt = t2 − t1 ≥ 0) can be determined in light of the theory of linear ODEs. Denoting that
[H] = exp ([A] Δt), [H(t)] = exp ([A] t), we have

{y(t2)} = [H] {y(t1)}+

∫ t2

t1

[H(t2 − �)] [B(�)]{w(�) d�} . (2)

Based on Eq. (2), the mean square response [Ry(t2)] = E
[

{y(t2)} {y(t2)}
T
]

is as follows

[Ry(t2)] = [H] [Ry(t1)] [H]T + [H]

∫ t2

t1

[Ryw(t1, �)] [B(�)]T [H(t2 − �)]Td�

+

∫ t2

t1

[H(t2 − �)][B(�)] [Rwy(�, t1)] d� [H]T

+

∫ t2

t1

∫ t2

t1

[H(t2 − �1)][B(�1)] [Rw(�1, �2)] [B(�2)]
T [H(t2 − �2)]

Td�1d�2 .

(3)

Here Ryw(t1, t2) = Rwy(t2, t1) is the cross correlation between y(t1) and w(t2). Obviously, {y(t1)}
is determined by only the excitation w(t) before t1. In light of the property of the white noise,
Ryw(t1, �) for � ∈ (t1, t2] equals to zero. Thereby, both the second term and third term in Eq. (3)
vanish.

According to the assumption of the independence among the entries of w(t), [Rw(�1, �2)] can be
written as

[Rw(�1, �2)] = E
[

{w(�1)}{w(�2)}
T
]

= 2��(�1 − �2)Im×m , (4)

where Im×m is an identity matrix, and �(�) is the Dirac delta function. Thus, the fourth term at
the right-hand side of Eq. (3) is

∫ t2

t1

∫ t2

t1

[H(t2 − �1)][B(�1)] [Rw(�1, �2)] [B(�2)]
T [H(t2 − �2)]

Td�1d�2

=

∫ t2

t1

∫ t2

t1

[H(t2 − �1)][B(�1)]2��(�1 − �2)Im×m[B(�2)]
T [H(t2 − �2)]

Td�1d�2 .

(5)
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In light of the sampling property of the Dirac function

∫ t2

t1

∫ t2

t1

[H(t2 − �1)][B(�1)] [Rw(�1, �2)] [B(�2)]
T [H(t2 − �2)]

Td�1d�2

= 2�

∫ t2

t1

[H(t2 − �)][B(�)][B(�)]T [H(t2 − �)]Td� .

(6)

Substituting Eq. (6) into Eq. (3) leads to

[Ry(t2)] = [H] [Ry(t1)] [H]T + 2�

∫ t2

t1

[H(t2 − �)][B(�)][B(�)]T [H(t2 − �)]Td� . (7)

It is worth noting that this second-order moment relationship does not have anything to do with
the complete information about the probability structure of the excitation. This equation does not
contain moments higher than the second order. That is to say, Eq. (7) is self-closed.

However, these properties can not be extended automatically to analyze the stochastic response
of a nonlinear system. Generally, the nonlinear deterministic system can be linearized with sufficient
precision in a short time interval. We may wish to retain the above properties in the nonlinear case,
but this is not possible. For a nonlinear system excited by the stochastic processes, the linearization
is usually based on the ensemble equivalence, such as one calculated by the statistical linearization
method. This class of equivalence often involves the moments at t1 or t2 whose orders are greater
than the second order. Unfortunately, the moment closure scheme necessitates the morphology
assumption of the response probability distribution [13].

3. ALGORITHM IMPLEMENTATION

Since Eq. (7) is deterministic, we can apply deterministic discrete methods to it. The second term at
the right-hand side is an integral. If [B(t)] is a simple function, such as an exponential or triangular
one, then this integral can be obtained explicitly. Sometimes, [B(t)] is very complicated, particularly
in cases where [B(t)] is estimated from recorded data. That is why a numerical method is more
appropriate. In this report, the trapezoidal scheme is used. It can be verified that

[Ry(t2)] ≈ [H]
(

[Ry(t1)] + �Δt[B(t1)][B(t1)]
T
)

[H]T + �Δt[B(t2)][B(t2)]
T . (8)

If the error of [H] can be ignored, the computational error of Eq. (8) comes from the trapezoidal
integration only.

