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In this paper, we show that sensitivity analysis in connection with material parameter identification prob-
lems – using implicit finite elements of quasi-static problems on the basis of evolutionary-type constitutive
equations – is related to simultaneous sensitivity equations and internal numerical differentiation. Thus,
this study mainly focuses on investigating how these approaches are connected to the solution procedures
based on finite elements. In addition, we discuss how to consider reaction forces in the sensitivity analysis,
as this aspect is often neglected despite the fact that experimental results often involve force data.
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NOMENCLATURE

Abbreviations

DAE – differential-algebraic equations,

ODE – ordinary differential equations,

END – external numerical differentiation,

IND – internal numerical differentiation,

SSE – simultaneous sensitivity eqns.,

MLNA – multilevel-Newton algorithm.

Scalars, geometrical vectors and tensors

f ∈ R – objective function in least-square method,

ρ ∈ R – density,

t ∈ R – time,

we(j) – weighting factor of Gaussian integration,
Ð→
k ∈ V – acceleration of gravity,Ð→u ∈ V – displacement vector,Ð→x ∈ V – position vector to material point,

E ∈ L(V) – strain tensor,

h ∈ L(V) – stress defining equations,

T ∈ L(V) – stress tensor.
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Dimensional quantities

nd – no. of experimental data points at one time,

nD – no. of all experimental data points at one time,

neGP – no. of Gauss-point in element e,

nκ – no. of material parameters,

np – no. of prescribed nodal displacements,

nq – no. of local internal variables,

nQ – no. of all internal variables in an entire finite element discretization,

nT – no. times in an experiments, where the data is measured,

N – no. times in an finite element simulation, where the time integrator evaluates
the DAE-system,

nu – no. of unknown nodal displacements,

ñu – no. of nodal displacements compared with experimental data.

Column vectors and matrices

Be(j) ∈ R6×ne
u – strain displacement matrix,

Cc ∈ Rnp – constraint equations for given nodal displacements,

dk ∈ Rnd – experimental displacement at time tk,

d ∈ RnD – all experimental data of all discrete times,

Du ∈ Rnu×nκ – sensitivity of unknown displacements w.r.t. material parameters,

Dq ∈ RnQ×nκ – sensitivity of internal variables w.r.t. material parameters,

Dλ ∈ Rnp×nκ – sensitivity of Lagrange-multipliers,

ei ∈ Rnd – unit vector containing only zeros, at position i there is a 1,

ei ∈ Rnκ – unit vector containing only zeros, at position i there is a 1,

Ee(j) ∈ R6 – symmetric part of the strain tensor in Voigt notation in element e at Gauss-
point (j),

F ∈ Rnκ – non-linear function to be solved to obtain material parameters (derivative of
goal function f w.r.t. material parameters κ),

F ∈ Rnu+2np+nQ – DAE-system if reaction force computations is performed,

g ∈ Rnu – discretized principle of virtual displacements,

Gu ∈ Rnu×nu – derivative of discretized principle of virtual displacements w.r.t. unknown
nodal displacements,

Gq ∈ Rnu×nQ – derivative of discretized principle of virtual displacements w.r.t. internal va-
riables,

Gκ ∈ Rnu×nκ – partial derivative of discretized principle of virtual displacements w.r.t. ma-
terial parameters,

Je(j) ∈ R3×3 – Jacobi-matrix of the coordinate transformation between reference element
coordinates and the global coordinates,

ke ∈ Rne
u×n

e
u – element stiffness matrix,

Kpu ∈ Rnp×nu – tangential stiffness matrix assigned to prescribed displacements,

l ∈ RnQ – integration step for internal variables,

Lκ ∈ RnQ×nκ – derivative of integration step for internal variables w.r.t. material parameters,

Lu ∈ RnQ×nu – derivative of integration step for internal variables w.r.t. unknown nodal dis-
placements,

Lq ∈ RnQ×nQ – derivative of integration step for internal variables w.r.t. internal variables,

