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Phase-field modeling is a powerful and versatile computational approach for modeling the
evolution of cracks in solids. However, phase-field modeling requires high computational
cost for accurately capturing how cracks develop under increasing loads. In brittle fracture
mechanics, crack initiation and propagation can be considered as a time series forecasting
problem so they can be studied by observing changes in the phase-field variable, which
represents the level of material damage. In this paper, we develop a rather simple approach
utilizing the autoregressive integrated moving average (ARIMA) technique to predict vari-
ations of the phase-field variable in an isothermal, linear elastic and isotropic phase-field
model for brittle materials. Time series data of the phase-field variable is extracted from
numerical results using coarse finite-element meshes. Two ARIMA schemes are introduced
to exploit the structure of the collected data and provide a prediction for changes in phase-
field variable when using a finer mesh. This finer mesh gives a better results in terms of
accuracy but requires significantly higher computational cost.
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1. Introduction

Fracture is one of the main failure modes in engineering materials and struc-
tures. Predicting the nucleation and propagation of cracks is, therefore, of great
importance in engineering analysis and design. The theoretical foundations to
understand brittle crack evolution were introduced and outlined in [1–3]. Fol-
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lowing Griffith [1] and Irwin [2], crack propagation can be considered a stability
problem, where if the energy release rate reaches a critical value, the crack starts
to propagate. While Griffith’s theory describes an adequate criterion for crack
propagation, it is insufficient to determine curvilinear crack paths, crack kinking
and branching.

Numerical approaches to fracture problems can be categorized into discon-
tinuous crack and smeared crack models. In the former approach, cracks are
represented as discrete entities with a discontinuous displacement field across
the crack line (in 2D) or crack surface (in 3D). Representative methods in this
approach include extended finite element methods (XFEM) [5] and remeshing
strategies [6]. With these methods, however, the task of tracking crack paths
can be challenging in problems with complex crack patterns, and their extension
to complex three-dimensional problems is also nontrivial. Phase-field modeling
(PFM) presented by [4] and [8] uses smeared crack models as an alternative.
In this model, the discontinuity in the material is assumed to be not sharp,
but instead is smeared over a localization band. This spatially diffuse fracture
zone is coupled with an additional continuous field variable, which we refer to
as the phase-field variable. Mathematically, PFM can be considered as a tool for
solving fracture mechanics problems using partial differential equations (PDEs):
it involves solving two PDEs, one for the vector displacement field and the other
for the scalar phase-field variable. The advantage of PFM over FEM and XFEM
is that PFM can handle complex crack shapes by changing the phase-field value
on a fixed mesh. By doing so, there is no need to remesh when cracks propagate,
like it is the case in FEM and XFEM. Therefore, the computational time and
cost are greatly reduced without sacrificing accuracy. However, as PFM is still
essentially a mesh-based method, so the mesh quality has a significant effect on
the obtained results.

One of the main drawbacks of PFM is its high computational cost. Specifi-
cally, in order to accurately capture the crack phenomenon, a sufficiently refined
mesh surrounding the crack tip is required. In this work we propose a rather
simple approach based on a time-series forecasting technique in machine learn-
ing to address this issue by using the phase-field results from coarse meshes to
predict the corresponding result from a finer mesh. In machine learning, in order
to deal with time-dependent variables there are two main approaches: statistical
methods and artificial neural networks. Given a time series, Holt–Winters, [9]
forecasting models the three exponentially weighted moving average (EWMA)
aspects including the average value, the trend over time, and the seasonality. The
model makes predictions by computing the combined effects of these three fac-
tors. On the other hand, the autoregressive integrated moving average (ARIMA)
framework [10] models how each data point in the time series is influenced by its
previous values (autoregressive), and integrates this knowledge with a moving
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average part, which computes the linear combination of several data points, to
make predictions. As a result, Holt–Winters works better for seasonal time series
while ARIMA works better for non-stationary time series. In this paper, PFM
is used to build a model for brittle fracture problems based on the theoretical
fracture model of Griffith. The results of PFM for the coarse mesh of brittle frac-
ture plate with three successively coarse meshes are used as a database. Then,
ARIMA is employed to forecast the outcomes for the finer mesh as the finite-
element meshes are refined. Next, the predicted results are compared with the
true data obtained using PFM with the actual discretization in the finer mesh.

