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In this paper a comparison of the performance of two ways of discretizing the nonlinear convection-diffusion
equation in a one-dimensional (1D) domain is performed. The two approaches can be considered within
the class of high-order methods. The first one is the discontinuous Galerkin method, which has benn
profusely used to solve general transport equations, either coupled as the Navier-Stokes equations, or on
their own. On the other hand, the ENATE procedure (Enhanced Numerical Approximation of a Transport
Equation), uses the exact solution to obtain an exact algebraic equation with integral coefficients that
link nodal values with a three-point stencil. This paper is the first of a thorough assessment of ENATE by
comparing it with well established high-order methods. Several test cases of the steady Burgers’ equation
with and without source have been chosen for comparison.
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1. INTRODUCTION

There are several physical phenomena governed by transport equations. In fluid mechanics these
equations represent the evolution at length and time-scales of interest (fluid particle) of phenomena
usually occurring at a much smaller scale (molecule). The values that a certain variable attains
in the domain are those that satisfy a balance between several fluxes written mathematically in
terms of (normally) first and second derivatives. The convection-diffusion equation that governs
the transport of a scalar field is one of these equations.
There are hardly any analytical solutions to transport equations, which would be of interest,

so in order to provide answers to engineering or physical problems one has to resort to numeri-
cal approximations. There is a wealth of numerical approaches to the discretization of transport
equations: finite volumes, finite elements or spectral elements, among others. Although the first
discretization schemes used were only first order there has been a huge increase along the years
in the order of the schemes routinely employed, as well as a considerable improvement in their
robustness. In this paper two high-order methods will be compared, one is the well established
discontinuous Galerkin spectral element method (DGSEM) [23], which belongs to the family of dis-
continuous Galerkin methods and the other is recently proposed ENATE. ENATE is a finite volume
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approach that has been introduced in two recent papers [26, 27]. The latter technique provides the
exact solution for a 1D convection-diffusion equation with arbitrary coefficients and source, if some
integrals related to the scheme are exact. Its derivation uses the exact solution of a second-order
ordinary differential equation (ODE) to build an exact algebraic connection between nodal values.
On the other hand, the DGSEM shares some ideas with the finite element method and the spectral
discretization communities. A brief description of both will be given in this paper.

The paper is structured as follows. A brief description of the two approaches employed is given
in the first section. In the results section both are compared in several cases related to the 1D
steady Burgers’ equation, with and without source term. The source is chosen so as to provide
a smooth sinusoidal solution. Although the solution is very smooth the source is not simple due
to the equation nonlinearity, so the ability of the approaches to deal with non-trivial sources can
be checked. Finally, some conclusions are drawn and several avenues of further research are sug-
gested.

2. DESCRIPTION OF THE APPROACHES

2.1. ENATE

The 1D convection-diffusion equation with variable coefficients can be written as

d

dx
(ρυφ − Γdφ

dx
) = S, (1)

where υ is the advective velocity, ρ is the density, Γ is the diffusion coefficient, φ denotes the
unknown variable, and S is a source term. In ENATE the domain is split in K intervals, not
necessarily of equal length, and K + 1 nodes with locations xi, i = 0, ...,K, with two nodes at
the boundaries, x0 and xK . The whole procedure utilizes normalized variables, defined in each
interval as

φ̂ = φ − φlb

φrb − φlb
= φ − φlb

∆φ
, ρ̂υ = ρυ(ρυ)lb , Γ̂ = Γ

Γlb

, λ̂ = ρ̂υ
Γ̂
. (2)

In every interval, rb and lb stand for right and left boundaries respectively. All variables are nor-
malized with their value at the left boundary of the interval and λ̂ is connected to the variation
of the convective and diffusive fluxes over the reference interval. A normalized coordinate x̂ is also
used in a generic interval of length L = xrb − xlb, defined by x = xlb + Lx̂, 0 ⩽ x̂ ⩽ 1, x ∈ [xlb, xrb].
By splitting the solution into the normalized homogeneous, φ