M ∈ R(nu+np)×np – assigns all unknown nodal displacements ua to the known displacements
u ∈ Rnp ,
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M̃ ∈ Rñu×nu – assignment matrix of all nodal displacements to only that part, which is com-
pared to experimental data,

p ∈ Rnu – known equivalent nodal force vector,

qe(j) ∈ Rnq – vector of internal variables at a Gauss-point,

q ∈ RnQ – unknown internal variables of all spatial integration points,

Qu ∈ RnQ×nu – derivative of internal variables w.r.t. unknown nodal displacements,

Qκ ∈ RnQ×nκ – derivative of internal variables w.r.t. material parameters,

r ∈ Rnq – evolution equations for internal variables,

r ∈ RnQ – all evolution equations for all unknowns in the structure,

r̃ ∈ RnD – residual vector of least-square method,

Rκ ∈ RnQ×nκ – derivative of differential part of DAE-system w.r.t. material parameters,

Ru ∈ RnQ×nu – derivative of differential part of DAE-system w.r.t. unknown nodal displace-
ments,

Rq ∈ RnQ×nQ – derivative of differential part of DAE-system w.r.t. internal variables,

s ∈ RnD – simulation data compared to experimental data,

T ∈ R6 – symmetric part of stress tensor in Voigt notation,

u ∈ Rnu – unknown nodal displacements,

u ∈ Rnp – known (prescribed) nodal displacements,

ua ∈ Rnu+np – all nodal displacements of the entire spatial discretization,

û ∈ Rnp – unknown nodal displacements assigned to those DOF, where displacements
are prescribed,

ue ∈ Rne
u – element nodal displacements,

ũ ∈ Rñu – discrete displacements compared to experimental data,

Z e ∈ Rne
u×nu – assembling (incidence) matrix assigned to unknown displacement degrees of

freedom,

Z
e ∈ Rne

u×np – assembling (incidence) matrix assigned to known displacement degrees of free-
dom,

Z e(j)
q ∈ Rnq×nQ – incidence matrix for assigning internal variables to a Gauss-point,

κ ∈ Rnκ – vector of material parameters,

λ ∈ Rnp – Lagrange multipliers (negative reaction forces),

ξ(j) ∈ R3 – local coordinates of Gauss-points,

1 – identity matrix,

0 – zero matrix or vector.

1. INTRODUCTION

Material parameter identification can either be done for homogeneous deformations or inhomoge-
neous displacement fields in experiments with solid materials. If deformation is inhomogeneous,
we have to solve the entire boundary-value problem. In such a case, it is common to make use
of the finite element method. In [36], this was demonstrated for elastic materials with inclusion.
The procedures for inelastic materials were discussed in [3, 25, 26]. The works of Mahnken have
mainly contributed to material parameter identification in the context of finite element simulations
of problems solid mechanics. Further contributions were provided in [4, 7, 19–21, 33], in the ones
incorporating gradient-free schemes, in [15] and [17, 18]. Specific applications such as, for example,
indentation tests, can be found [6, 23, 31]. Most of these approaches treat constitutive equations of
evolutionary-type, such as models of viscoelasticity, viscoplasticity or rate-independent plasticity.
In the field of heat equation, similar approaches are used, see, for example, [1, 2].
By contrast, specific considerations with regard to sensitivity analysis, i.e., the parameter iden-

tification on the basis of ordinary differential equations, differential-algebraic equations, and even
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partial differential equations, were developed in numerical mathematics, for an overview see [34].
These apparently independent approaches, used in engineering and mathematical communities,
are, however, connected, which is one of the essential aspects to be shown in this investigation. To
this end, the interpretation of implicit finite element simulations – which are based on constitutive
models of viscoelasticity, viscoplasticity, or even rate-independent plasticity – as the solution of
differential-algebraic equations is applied, see [9]. Here, we restrict ourselves to applications draw-
ing on the classical Backward-Euler method to integrate evolution equations of internal variables
at Gauss-point level of finite element programs. Extensions to high-order time-integration schemes
such as, for example, diagonally-implicit Runge-Kutta methods, are straightforward.
Since it is common to consider resulting forces in experiments, a sensitivity analysis of the