The remaining issue is computing [H] = exp([A]Δt), the matrix exponential. This is a classic
problem in linear system theory [14, 15]. In 1978, Van Loan et al. listed nineteen ways of computing
the exponential of a matrix [14]. New approaches are still being developed [15]. In the vibration
community, [H] is conventionally computed from the eigenvalues and eigenvectors of [A] by the
complex modal theory. Computing [H] by the precise time-integration has been receiving much
attention recently [16]. In the ensuing numerical examples, we employ the built-in MATLAB function
expm directly, which uses the Padé approximation with scaling and squaring [14].

Provided with the accurate value of [H], the initial variance matrix [Ry(0)], and the matrix [H],
the variance at any instant can be computed by Eq. (8).

The vibration equation of an n-degrees-of-freedom system is

[M] {ẍ}+ [C] {ẋ}+ [K] {x} = [G(t)] {f(t)} , (9)

where [M], [C] and [K] are the mass, damp and stiffness matrix respectively. [M] and [K] can be
obtained by the finite element method. [C] is often taken as the proportional damping matrix, but
no limitation is imposed here. {f(t)} is the white noise vector, whose components are independent
of each other, and of the unitary power. [G(t)] stands for the envelope of the stochastic excitation.
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After introducing the state vector {y} =
{

xT , ẋT
}T

, Eq. (9) can be reformulated as:

{ẏ} =

[

0n×n In×n

−M−1K −M−1C

]

{y} +

[

0n×n

M−1G

]

{w(t)} . (10)

Correspondingly, the matrices in Eq. (1) are as follows:

{A} =

[

0n×n In×n

−M−1K −M−1C

]

{y} , {B} =

[

0n×n

M−1G

]

, {w(t)} = {f(t)} .

4. STABILITY ANALYSIS

Assuming that [H] is accurate, and the error matrix of [Ry(t)] at t = t1 is ["""]1. According to Eq. (8),
we have

[Ry(t2)] + ["""]2 = [H]
(

[Ry(t1)] + ["""]1 + �Δt[B(t1)][B(t1)]
T
)

[H]T + �Δt[B(t2)][B(t2)]
T ,

where ["""]2 is the error matrix of [Ry(t2)]. The above equation can be simplified as follows

["""]2 = [H]["""]1[H]T . (11)

Regarding the Frobenius matrix norm, we have:

∥

∥["""]2
∥

∥

2
=

∥

∥[H]["""]1[H]T
∥

∥

2
⩽

∥

∥H
∥

∥

2

2

∥

∥["""]1
∥

∥

2
= �2

1

∥

∥["""]1
∥

∥

2
. (12)

Here �1 is the greatest singular value of [H], which is the pivotal index to the algorithm stability.
It can be argued that �1 < 1 as follows.

For a damped system, it can be proved that 2n singular values of [H] are n-pairs of conjugate
complex numbers (here, we ignore the infrequent case of coincident modal frequencies). The 2n
values are exp(−�iΔt) and exp(−�∗

iΔt) (i = 1, 2, . . . , n), where �i is the complex modal frequency
of the ith order. All stable linear systems have positive damping. This means �i > 0, that is to say,
exp(−�iΔt) ⩽ 1. Thus �1 = max

[

∣ exp(−�iΔt)∣
]

< 1.
Eq. (12) shows that the error matrix norm should not be amplified. Thus the recurrent formula

Eq. (8) is unconditionally stable. If the computational error of [H] is so significant that the ap-
proximate value of �1 is greater than 1, then Eq. (8) may be unstable. Fortunately many accurate
approaches to compute [H] = exp([A]Δt) have been constructed [14, 15].

5. NUMERICAL EXAMPLES

5.1. Example 1

The first example is based on a one degree-of-freedom system as follows

ẍ+ 2�!nẋ+ !2

nx = exp(�t)w(t) . (13)

Here � and !n are the system damping ratio and natural frequency respectively. � < 0 is the index
describing the attenuating rate of the white noise envelope.

Here four cases of the damping ratio � = 0.01, 0.01, 0.025, 0.1 and two cases of � = 0, −0.1 are
examined. The natural frequency is fixed at !n = 2� rad/s, as a result, the period of the damping
free system is 1 s.