N(x̂), and particular solutions, F (x̂),
the complete solution to the normalized transport equation can be shown to be

φ̂ = F (x̂) + (1 − F (1))φN(x̂). (3)

The algebraic equation is obtained by explicitly deriving exact expressions for F (x̂) and φN(x̂)
and applying continuity of diffusive fluxes at the interval edges. All algebraic details are in the
abovementioned papers. For the case of a convection-diffusion equation with source the final ex-
pression is

[(ρυ)W k̃WP + (ρυ)P (k̃PE +
ILE01

IGE01

∣
PE

)]φP = (ρυ)W (k̃WP +
ILE01

IGE01

∣
WP

)φW
+ (ρυ)P k̃PEφE + IS01∣WP + ( ISGE01

IGE01

∣
PE

−
ISGE01

IGE01

∣
WP

) . (4)
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The different factors that appear in the formulation are

ILE 01 =
1

∫
0

λ̂

E
dx̂′, IGE01 =

1

∫
0

dx̂′

Γ̂E
, k̃ = 1

PL0IGE01
,

ISGE01 =
1

∫
0

IS0x̂′

Γ̂E
dx̂′ =

1

∫
0

L

x̂′

∫
0

S(x̂′′)dx̂′′
Γ̂E

dx̂′,

IS 01 = L
1

∫
0

S(x̂)dx̂ = xrb

∫
xlb

S(x)dx, E(x̂) = exp⎛⎜⎝−
1

∫
x̂

PLdx̂
′
⎞⎟⎠ .

(5)

The Péclet numbers are defined as

PL0 = (ρυ)lbL
Γlb

, PL = ρυL
Γ

. (6)

In terms of these Péclet numbers λ̂ may be written as PL/PL0. Equation (4) provides an exact
relationship between the nodal values. If the integrals were amenable to be calculated analytically
then the exact nodal values would be obtained. Note that if the velocity is the unknown of the
nonlinear equation both λ̂ and E(x̂) are updated at every iteration based on the newly obtained
values of υ. In this latter case the nondimensional diffusion coefficient Γ̂ is the nondimensional
viscosity µ̂ and all Péclet numbers in the previous equation are actually Reynolds numbers.
To calculate all integrals in the previous expression Hermite splines are employed as interpolants

of the integrands. Cubic, quintic and septic Hermite polynomials are used. They require the values of
the function to be interpolated at the edges of the interval and a number of derivatives that depend
on the polynomial degree. In the formulation presented in this paper these can be estimated from
the nodal values. The derivation and the whole expression that links nodal values and derivatives
is given in [27]. For the sake of completeness the values of the derivatives of the velocity υ̂ are given
here for a general case with variable viscosity and source as

dυ̂

dx̂
= ReL υ

∆υ
+
1

µ̂

1 +ReL0(ĨSGE 01 −
υlb
∆υ

ILE01)
IGE 01

−
ReL0
µ̂

x̂

∫
0

Πsdx̂
′,

∆υ = υrb − υlb,

ĨSGE 01 =
1

∫
0

x̂

∫
0

Πsdx̂
′

Γ̂E
dx̂ = ISGE 01(ρυ)lb∆υ .

(7)

The general expression is a bit cumbersome to handle but in the case of constant viscosity, µ̂ = 1,
and no source, the derivatives are much simpler

dυ̂

dx̂
= ReL υ

∆υ
+
1 −ReL0

υlb
∆υ

ILE 01

IGE 01

= ReL υ

∆υ
+C1,

d2υ̂

dx̂2
= 1

∆υ

d

dx̂
(ReLυ) = 1

Re
(∆υ)
L

d

dx̂
Re2L,

Re
(∆υ)
L

= ρ∆υL
µ

.