reaction force computation on the basis of finite elements has to be considered as well. Here, the
consistent approach presented in [14] is transferred to the sensitivity analysis of differential-algebraic
equations (DAEs).
The structure of the paper is as follows. First, we recap the underlying problem. After that, we

turn to numerical schemes of simultaneous sensitivity equations, internal numerical differentiation,
and external numerical differentiation using a forward differential formula. Finally, an extension to
reaction force computations is considered.
The notation in use is defined in the following manner: geometrical vectors are symbolized byÐ→a and second-order tensors A by bold-faced Roman letters. Furthermore, we introduce matrices

at global level of finite element algorithms symbolized by bold-faced italic letters A and matrices
on local (element) level using bold-faced Roman letters A.

2. SENSITIVITY ANALYSIS

Commonly, a model has to be calibrated at experimental data d ∈ RnD . The model depends on
a set of parameters κ ∈ Rnκ , which in our case are material parameters occurring in constitutive
(material) equations. We consider models for which the internal variables are given by ordinary
differential equations (ODEs) or by differential-algebraic equations (DAEs). The latter is the case
if rate-independent yield function-based equations are chosen so that a yield condition has to be
fulfilled, see [9, 37]. Pure ODEs appear – sometimes also with case distinctions controlled by loading
conditions or Kuhn-Tucker conditions implying non-smooth functions – in models of viscoelasticity
and viscoplasticity. Since the resulting problem is not essentially changed when considering ODEs
instead of more general DAEs in the sense of optimization, we only treat models of evolutionary-
type based on ODEs. In this respect, continuous differentiability of some constitutive models with
respect to material parameters is violated.
In the following, we consider small strain problems to avoid lengthy presentation. The extension

to large strains is straightforward if the tensors are operating on the reference configuration [27, 29].
The basic problems are quasi-static and isothermal boundary-value problems of the form

divT + ρ
Ð→
k =Ð→0 ,

T = h(E,q),
q̇(t) = r(E,q).

(1)

T is the stress tensor, E = (gradÐ→u +gradTÐ→u ) symbolizes the strain tensor,Ð→u (Ð→x , t) the displacement
vector, t is time, ρ is density and

Ð→
k the acceleration of gravity. q ∈ Rnq contains all internal variables

describing the non-linear hardening behavior of the material. Applying the method of vertical
lines, which implies the spatial discretization in space as a first step, yields, for finite element
approximations, the following DAE-system:

g(t,u,q) = 0,

q̇(t) = r(t,u,q), (2)
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with the unknown nodal displacements u(t) ∈ Rnu and the unknown internal variables q(t) ∈ RnQ

of all spatial integration points, see [9, 10, 38]. Frequently, the initial conditions are u(0) = 0 and
q(0) = q0 at time t = 0, where the DAE-system has to have consistent initial conditions g(0,0,q0) =
0. Equation (2)1 describes the discretized weak form (principle of virtual displacements),

g(t,u,q) = nel∑
e=1

Z eT
⎧⎪⎪⎨⎪⎪⎩
ne
GP∑
j=1

we(j)Be(j)
T
h(Ee(j),qe(j))det Je(j)

⎫⎪⎪⎬⎪⎪⎭ − p(t), (3)

where Z e ∈ Rne
u×nu symbolizes the assembling matrix, which is not programmed but defined in order

to describe the assembling procedure. neu is the number of element nodal displacement degrees of
freedom, we(j) the weighting factors of the Gauss-integration in an element, neGP are the number

of Gauss-points within one element, and Be(j) ∈ R6×ne
u defines the strain-displacement matrix of

element e evaluated at the j-th Gauss-point, j = 1, . . . , neGP. The latter has the local coordinates

ξ(j) ∈ R3 (we only consider three-dimensional continua). Furthermore, Je(j) ∈ R3×3 symbolizes the
Jacobi-matrix of the coordinate transformation between reference element coordinates and global
coordinates, and p(t) ∈ Rnu defines the given equivalent nodal force vector. The symmetric part of

the stress tensor (1)2 is transferred into a vector T ∈ R6, T = h(Ee(j),qe(j)), which is evaluated at
Gauss-point ξ(j), and depends on the strains