In order to pinpoint the insensitivity to the time-step, three cases of Δt = 0.001, 0.01, 0.1 are
compared, where the greatest time-step Δt = 0.1 is one-tenth of the system’s natural period. The
largest time-step is 100 times greater than the smallest.
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Fig. 1. Computational results of the example 1 with � = 0
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Fig. 2. Computational results of the example 1 with � = −0.1

The computational results are presented in Figs. 1 and 2, where the exact solutions can be
found [17]. In Fig. 1, � = 0 is a common example when the non-stationary random response is
being discussed in textbooks. The computational results from all three cases of the time-steps
coincide with the exact solutions, although the time-step sizes are dramatically different. Some
results picked from the plots are listed in Tables 1–4 , where Er is the relative error, and defined
as Er =

(

�2

x − �̃2

x

)

/�2

x. Here �2

x, �̃2

x is the exact solution and approximate solution by Eq. (8),
respectively.

Inspecting these tables, we find firstly that the difference between the exact solutions and the
computational results by Eq. (8) are minor, while the time-steps span changes from 0.001 to 0.1.
This indicates that the algorithm by Eq. (8) is insensitive to a changing time-step. In contrast, the
performance of the conventional SCD method depends significantly on the time-step.

Secondly, as in any discrete approach, the time-step affects the computational accuracy. When
the time-step decreases to one-tenth, the accuracy improves by up to 100 times.

Thirdly, the relative error does not accelerate as the time component increases. One contributive
factor is the growing trend of the response variance, which is the denominator of the relative error.
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Table 1. Relative error for � = 0.001

t 2�2

x
!3

n
/�

Er Er Er

(Δt = 0.001) (Δt = 0.01) (Δt = 0.1)

1.0 12.4877 0.6547E-11 0.6550E-9 0.7825E-7

2.0 24.8196 0.6523 E-11 0.6509E-9 0.7783 E-7

3.0 36.9974 0.6469 E-11 0.6468E-9 0.7741 E-7

4.0 49.0231 0.6422 E-11 0.6427E-9 0.7699 E-7

5.0 60.8987 0.6368 E-11 0.6387E-9 0.7657 E-7

6.0 72.6259 0.6253 E-11 0.6346 E-9 0.7616 E-7

7.0 84.2067 0.6128 E-11 0.6305E-9 0.7575 E-7

8.0 95.6429 0.6021 E-11 0.6265E-9 0.7534 E-7

9.0 106.9363 0.5927 E-11 0.6225E-9 0.7493 E-7

10.0 118.0887 0.5836 E-11 0.6185E-9 0.7452 E-7

Table 2. Relative error for � = 0.01

t 2�2

x
!3

n
/�

Er Er Er

(Δt = 0.001) (Δt = 0.01) (Δt = 0.1)

1.0 11.8094 0.6175 E-9 0.6187 E-7 0.7452 E-5

2.0 22.2242 0.5786 E-9 0.5800 E-7 0.7054 E-5

3.0 31.4091 0.5415 E-9 0.5429 E-7 0.6673 E-5

4.0 39.5093 0.5061 E-9 0.5076 E-7 0.6311 E-5

5.0 46.6529 0.4724 E-9 0.4740 E-7 0.5965 E-5

6.0 52.9529 0.4404 E-9 0.4420 E-7 0.5637 E-5

7.0 58.5088 0.4100 E-9 0.4116 E-7 0.5325 E-5

8.0 63.4087 0.3812 E-9 0.3829 E-7 0.5030 E-5

9.0 67.7299 0.3538 E-9 0.3557 E-7 0.4751 E-5

10.0 71.5408 0.3281 E-9 0.3301 E-7 0.4488 E-5

Table 3. Relative error for � = 0.025

t 2�2

x
!3

n
/�

Er Er Er

(Δt = 0.001) (Δt = 0.01) (Δt = 0.1)

1.0 10.7868 0.3501 E-8 0.3508 E-6 0.4289 E-4

2.0 18.6647 0.2956 E-8 0.2963 E-6 0.3729 E-4

3.0 24.4181 0.2476 E-8 0.2483 E-6 0.3235 E-4

4.0 28.6201 0.2057 E-8 0.2064 E-6 0.2805 E-4

5.0 31.6889 0.1696 E-8 0.1703 E-6 0.2435 E-4

6.0 31.6889 0.1696 E-8 0.1703 E-6 0.2435 E-4

7.0 35.5670 0.1129 E-8 0.1136 E-6 0.1852 E-4

8.0 36.7624 0.0912 E-8 0.0918 E-6 0.1629 E-4

9.0 37.6355 0.0732 E-8 0.0738 E-6 0.1444 E-4

10.0 38.2731 0.0584 E-8 0.0591 E-6 0.1292 E-4

Another factor is that, for a damped system, the size of [H(t)] will attenuate as the time component
increases. Therefore, the absolute contribution to the non-stationary response from the integral term
in Eq. (8) will fade. This will weaken the error effect of the trapezoidal numerical integral on the
relative error. This is why the error of slightly damped case attenuates more slowly than that of the
heavily damped.
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Table 4. Relative error for � = 0.1

t 2�2

x
!3

n
/�

Er Er Er

(Δt = 0.001) (Δt = 0.01) (Δt = 0.1)