(8)
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Let us note that C1 is a constant, so it does not appear in high-order velocity derivatives what
makes the n-th-order derivative very easy to calculate.
In the case of high Reynolds numbers the exponential of E can be very large at one end of

the interval, varying very rapidly across it. As a result the quality of the approximating Hermite
polynomials is reduced. This can produce negative values of integrals that should otherwise be
positive. In this paper a transformation of the original exponential is employed

1

E
= exp

1

∫
x̂

ReLdx̂
′ = exp

1

∫
x̂

(ReL−ReL)dx̂′⋅exp
1

∫
x̂

ReLdx̂
′ = expReL(1−x̂)⋅exp

1

∫
x̂

(ReL−ReL)dx̂′

= expReL(1 − x̂) ⋅ exp
1

∫
0

(ReL −ReL)dx̂′ ⋅ exp⎛⎜⎝−
x̂

∫
0

(ReL −ReL)dx̂′⎞⎟⎠ . (9)

If we choose ReL =
1

∫
0

ReLdx̂ the second exponential is one and then

1

E
= expReL(1 − x̂) ⋅ exp⎛⎜⎝−

x̂

∫
0

(ReL −ReL)dx̂′⎞⎟⎠ . (10)

The second exponential of the expression above is much more suitable for being approximated with
Hermite splines.
The derivatives of the Péclet number can also be obtained from the velocity derivatives. They

are employed when needed in the derivatives of the different integrands at the edges of the reference
interval.

2.2. DGSEM

In the last decade, the discontinuous Galerkin (DG) method started to be widely used in the
computational physics community. DG methods were first introduced by Reed and Hill [30] to
solve the neutron transport equation. They have emerged in recent years as an efficient and flexible
method to solve elliptic and convection-diffusion problems [4, 5]. Since, DG methods have proven
useful in solving the compressible, e.g., [4], and the incompressible Navier-Stokes equations, e.g.,
[3, 15, 16].
The DGSEM [6, 22, 23] can be seen as a spectral element method (SEM) [8] where the continuity

requirement across element boundaries is relaxed, or as a high-order FV method with a compact
stencil. As in a usual FV method, the Riemann solver [34] stabilizes the solution. However, in this
case, higher accuracy may be achieved by increasing the order of the approximation, N , as well as
by reducing the size of the elements h. The advantage of high-order methods is that an exponential
decrease of the error is obtained for increasing polynomial orders [14, 19]. For smooth solutions,
the error reduces as hP , where h = δx is the mesh size and P is the polynomial order. The DGSEM
is used in a wide range of applications such as compressible flows [7, 20, 21, 28], electromagnetics
and optics [1, 10, 11, 24], heat transfer [25], aeroacoustics [9, 29, 32, 33], meteorology [17, 18, 31],
and geophysics [12, 13].
The DGSEM [6] can be classified as a discontinuous nodal Galerkin method [23]. Regarding

the bases used to approximate the function, Legendre polynomials are usually chosen, due to their
unity weight function (w(x) = 1), which makes the integrals that arise in the weak form easier to
evaluate. The integrals are approximated by quadrature and the Legendre Gauss (LG) nodes are
chosen because of their higher accuracy, leading to the Lagrange representation. From a geometrical
point of view, this is the multidomain method, which means that the physical domain is divided
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into subdomains where the solution is approximated. The method is called “discontinuous” since
no continuity requirements are enforced at the interface of the elements.
The DG methods were originally developed to solve conservation laws [30]. Here we detail the

1D formulation that can be extended to multiple dimensions,

φt + fx = S, x ∈ (0,L), (11)

where f is the flux function, fx denotes its spatial derivative, φ is the unknown variable and S is
a source term. For the sake of simplicity, the source term will be considered equal to zero, S = 0,
in the derivation. Notice that, in general, f(φ) = fA(φ) − fV (φ) where fA(φ) is the advective flux
and fV (φ) is the viscous flux. Taking fA(φ) = ρυφ and fV (φ) = Γφx, Eq. (1) is recovered.
To motivate the derivation of the DGSEM the conservation law is discretized, the steady

convection-diffusion equation is then obtained by dropping the time derivative term. As the method
is of Galerkin type, the conservation law is written in variational form,

xk

∫
xk−1

(φt + fx)ψdx = 0, x ∈ (0,L), (12)

where ψ is a local smooth test function. The interval [0,L] is divided into K subdomains Ωk =[xk−1, xk], (as can be seen in Fig. 1) and the integral splits into the sum of element integrals,
K