The paper is structured as follows. Section 2 is dedicated to the overview of
the phase-field framework for brittle fracture problems. Additionally, a series
of representative numerical examples is also examined for the purpose of gener-
ating data and and verifying our predictions. In Subsec. 3.1 we present a brief
review of ARIMA as a time-series forecasting technique. Our main contribu-
tions are presented in Subsec. 3.2, in which we propose two ARIMA schemes
for predicting the phase-field variable. The accuracy and efficiency of the two
proposed schemes are illustrated in Sec. 4. Finally, Sec. 5 concludes the paper
by summarising key findings and discussing their implications.

2. Phase-field modeling of brittle fracture

We begin by reviewing the theoretical foundations of brittle fracture mechan-
ics and the phase-field modeling approach. Then, in Subsec. 2.5, we present a se-
ries of numerical examples covering both two-dimensional and three-dimensional
brittle fracture problems.

2.1. Griffith’s theory and the variational approach

The theory of linear elastic fracture mechanics was first introduced in 1920
by Griffith [1]. In his approach, the competition between the bulk energy away
from the crack and the surface energy on the crack results in crack propagation.
The stress intensity factor approach introduced in [2] focuses on the stress state
around the crack tip and is also a useful method in engineering practice.

We consider a body occupying the domain Ω ⊂ Rn with spatial dimension
n ∈ {2, 3}, where a crack set Γ ⊂ Rn−1 is included. Under this problem setting,
the total energy functional is given by:

E := Ψs −W + Ψc, (1)

where the stored strain energy Ψs, the external work W, and the surface en-
ergy Ψc are defined as:
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Ψs(u) =

ˆ

Ω\Γ

ψ(ε(u),Γ)dV, W =

ˆ

Ω

b∗ · udV +

ˆ

∂Ωt

t∗ · udA,

Ψc(Γ) =

ˆ

Γ

gcdA,

(2)

where gc is the critical energy release rate or fracture toughness, and b∗ and t∗

are the body force and traction, respectively. The global minimizer of the total
energy functional E leads to the solution of the problem under consideration:

(u(t),Γ(t)) = arg{min E(u, t)}. (3)

This problem is essentially a moving boundary value problem since Γ changes
over time. In order to overcome the difficulty associated with the moving bound-
ary, the surface integral is replaced by a volume integral as follows [7]:

Ψc =

ˆ

Γ

gcdA ≈
ˆ

Ω

gcγdV, (4)

where γ is the the crack density, which depends on a length-scale parameter lc
and the continuous scalar-valued phased-field φ. These quantities will be dis-
cussed in detail in the subsequent sections.

2.2. Phase-field approximation with a diffusive crack topology

For quasi-static brittle fracture in isotropic elastic solids, cracks are approx-
imated as finite bands characterized by a crack phase-field variable φ: φ = 1
denotes fully broken material and φ = 0 represents intact one. To illustrate the
idea behind the concept of a diffuse crack topology, it is ideal to consider an
infinite bar with cross-section A aligned along the x-axis [8]. The domain under
consideration is B = A × L, where L = (−∞,+∞) and position x ∈ L. A fully
opened crack is specified at x = 0. The sharp crack profile can be described by
the phase-field variable φ(x) ∈ [0, 1] defined as follows:

φ(x) :=

{
1 for x = 0,

0 otherwise.
(5)

Following the physical observation that a crack itself initiates with micro-cracks
and nano-voids, it is essentially not a discrete phenomenon. Therefore, the non-
smooth phase-field is replaced by a smeared counterpart, defined by the following
exponential function:

φ(x) = e−|x|/lc , (6)
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where lc is the length-scale parameter. We observe that φ(x) = e−|x|/lc is the
solution of the homogeneous second-order differential equation:

φ(x)− l2cφ′′(x) = 0. (7)

This is subject to Dirichlet boundary conditions φ(0) = 1, φ(±∞) = 0, with the
solution to the associated characteristic equation 1−l2cs2 = 0 given by s = ±1/lc.
The corresponding variational of this Euler equation can be written as:

φ = arg

{
inf
φ∈W

I(φ)

}
, where I(φ) =

1

2

ˆ

B

(φ2 + l2cφ
′2)dV, (8)

andW = {φ|φ(0) = 1, φ(±∞) = 0}. Substituting dV = Adx into the expression
for the functional I(φ) leads to I(φ = e−|x|/lc) = lcA. Then, we define the fracture
surface density as:

Γ(φ) =
I(φ)

lc
=

1

2lc

ˆ

B

(φ2 + l2cφ
′2)dV =

ˆ

B

γ(φ, φ′)dV,

γ(φ, φ′) =
1

2lc
φ2 +

lc
2
φ′2.

(9)

2.3. Strain energy degradation

The formulation for cracks in multi-dimensional solids can be obtained in
a straightforward manner by extending the formula for one-dimensional solids
presented in the preceding section. Specifically, replacing the ordinary derivative
φ′ with the gradient ∇φ leads to the crack surface density function per unit
volume for a multi-dimensional solid:

γ(φ, φ′)→ γ(φ,∇φ) =
1

2lc
φ2 +

lc
2
∇φ2.

Then, the surface energy Ψc is approximated as:

Ψc =

ˆ

Γ

gcdΓ ≈
ˆ

Ω

gcγ(φ,∇φ)dV,

where the sharp crack surface is regularized by the functional

Γ ≈ Γl(φ) =

ˆ

Ω

γ(φ,∇φ)dV.
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Due to the damage caused by cracks, the strain energy density is degraded by
the function g(φ):

ψ(ε, φ) = g(φ)ψ0(ε),

where g(φ) is the degradation function and ψ0(ε) is the initial free energy density
function. There are many choices for the function g(φ), but we choose the most
basic one g(φ) = (1 − φ)2 + κ introduced in [7], in which κ is a small number
responsible for keeping the system of equations stable. Then, the total internal
energy can be approximated as:

Ψ = Ψs + Ψc ≈
ˆ

Ω

[
((1− φ)2 + κ)ψ0(ε) + gcγ(φ,∇φ)

]
dV,

we introduce a so-called history variable H = max(ψ0(ε), Hn), where Hn is
the computed energy history at the previous step n [11]. This enforces the ir-
reversibility of the damage φ̇ ≥ 0, which leads to the Karush–Kuhn–Tucker
conditions [12]:

Ḣ ≥ 0, ψ0 −H ≤ 0, Ḣ(ψ0 −H) = 0. (10)

2.4. Finite element implementation

Within the finite-element framework, the displacement u and the phase-field
variable φ are discretized using the standard Galerkin method [15] as follows:

uhi =

nb∑
A=1

NAuAi , φh =

nb∑
A=1

NAφA, (11)

where nb is the dimension of the discrete space, NA are the basis functions, and
uAi and φA are the nodal degrees-of-freedom for the displacement and phase-
field. Taking the variation of two energies (δΨ = δΠu = 0, where Πu = Ψ−W)
and adopting a staggered solution scheme, we arrive at a combined system of
equations:

φn+1 = arg

inf
φ

ˆ

Ω

[
gcγ (φ,∇φ) + (1− φ)2H

]
dV

→ Kφ
nφn+1 = −rφn,

un+1 = arg

inf
u

ˆ

Ω

[ψ (u, φn)− b∗ · u] dV −
ˆ

∂Ω

t∗ · udA

→ Ku
nun+1 = −run,

(12)
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where the tangent stiffness matrices for the displacement and phase-field solu-
tions are computed as:

Ku
n =

ˆ

Ω

{[
(1− φn)2 + κ

]
BTC0B

}
dV,

Kφ
n =

ˆ

Ω

{
[gc/lc + 2H]NTN + gclcB

TB
}
dV,

(13)

and the residuals are given by:
run = fint − fext =

ˆ

Ω

[
(1− φn)2 + κ

]
σBdΩ−

ˆ

Ω

b∗ ·NTdV −
ˆ

∂Ωt

t∗ ·NTdA,

rφn =

ˆ

Ω

{
[gcφn/lc − 2(1− φn)H]NT + gclcB

T∇φn
}
dV,

(14)

where N = [NA], A = 1, 2, ..., nb is the row vector of shape functions and B
is the gradient of the shape function matrix. Equation (12) can be rewritten in
a compact form, which is more convenient in implementation:[

Ku
n 0

0 Kφ
n

][
un+1

φn+1

]
= −

[
run

rφn

]
. (15)

2.5. Representative numerical examples

In this subsection, we present several numerical examples in which phase-
field data is generated by using the phase-field model for the purpose of training
and testing our machine learning algorithms. We first start with a benchmark
test of a single element in plane-strain. Then, numerical experiments for a single
edge-notched plate in tension, shear and mixed modes are carried out to obtain
the phase-field time series at the crack tip. A tensile test of a plate with two
symmetrically arranged notches is also studied. Finally, we examine a three-
dimensional problem under tensile loading.

2.5.1. Benchmark test. In order to verify the numerical results produced
by our phase-field modeling, we consider a two-dimensional element in plane
strain, depicted in Fig. 1. Table 1 summarizes the geometric dimensions and
material properties. The bottom nodes are constrained in both directions while
the top nodes are free to slide vertically. A prescribed displacement v is applied
in 1000 steps, with an increment of ∆v = 10−4 mm per step. This example
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y

x

v v

Fig. 1. One-element problem.

Table 1. Parameters used in one-element problem.

Dimensions
[mm×mm]

Young’s modulus
[kN/mm2]

Poisson’s
ratio

Critical energy
release rate
[kN/mm]

Length scale
[mm]

1× 1 E = 210 ν = 0.3 gc = 5× 10−3 lc = 0.1

is served as a benchmark test, as its analytical solution exists, so we are able
to verify our numerical results. The exact solution describing the relationship
between the phase-field and vertical strain is given by [11]:

φ(εy) =
ε2
ylcc22

gc + ε2
ylcc22

, (16)

where c22 is the entry in row 2 and column 2 of the stiffness matrix C0, and it
can be computed as:

c22 =
E(1− ν)

(1 + ν)(1− 2ν)
. (17)

Once the exact phase-field φ(εy) is determined, the vertical stress is related to
the phase-field as:

σy = c22εy [1− φ(εy)]
2 . (18)

The variations of phase-field variable and stress as a function of the vertical
strain are plotted in Fig. 2. As can be seen from this figure, the numerical solution
obtained from phase-field modeling matches very well with the analytical one.

2.5.2. Single-edge notched and symmetric double-notched tensile
tests. Next, we consider the well-known single-edge notched tension test. The ge-
ometry and the boundary conditions of a squared plate are depicted in Fig. 3 (left).
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Fig. 2. One-element problem: phase-field φ (left) and axial stress σy (right)
versus axial strain εy.

0.5 0.5

0.
5

0.
5

u

α

u

0.5

0.1 0.1
0.
5

0.
5

u u

Fig. 3. Two-dimensional problems: single-edge notched specimen (left)
and double-notched specimen (right).

There is an initial notch in the horizontal direction, at middle height from the left
edge of the plate to its center. Material parameters are specified similarly to those
in the one-element example (Subsec. 2.5.1), except that gc = 2.7× 10−3 kN/mm
and the length scale is chosen as lc = 4h, where h is the element size. The loading
is applied with ∆u = 5× 10−5 mm.