Ee(j) = Be(j)ue = Be(j) {Z eu + Z
e
u(t)} , Ee(j) ∈ R6 (4)

with the element nodal displacements ue ∈ Rne
u depending on the unknown and known nodal dis-

placements u ∈ Rnu and u ∈ Rnp, ue = Z eu+Z
e
u(t). u(t) are given functions of the time t. For more

information regarding the chosen notation, see [32]. The key point of the interpretation of finite
elements applied to constitutive models with internal variables as solution procedure to solve DAEs
stems from a formal assembling of all internal variables qe(j) ∈ Rnq into a large vector

q(t) = nel∑
e=1

ne
GP∑
j=1

Z e(j)
q

T
qe(j)(t), or qe(j)(t) = Z e(j)

q q(t), (5)

which also implies the assembling of all evolution equations of all internal variables (1)3,

q̇(t) = nel∑
e=1

ne
GP∑
j=1

Z e(j)
q

T
q̇e(j)(t) = r(t,u,q) with r(t,u,q) = nel∑

e=1

ne
GP∑
j=1

Z e(j)
q

T
r(Ee(j),qe(j)). (6)

The internal variables assigned to a Gauss-point are assembled by the matrix Z e(j)
q ∈ Rnq×nQ into

q ∈ RnQ (even here, Z e(j)
q is not programmed but describes the storage/extracting scheme into/out

of the storage q). Since the constitutive equations (1)2,3 depend on the material parameters κ ∈ Rnκ ,
the entire DAE-system (2) and the solution vectors u(κ) as well as q(κ) depend on the parame-
ters κ,

g(t,u(κ),q(κ),κ) = 0,

q̇(t,κ) = r(t,u(κ),q(κ),κ), (7)

where the initial conditions of the internal variables might also depend on the material parameters,
q0(κ), for example, in isotropic hardening models in elastoplasticity, where the initial yield stress
has to be determined. With regard to identifying these material parameters, we assume the follow-
ing: we have experimental data di ∈ Rnd at time ti, i = 0, . . . , nT. The data might be given by digital
image correlation systems, see, for instance [3, 35]. First, only a subset of the nodal displacements

u ∈ Rnu can be compared, ũ = M̃u, ũ ∈ Rñu , i.e., ñu = nd. The matrix M̃ extracts only the necessary
nodal displacements. Second, there must be a spatial interpolation of the experimental data di to
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places, where the numerical data ũ(ti) is provided (or the other way round). Third, an interpolation
of the evaluation time in the experiments and that of the time-discretized DAE-system (2) has to
be carried out. For the sake of simplicity, we assume that the evaluation times and the spatial
evaluation points are identical.
Let tn, n = 0, . . . ,N , be the evaluation times of the time discretization scheme (and, accordingly,

of the experimental data), i.e. d T = {d T
0 d T

1 . . .d T
N } forms the experimental data vector and s T (κ) =

{ũT
0 (κ)ũT

1 (κ) . . . ũT
N(κ)} the simulation data, d ∈ RnD and s ∈ RnD with nD = (N +1)nd. In a least-

square sense, the square of the residual r̃(κ) = s(κ) − d has to be minimized

f(κ) = 1

2
r̃ T (κ)̃r(κ) = 1

2
{s(κ) − d}T {s(κ) − d}→ min. (8)

A necessary condition for a minimum at κ = κ∗ requires a vanishing derivative (find the root of a
non-linear system)

F(κ∗) = df

dκ
∣
κ=κ∗

= D T (κ∗){s(κ∗) − d} = 0, (9)

with D(κ) ∶= d̃r (κ)/dκ = ds(κ)/dκ, D ∈ RnD×nκ . Gauss-Newton-like methods require the derivatives
(sensitivities)

D(κ) = d̃r (κ)
dκ

= ds(κ)
dκ

=
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

dũ0(κ)
dκ

⋮

dũN(κ)
dκ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

M̃du0(κ)
dκ

⋮

M̃duN(κ)
dκ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (10)

D ∈ RnD×nκ , see, for example, [22, 28, 34]. There are three main approaches to determine the sen-
sitivity D : simultaneous sensitivity equations (SSE), internal numerical differentiation (IND), and
external numerical differentiation (END). In the following, these methods are compared within the
context of the finite element method using constitutive equations of evolutionary-type.