∑
k=1

⎧⎪⎪⎪⎨⎪⎪⎪⎩
xk

∫
xk−1

(φt + fx)ψdx
⎫⎪⎪⎪⎬⎪⎪⎪⎭ = 0. (13)

Fig. 1. Subdivision of the physical domain into K elements, u represents the unknown.

To use the Legendre polynomial approximation on each element, every interval (xk−1, xk) is
mapped onto the reference interval ξ ∈ [−1,1], by the affine mapping

x = xk−1 + ξ + 1
2

∆xk, (14)

where ∆xk = xk − xk−1. Then

dx = ∆xk

2
dξ,

∂

∂x
= 2

∆xk

∂

∂ξ
, (15)
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so that on the reference interval, the weak form of the PDE becomes

K

∑
k=1

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∆xk

2

1

∫
−1

φtψdξ +

1

∫
−1

fξψdξ

⎫⎪⎪⎪⎬⎪⎪⎪⎭ = 0. (16)

Now the solution and the fluxes in each element are approximated by the Legendre orthogonal
interpolating polynomial, which is written in the Lagrange form

φ(ξ, t) ≈ φN(ξ, t) = N

∑
i=0

φN(ξi, t)ℓi(ξ),

f(ξ, t) ≈ fN(ξ, t) = N

∑
i=0

fN(ξi, t)ℓi(ξ),
(17)

where ξi are the LG nodes. The notation φ
N
i (t) ≡ φN(ξi, t) is used in the following to simplify the

notation. The nodal (grid point) values of the fluxes are computed from the grid point values of the
solution, i.e., fNξ = f (φNξ ). Note that φNξ is not the nodal value of φ(ξ), but the result of solving
the unknowns in the problem. Therefore

φN (ξ) = N

∑
i=0

φNi ℓi(ξ), and INφ (ξ) = N

∑
i=0

φiℓi(ξ), (18)

are different. The former is the solution of the discretized PDE, while the latter is the spectral
interpolation of the exact solution of the PDE. The same applies to the fluxes. It should also be
noticed that a different polynomial order N , and size of the element ∆xk, are permitted for each
subdivision.
The approximate solution (17) is substituted into the weak form in the reference element (16)

to obtain

∆xk

2

1

∫
−1

φNt ψdξ +

1

∫
−1

fNξ ψdξ = 0. (19)

As the method is of a Galerkin type, the test function ψ can be also written as

ψ =
N

∑
i=0

ψiℓi(ξ), (20)

that can be substituted into (19) to obtain

N

∑
j=0

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∆xk

2

1

∫
−1

φNt ℓj(ξ)dξ +
1

∫
−1

fNξ ℓj(ξ)dξ
⎫⎪⎪⎪⎬⎪⎪⎪⎭ψj = 0. (21)

To guarantee that (16) holds for any smooth enough function is equivalent to guarantying that the
coefficients of the Lagrange polynomial that represent the test functions ψj in (21) are independent
from each other, hence

∆xk

2

1

∫
−1

φNt ℓj(ξ)dξ +
1

∫
−1

fNξ ℓj(ξ)dξ = 0, j = 0,1, . . . ,N. (22)

Let us recall that (22) is forcing the residual to be zero in an integral way. Or more accurately,
compels the residual to be orthogonal to the approximation space locally within each element.
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Now (22) is integrated by parts to separate the interior from the interface contributions

∆xk

2

1

∫
−1

φNt ℓj(ξ)dξ + fNℓj ∣1−1 −
1

∫
−1

fNℓ′j(ξ)dξ = 0, j = 0,1, . . . ,N. (23)