In this example, the specimen is discretized with four finite element mesh
sizes to gradually increase number of elements: 1600 (40× 40), 2500 (50× 50),
3600 (60× 60) and 4900 (70× 70). We examine three cases representing three
typical failure modes in two-dimensional fracture problems: α = 90◦ (mode I –
tension), α = 0 (mode II – pure shear), and α = 45◦ (mixed mode). The evolu-
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tion of the phase-field variable at the crack tip in these problems is plotted in
Fig. 4. In the symmetric double-notched tensile test shown in Fig. 3 (right), the
length of the vertical side of the specimen is twice that of the horizontal one.
So, four meshes are specified as 40× 80, 50× 100, 60× 120 and 70× 140. The
displacement-controlled loading is applied in N = 200 steps with an increment
∆v = 10−4 mm.

a) b)

c) d)

Fig. 4. Variations of the phase-field variable in two-dimensional problems:
single-edge notched: a) α = 90◦, b) α = 0◦, c) α = 45◦; d) symmetric doubled-notched.

As can be seen in Fig. 4, there are clear trends of the phase-field values
in the four mesh sizes of these problems. Specifically, the value of phase-field
variable changes and tends to converge when refining the mesh. In principle, the
results will be more accurate when increasing the mesh size. However, refining
the mesh leads to a significant increase in the computational cost. Instead of
using a finer mesh, we predict the variation of the phase-field variable using
time-series modeling techniques, which will be discussed in detail in Subsec. 3.2.
The goal is to utilize coarse-grain crack propagation data and train ARIMA
models to predict the results of the finest mesh.
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2.5.3. Three-dimensional single notched test. We consider the three-
dimensional tensile test specimen depicted in Fig. 5. The bottom face is con-
strained and the top face is subject to a uniformly prescribed displacement
∆u = 10−3 mm for N = 1000 steps. The material properties and geometric
dimensions are chosen according to [8], as summarized in Table 2. The varia-
tions of the phase-field variable in this 3D problem are shown in Fig. 6.

u u

u u

5.0
2.0

2.0

5.
0

5
.0

Fig. 5. Three-dimensional single-notched test.

Table 2. Parameters used in the three dimensional single notched test.

Dimensions
[mm×mm×mm]

Young’s modulus
[kN/mm2]

Poisson’s
ratio

Critical energy
release rate
[kN/mm]

Length scale

5× 10× 2 E = 20.8 ν = 0.3 gc = 5× 10−4 lc = 4h

Fig. 6. Variations of the phase-field variable in the three-dimensional problem.
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3. ARIMA

This section presents our proposed training algorithms implementing the
ARIMA technique. We start with a brief review of ARIMA as a time series fore-
casting method in Subsec. 3.1. Then, we introduce two approaches to training
using ARIMA to predict the phase-field variable in Subsec. 3.2. The phase-field
value changes and tends to converge as the mesh size increases, becoming more
accurate with smaller element lengths. We investigate how crack propagation
can be predicted using time series modeling techniques.

3.1. ARIMA as a time series forecasting

A time-series consists of past observations that can be mined to discover in-
ternal structures such as autocorrelation, trend, and seasonal variation. Further-
more, these insights can be used to deliver monitoring and prediction capacities.
If we consider a time series with past observations as a discrete variable where
Xt denotes the observation at time t, and εt denotes the zero-mean random
noise term at time t, with discrete time steps at an interval ∆t, we establish an
autoregression (AR) model such as:

Xt =
k∑
i=1

αiXt−i∆t + εt. (19)

Then, the noise term is presented using a moving average (MA) model such as:

Xt =

q∑
i=1

βiεt−i∆t + εt. (20)

To fit the best model for the time-series with independent noise terms, the au-
toregressive moving average (ARMA) framework [14] integrates the linear func-
tion of previous time steps with the independent random noise minus a fraction
of the previous random noise. The ARMA model takes two parameters (k, q):