1.0 7.1719 0.3314 E-7 0.3326 E-5 0.4505 E-3

2.0 9.2001 0.1472 E-7 0.1483 E-5 0.2616 E-3

3.0 9.7738 0.0592 E-7 0.0602 E-5 0.1713 E-3

4.0 9.9360 0.0221 E-7 0.0231 E-5 0.1332 E-3

5.0 9.9819 0.0078 E-7 0.0088 E-5 0.1186 E-3

6.0 9.9949 0.0027 E-7 0.0037 E-5 0.1133 E-3

7.0 9.9986 0.0009 E-7 0.0019 E-5 0.1115 E-3

8.0 9.9996 0.0003 E-7 0.0013 E-5 0.1109 E-3

9.0 9.9999 0.0001 E-7 0.0011 E-5 0.1107 E-3

10.0 10.0000 0.0000 E-7 0.0011 E-5 0.1106 E-3

In Fig. 2, � = −0.1. Similar to Fig. 1, the computational results cannot be distinguished from the
exact solutions in all three time-step cases. Due to the exponentially attenuated excitation envelope,
the trend of the variance response first goes up, and then decreases down.

5.2. Example 2

The second example was examined in [6]. This is a system with two degrees of freedom. The
parameters in Eq. (9) are

M =

[

1 0

0 1

]

, K =

[

2 −1

−1 1

]

, C = 0.009875M + 0.0009875K,

[G] =

[

4 exp(−0.05t) − 4 exp(−0.10t)

0

]

.

The stochastic Newmark finite differential method was tested by this example [6]. After massive
computations and comparisons, Prof. To concluded that the most significant factor controlling the
accuracy is the time-step size. Only the computational results for the Newmark parameter � = 1/10
(Δt = 1.05 s) from [6] are shown in Fig. 3, along with the exact solution. Most results from [6] deviate
significantly from the exact solutions. The selected ones, shown in Fig. 3, are the best from the match
aspect of �2

x1
between the computational and the exact results. Examining Fig. 3(b), and Fig. 3(c),

we find that �2

x2
and Rx1x2

are quite imprecise, where Rx1x2
stands for the cross correlation between

x1 and x2.

The proposed algorithm Eq. (8) is examined at three time-step sizes. These time-steps are Δt =
0.5 s, 1 s and 3 s, respectively. One of them, Δt = 1 s, is close to the case of Δt = 1.05 s adopted
in [6], the results of which are shown in Fig. 3 selectively. In the cases of Δt = 0.5 s and 1 s, Fig. 3
shows that all the computational results of �2

x1
, �2

x2
and Rx1x2

follow the exact solutions without
deviation. This demonstrates again that Eq. (8) is not sensitive to the time-step size.

For Δt = 3 s, however, the computational results contain significant error and fluctuate dramat-
ically. In signal processing theory, a step of this size has violated the sampling theorem. The second
damping-free natural frequency of this example is 0.2575Hz. As a result, the corresponding period
is 3.8832 s. Thus, the Nyquist sampling frequency for the second principal vibration is 0.51510Hz,
corresponding to the critical sampling interval of 1.9416 s. Therefore, a large time-step as Δt = 3 s
will inevitably cause significant error.
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Fig. 3. Computational results of the example 2
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6. CONCLUSIVE REMARKS

A recurrent approach for analyzing non-stationary random response is proposed. It is based on the
theory of linear differential equations. This approach only requires the information contained in the
second-order moment of the excitation. Its computational efficacy is commensurate with other finite
difference based approaches, but it is not sensitive to the discrete time-step. Theoretical analysis
also shows that this algorithm is unconditionally stable for damped systems. These performances
are instantiated by two numerical examples.

However, the current work is limited to the case of linear structures excited by the modulated
evolutionary white noise. For the more general cases, such as non-linear issues or color excitation,
further research is needed.
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