The representation (17) is inserted into the weak form (23) to become

∆xk

2

N

∑
i=0

φ̇Ni

1

∫
−1

ℓi(ξ)ℓj(ξ)dξ + fNℓj ∣1−1 − N

∑
i=0

fNi

1

∫
−1

ℓi(ξ)ℓ′j(ξ)dξ = 0, j = 0,1, . . . ,N, (24)

where φ̇Ni ≡
dφNi
dt
. To be consistent with the nodal Galerkin methodology, integral inner products

are approximated via quadrature formulas rather than solved analytically. As explained before, the
LG nodes are used for their higher accuracy. The approximation of both integrals is exact with this
set of nodes such that

1

∫
−1

ℓi(ξ)ℓj(ξ)dξ = N

∑
k=0

ℓi(ξk)ℓj(ξk)wk = wjδi,j (25)

and

1

∫
−1

ℓi(ξ)ℓ′j(ξ)dξ = N

∑
k=0

ℓi(ξk)ℓ′j(ξk)wk = ℓ′j(ξi)wi. (26)

Substituting (25) and (26) into (24) and simplifying the sums we obtain

∆xk

2
φ̇Nj wj + f

Nℓj ∣1−1 − N

∑
i=0

fNi ℓ
′
j(ξi)wi = 0, j = 0,1, . . . ,N. (27)

Recall that the flux function fN is the combination of the advective and viscous fluxes fN =
fNA −f

N
V . The advective flux f

N
A can be directly evaluated at the computation nodes. On the contrary,

the viscous flux fNV involves a derivative of the solution, and should be treated consistently with
the rest of the scheme. Let us write an auxiliary viscous equation,

fV − Γφx = 0, x ∈ (0,L). (28)

Equation (28) is solved with the same procedure as applied to Eqs. (11)–(27) obtaining,

∆xk

2
fNV jwj − ΓφNℓj ∣1−1 + N

∑
i=0

ΓφNi ℓ
′
j(ξi)wi = 0, j = 0,1, . . . ,N. (29)

This approach is known as Bassi-Rebay 1 (BR1) approach [4]. For alternatives to the BR1 approach,
see [2].
In the final step, the elements are coupled and the fluxes at the element boundaries are replaced

by the numerical flux

∆xk

2
φ̇Nj wj + f

N∗ℓj ∣1−1 − N

∑
i=0

fNi ℓ
′
j(ξi)wi = 0, j = 0,1, . . . ,N, (30)

and similarly for the auxiliar viscous equation,

∆xk

2
fNV jwj − ΓφN∗ℓj ∣1−1 + N

∑
i=0

ΓφNi ℓ
′
j(ξi)wi = 0, j = 0,1, . . . ,N. (31)
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These numerical fluxes fN∗ = fN∗A − fN∗V and φN∗ are a function of the element and its immediate
neighbor (or a physical boundary). For the advective flux fN∗A a Riemann problem should be solved
[34]. The Riemann solver calculates a value for the fluxes, taking into account the values at each
side of the discontinuity (uL and uR in Fig. 1) and the directions of transfer of information in the
equation. The viscous contributions (fN∗V and φN∗) are computed taking the mean value of the
element and its immediate neighbor (or physical boundary).

It should be noticed that if the source term S in the conservation law (Eq. (11)) is different from
zero, Eq. (30) becomes

∆xk

2
φ̇Nj wj + f

N∗ℓj ∣1−1 − N

∑
i=0

fNi ℓ
′
j(ξi)wi = ∆xk

2
SN
j wj , j = 0,1, . . . ,N, (32)

where SN
j is the source term function evaluated at the grid nodes.

The resulting system of ODE (32) is the discretization of problem (11) and can be solved,
as in the Chebyshev collocation method, by any explicit or implicit time stepping method, e.g.,
Runge-Kutta.