• k – the “autoregressive” term: represents the lags of the series in the pre-
diction process;

• q – the “moving average” term: represents the lags of the forecast errors.
Nonetheless, ARMA cannot be used effectively for non-stationary time se-

ries. To address this drawback, the autoregressive integrated moving average
(ARIMA) framework, an extension of ARMA, integrates the differencing of past
observations (at consecutive time steps) to “stationarize” the time series before
applying the standard ARMA scheme [10]. As a result, the ARIMA framework
includes the parameter d, capturing the differencing level. The complete ARIMA
scheme is described as follows.
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A random variable is considered a stationary time series if its statistical prop-
erties such as first and second moments remain approximately constant over
time. Visualizing a stationary series shows that the data points vary around its
mean with relatively constant amplitude. The ARIMA framework, an extension
of ARMA, addresses this limitation by integrating the differencing of raw ob-
servations to allow the time series to become stationary [10]. Accordingly, the
ARIMA framework introduces an extra parameter d, and performs time series
forecasting for nonstationary series as follows:

∇dXt = εt +
k∑
i=1

αi∇dXt−i +

q∑
i=1

βiεt−i,

X̃t = ∇dX̃t +
d−1∑
i=1

∇iXt−i.

(21)

To conclude, an ARIMA (k, d, q) forecasting model not only performs the
“signal filtering” act but also the “trend filtering” act by applying the dth-order
differencing, inducing past observations into future forecasts.

Considering our brittle fracture analysis process as a time series, we need to
determine the parameters (k, d, q) to construct an ARIMA forecasting model.
First, because computational simulations such as the isotropic brittle fracture
model do not generate noise, we argue that q can be set to zero. Second, as the
original time series is not stationary, we need to conduct a stationary study to
determine the appropriate order of differencing for our time series. We discuss
how to identify suitable values for parameters d and k below:

• k: the number of autoregressive terms (i.e., the lagged value),
• d: the number of differences needed to achieve stationarity,
• q: the noise term.

3.1.1. Order of differencing d. A stationary time series means no dif-
ferencing is needed, thus d = 0. Our study shows that our time series is non-
stationary and the order of differencing (essential for our ARIMA model) can be
computed as follows, where ∆d denotes the dth difference of time series X; we
define the following differencing levels:

d = 1 : ∆1
t = Xt −Xt−1, (22)

d = 2 : ∆2
t = (Xt −Xt−1) (Xt−1 −Xt−2) . (23)

Referring to [13], we detect a constant increasing/decreasing trend in our orig-
inal time series. Further study shows that one order of differencing (i.e., d = 1)
stationarizes our target time series so that the ARMA process can be conducted
to perform forecasting of the phase-field values over time.
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3.1.2. Number of autoregressive terms k. Our time-series analysis
framework handles sequential observations at every time-step and updates the
forecasting buffer simultaneously. This is a conventional approach for many time-
step-based applications, and k = 1 (i.e., AR(1)) is applicable to our ARIMA
model.

As a result, we study an initial ARIMA(1,1,0) model which can be described
as “the differenced first-order auto-regressive model”. To conclude, this ARIMA
model regresses the first difference of a collection of observable phase-field values
as a non-stationary time series, with the lag value of one period.

3.2. ARIMA for phase-field forecasting

As can be seen in Subsec. 2.5, the change of the phase-field variable versus the
prescribed displacement step can be considered as time-series data. Therefore,
ARIMA is a promising candidate, that can be used to train the collected data
from coarse meshes and provide a prediction for the results of finer mesh. In
this section, we present two training ways using ARIMA for predicting phase-
field variable for the problems presented in the preceding section. The numerical
results obtained using the finest mesh in each example are considered the most
accurate among the given four mesh grids. Our objective is to use the results from
three coarser meshes, e.g. 40× 40, 50× 50 and 60× 60 to predict the results of
the 70× 70 mesh in the single-edge notched test example.