3. RESULTS

The nonlinear steady Burgers’ equation used for comparison is

υ
dυ

dx
= µd

2υ

dx2
+ S(x) ⇒ d

dx
(1
2
υ2 − µ

dυ

dx
) = S(x). (33)

In terms of the description of both methods in the previous section the generic unknown is υ = φ,
the convective flux is ρυ = 1/2υ and the diffusion coefficient is Γ = µ.
Several tests with this equation have been carried out. As it was the first comparison of these two

methods the interest was mainly focused on their ability to handle nontrivial sources in convection-
dominated flows. In the first test, the nonlinear advection equation contains a source that causes
an internal layer to appear in the region close to the left boundary. The second test introduces the
diffusion term but with no source. The solution in this case is a hyperbolic tangent that develops
a boundary layer close to the right end of the domain whose thickness is of the order of µ. The
third test introduces a source that provides a manufactured solution with a sinusoidal shape. This
source can be tuned to obtain different solutions with various wavelengths.

Let us notice that for the DGSEM the test cases discussed here are always solved in a domain of
length L = 2. This means that the relationship between the number of elements/finite volumes K,
and the size of each element ∆x is

∆x = 2

K
. (34)

In the DGSEM the coefficient matrix is K ∗ (N + 1) × K ∗ (N + 1), N being the order of the
polynomial that approximates the solution in every interval. With ENATE the solution for υ is
only obtained at the nodes as every single coefficient in the integral expressions can be obtained as
function of these. The coefficient matrix is (K −1)×(K−1) as two nodes are located at the domain
boundaries. To compare both graphically ∆x has been chosen as the variable in the horizontal axis.
For all cases three Hermite polynomials were employed in ENATE: cubic, quintic and septic, and
two polynomials for each element in the DGSEM: a fourth degree and a ninth degree polynomial.
All results are presented in terms of the energy norm of the error vector ∣∣υ − υN ∣∣L2

.
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3.1. Test case 1

The exact solution of the nonlinear convection equation with source is

1

2
υ2(x) = 1

2
υ2(xlb) +

x

∫
xlb

S(x′)dx′, (35)

where xlb is the left boundary of the domain and x
′ is a dummy variable. The source term is

defined S(x) = 20 tanh(20(0.75 + x))/ cosh2(20(0.75 + x)), such that the exact solution is υ(x) =
tanh(20(0.75 + x)). The results obtained by the DGSEM are given in Fig. 2. The results obtained
by ENATE are exact. As explained in [27] ENATE can give the exact solution if the source has an
analytical primitive. We intentionally present these results to show that if the source produces an
internal layer the DGSEM requires element sizes to be very small. It is relatively difficult for the
DGSEM to reproduce a steep internal layer inside an element even with a high-degree polynomial.

Fig. 2. The DGSEM results. First test case, v(x) is the exact solution and vN the approximated one.

3.2. Test case 2

In the second test case the source is set to zero. Two cases have been run for values of the viscosity
µ = 0.1 and µ = 5 × x10−3. The exact solution is given by

υ(x) = C1 tanh [C1

2µ
(1 − x)] . (36)

C1 has been adopted such that the value of the solution at x = 0 is 1. The boundary conditions
employed are υ(−1) = υex(−1) and υ(1) = 0. This case was run with cubic, quintic and septic
Hermite polynomials for ENATE, and two polynomials for each element in the DGSEM: a fourth
degree and a ninth degree polynomial.
The norms for µ = 0.1 are given in Fig. 3. This viscosity value produces a relatively smooth

solution over the whole domain. As can be appreciated the results are very consistent with the
polynomial degree, independently of the method adopted. Cubic Hermite, for instance, has a lower
order of convergence and less accuracy than the DGSEM with a fourth order polynomial. The
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Fig. 3. Test 2: Energy norm for the error ∣∣υ−υN ∣∣L2
against element size ∆x for µ = 0.1. Solid lines represent

ENATE results: cubic (square), quintic (diamond) and septic (left triangle). Dashed lines are the DGSEM:
fourth degree polynomial (right triangle) and fourth degree polynomial (circle).