3.2.1. Out-of-time training (ARIMA1). The data of the phase-field
variable at the crack tip for various mesh sizes are collected and divided into two
folds: training and testing. In this model, we use the complete result of a base
mesh, which can be mesh 40, mesh 50, or mesh 60 and a portion R% of mesh 70
to predict its own remaining part, i.e., (100−R)%. After being trained using full
data of the base mesh and the training part of the finer mesh, the remaining part
of the fine mesh will be predicted. Figure 7 describes the process of training in
detail.

3.2.2. Across-grids training (ARIMA2). The advantage of out-of-time
forecasting ARIMA presented in Subsec. 3.2.1 is that the accuracy can be im-
proved proportionally with the size R% of the training data. However, in many
cases, the partitioned data of the highly accurate results (mesh 70) does not
exist. In addition, the accuracy of ARIMA1 is limited since the trend is strongly
affected by the chosen base mesh. Therefore, ARIMA2 is introduced to overcome
these weaknesses. In particular, in ARIMA2, we use the full data of the three
coarse meshes, which can be easily achieved as the database to predict the fine
mesh solution. We consider the phase-field variable across meshes at each step
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Start

φtarget to φtarget 
of the target mesh

Training data

Fitting ARIMA

Prediction
at step T + 1 : φT+1

T = T+1 T == N Finish

Retrieve time step T
from the based mesh: φbaseT+1

Yes

No

Append

T 1

Fig. 7. ARIMA1: Out-of-time training process.

as a short-time time series. It is clear that it has a trend converging to the exact
solution when the mesh gets finer. We assume that the phase-field prediction in
the next finer mesh at the same loading step can be represented as a linear func-
tion of the difference in phase-field values and residual errors at coarser meshes.
At each step, we go across mesh size grids, and we train an ARIMA model based
on the corresponding results of meshes 40, 50 and 60, then produce a predic-
tion for the mesh 70. It is clear that with this training method we are predicting
a short-time series, so it is better to update the order of the moving-average
model q = 1. The detailed training process is illustrated in Fig. 8.

Training
data

φ40, φ50, φ60

φ40, φ50, φ60 at step 1 ARIMA φ70 at step 1

Prediction
φ70

φ40, φ50, φ60 at step 2 ARIMA φ70 at step 2

... ...
...

φ40, φ50, φ60 at step N ARIMA φ70 at step N

Fig. 8. ARIMA2: Across-grids training process.
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3.2.3. Performance assessment metric. In assessing the accuracy of
predictions obtained by forecasting models the root-mean-square error (RMSE)
is frequently used. It measures the difference between the predicted values and
the ground truth in L2 norm and is defined as follows:

RMSE =

√√√√ 1

N

N∑
i=1

(xi − x̂i)2, (24)

where N is the total number of observations, xi is the actual value and x̂i is the
predicted one. The reason for using RMSE is that it penalizes large errors, thus
helping to rank the performance of forecasting techniques.

4. Predictive results

4.1. Training and predicting the phase-field variable

As shown in Table 3, the errors when using ARIMA1 decrease as the based
mesh is chosen closer to the predictive mesh. The more true data we use (the
higher value of R), the more accurate the results is observed. Figure 9 shows
the prediction of the phase-field for mesh 70 with a training set R = 60% and

Table 3. RMSE results of two ARIMA approaches.