obtained order of convergence for ENATE polynomials is that predicted theoretically [27]: fourth
order for cubic, sixth order for quintic and eighth order for septic. The accuracy of the schemes
with the highest degree is exceptional: the DGSEM has a L2 norm of 10

−6 with six elements and

Fig. 4. Test 2: Energy norm for the error ∣∣υ − υN ∣∣L2
against element size ∆x for µ = 0.005. Solid lines

represent ENATE results: cubic (square), quintic (diamond) and septic (left triangle). Dashed lines are the
DGSEM: fourth degree polynomial (right triangle) and fourth degree polynomial (circle).
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ENATE has a slightly lower one with ten intervals. The norms for µ = 0.005 are provided in Fig. 4.
The DGSEM produces very low norms with few nodes where ENATE cannot obtain a converged
solution. When both reach a converged solution the behavior is similar with the order of convergence
for the DGSEM starting to show the predicted asymptotic value. As in the first case, there is a
boundary layer near x = 1 that the DGSEM is not able to reproduce well, which makes ENATE
better behaved for this particular case, that is, its asymptotic order of convergence is reached for
higher ∆x.

3.3. Test case 3

In this test case the source is chosen so the solution is

υ(x) = 2 −A sin(σπx). (37)

We present two solutions for values of parameter σ = 1 and 5. σ = 1 represents a sinusoidal solution
that spans one wavelength over the whole domain and σ = 5 represents a solution with a wavelength
one fifth of the previous one. The boundary values are set to the exact ones. The source is slightly
complicated due to the nonlinear nature of the original equation and is not detailed here.

Fig. 5. Test 3: Energy norm for the error ∣∣υ − υN ∣∣L2
against element size ∆x for σ = 1. Solid lines represent

ENATE results: cubic (square), quintic (diamond) and septic (left triangle). Dashed lines are the DGSEM:
fourth degree polynomial (right triangle) and fourth degree polynomial (circle).

The results are again consistent. Both approaches reach the asymptotic range with as few as
10 nodes. The only slight discrepancy with the theoretical expected orders is, that a fourth order
DGSEM follows the same order of convergence as quintic Hermite, showing that the DGSEM has a
better performance than ENATE in this case. Both approaches seem to deal with the source terms
in an accurate manner.
The results for a solution with a shorter wavelength are similar. The order of convergence

is consistent with the polynomial degree with the DGSEM showing superior performance, the
behavior of the highest degree polynomial for both approaches being extremely good. The DGSEM
has a L2 norm of 10

−8 with fifteen elements and ENATE provides the same norm with forty.
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Fig. 6. Test 3: Energy norm for the error ∣∣υ − υN ∣∣L2
against element size ∆x for σ = 5. Solid lines represent

ENATE results: cubic (square), quintic (diamond) and septic (left triangle). Dashed lines are the DGSEM:
fourth degree polynomial (right triangle) and fourth degree polynomial (circle).

4. CONCLUSIONS

A comparison of the performance of two high-order approaches in the calculation of the 1D nonlinear
Burgers’ equation has been performed. The results of both approaches are very good and in some
cases excellent. In general terms, the DGSEM performs better than ENATE, with the error norms
behaving in accordance with the polynomial degree chosen. However, there are still some drawbacks.
The DGSEM is not able to reproduce adequately a steep layer inside an element even with high
degree polynomials and is outperformed by ENATE in that case. ENATE is not able to calculate
a converged solution with large ∆x where the DGSEM finds one.

ENATE is a method that has been recently proposed, and as such it requires a careful assessment
in various instances. It seemed to us that as the DGSEM is a well established high-order approach
that has long shown its good performance, a thorough comparison of these two methods in a bunch
of 1D cases was of interest, especially in terms of accuracy. As a matter of fact, the comparison of
these two approaches in 1D cases is very limited and a study with their comparisons in 2D is also
in preparation. The DGSEM does not need any additional treatment but ENATE, as indicated
in [27], requires extra pseudo-source terms, coming from the derivatives in the other coordinate
direction, to be approximated accurately.
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