Problem
ARIMA1 (Phase-field φ) ARIMA2

Base 30% 40% 50% Phase-field φ Reaction force

Tension
α = 90◦

Mesh 40 0.044941 0.044861 0.044815
0.001555 0.003952Mesh 50 0.023772 0.023730 0.023647

Mesh 60 0.009785 0.009726 0.009733

Pure shear
α = 0◦

Mesh 40 0.028423 0.028114 0.021058
0.001943 0.002317Mesh 50 0.014916 0.014544 0.010444

Mesh 60 0.006528 0.006635 0.004422

Mixed-mode
α = 45◦

Mesh 40 0.199574 0.158567 0.102213
0.003474 0.007625Mesh 50 0.005951 0.004003 0.001696

Mesh 60 0.002123 0.001524 0.000766

Double-notch
Mesh 40×80 0.015644 0.009836 0.003424

0.002657 0.005326Mesh 50×100 0.009256 0.006699 0.003424
Mesh 60×120 0.005150 0.0047960 0.003412

Base 40% 50% 60% Phase-field φ

3D problem
Mesh 40×80×4 0.050916 0.050090 0.050228
Mesh 50×100×4 0.026872 0.026759 0.026084 0.004952
Mesh 60×120×4 0.012637 0.011345 0.010743



Forecasting phase-field variables in brittle fracture problems. . . 503

a) b)

c) d)

Fig. 9. Training results using ARIMA1:
single-edge notched: a) α = 90◦, b) α = 0◦, c) α = 45◦; d) symmetric doubled-notched.

the based mesh being 60. The prediction matches fairly well with the ground
data obtained from running the mesh 70. Figure 10 presents the training results
when α = 0◦ (shear mode) using ARIMA2, illustrating the model’s accuracy in
predicting phase-field variables under shear conditions The more true data we
use (the higher value of R), the more accurate the results become. As shown

Fig. 10. Training results using ARIMA2 when α = 90◦ (tension).
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in Fig. 11, the ARIMA2 training results for α = 90◦ (tension mode) closely
align with the ground truth data, underscoring the method’s reliability in ten-
sion scenarios. Overall, we can see that ARIMA2 gives a better agreement in
comparison to ARIMA1. The improvement in accuracy can be explained by the
data structures in the two training algorithms. Figure 12 presents the training
results for the mixed-mode problem (α = 45◦) using ARIMA2. The figure high-
lights the strong agreement between the predictions and the ground truth data,
demonstrating the robustness of ARIMA2 for capturing complex crack propa-
gation trends in mixed-mode scenarios. The double-notch tension test results in
Fig. 13 confirm that ARIMA2 accurately predicts phase-field variables across
the notched regions, even under symmetric load conditions. In ARIMA2, the
training data is structured as short-term data series, which can benefit from
ARIMA model’s capabilities. In short, the ARIMA2 model with the across-grids
approach gives better results in most cases, without using any part of the finest
mesh data. Figure 14 illustrates the training and prediction results for the three-
dimensional problem using the ARIMA2 scheme. The figure demonstrates the
improved accuracy and convergence of predictions compared to the true data,
further validating the effectiveness of ARIMA2 in modeling phase-field variables
across complex three-dimensional scenarios.

Fig. 11. Training results using ARIMA2 when α = 0◦ (shear).

Fig. 12. Training results using ARIMA2 when α = 45◦ (mixed-mode).
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Fig. 13. Training results using ARIMA2 for the double-notch problem.

Fig. 14. Training results using ARIMA2 for the three-dimensional problem.

4.2. Training and predicting the reaction force by ARIMA2

When comparing the two ARIMA schemes for predicting the phase-field vari-
able, we observed that ARIMA2 performs outstandingly. Therefore, we proceed
to investigate its ability to predict the reaction force. It turns out that ARIMA2
also performs very well in this predictive task. As we can see in Table 3, the
RMSE when using ARIMA2 is always less than 0.008.

5. Conclusion

In this study, the time series approach based on ARIMA models was utilized
to train and predict the numerical results obtained by using phase-field modeling
for brittle fracture problems. Numerical examples ranging from two-dimensional
to three-dimensional problems were presented to show the performance of the
two proposed ARIMA schemes in predicting the phase-field variable. The results
show that it is feasible to use data from coarse meshes to predict the value of
the phase-field variable in a denser mesh, especially with the ARIMA2 scheme.
The application of ARIMA2 is also valid for predicting the reaction force.
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