2.1. Simultaneous simulation of sensitivities

One possibility to determine the sensitivities (10), is to apply the derivative of the DAE-system (7)
with respect to the parameters κ, see [8, 24], leading to the linear matrix DAE-system

0 = GuDu +GqDq +Gκ,

Ḋq = RuDu +RqDq +Rκ.
(11)

In Eq. (11)2, the time derivative and the derivative with respect to the parameters κ are exchanged.
In this respect, we have to determine the sensitivities

Du ∶= ∂u
∂κ

, Du ∈ Rnu×nκ , Dq ∶= ∂q
∂κ

, Dq ∈ RnQ×nκ (12)

by solving DAE-system (11). In Eq. (11), we introduced the abbreviations

Gu = ∂g
∂u

, Gq = ∂g
∂q

, Gκ = ∂g
∂κ

, Ru = ∂r
∂u

, Rq = ∂r
∂q
, Rκ = ∂r

∂κ
. (13)

Since the initial conditions of the nodal displacements do not depend on the parameters κ, the
initial conditions for the sensitivities are zero as well, Du(0) = ∂u(0,κ)/∂κ = 0. However, the
initial sensitivities of the internal variables must be provided (if they depend on the parameters),
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Dq(0) = ∂q(0,κ)/∂κ = dq0/dκ. The combined system (2) and (11) contain nu+nQ+(nu+nQ)×nκ =(nu+nQ)(1+nκ) equations, where – depending on the spatial discretization – q alone might contain
several million entries. Thus, not all approaches are efficient. Both DAE-systems (2) and (11) could
be computed with different time integrators. Since the system (11) depends on the results of DAE-
system (2) (one-side coupling), we can either use the same time-steps to provide u and q to (11),
or an interpolation technique is required to transfer u and q to the evaluation times of the solver,
which computes (11). This, however, is out of the scope of this article.
Commonly, we assume that the number of material parameters is small (nq < 30). The ques-

tion whether these parameters can be identified solely by experiments is not addressed in this
presentation. More information on that topic can be found in [13].
If we follow the classical finite element approach, where a Backward-Euler time-integration

method is applied to the constitutive equations at Gauss-point level, we have to follow an overall
Backward-Euler scheme to solve the DAE-system (2), see [9]. Additionally, we apply the same time
integrator to DAE-system (11) leading to

g(tn+1,un+1,qn+1) = 0,

l (tn+1,un+1,qn+1) = 0,

Gun+1Dun+1 +Gqn+1Dqn+1 +Gκn+1 = 0,

Dqn+1 −Dqn −∆tn(Run+1Dun+1 +Rqn+1Dqn+1 +Rκn+1) = 0.

(14)

Here, we abbreviated Eq. (14)2 by

l (tn+1,un+1,qn+1) = qn+1 − qn −∆tnr (tn+1,un+1,qn+1). (15)

The first two non-linear systems, Eqs. (14)1,2, are decoupled from Eqs. (14)3,4. Thus, specific
procedures can be applied. Here, Eqs. (14)1,2 must be solved first, and the results have to be
inserted into Eqs. (14)3,4. The first choice would be to apply the Newton-Raphson method to the
coupled system (14)1,2. In [12], it is mentioned that it is common to apply the multilevel-Newton

Table 1. Multilevel-Newton algorithm.

Given: starting vector estimation u(0), q(0) and ∆tn, tn+1
Repeat m = 0, . . .

local (element) level

given: u (m)

local integration step

l(u (m),q (m+1)) = 0 ↝ q (m+1)

consistent linearization (y = (u (m),q (m+1)))
∂l
∂q
∣
y

dq̂
du
∣
y

= − ∂l
∂u
∣
y

↝ dq̂
du
∣
y

global level

solve linear system of equations⎡⎢⎢⎢⎢⎣
∂g
∂u
∣
y
+ ∂g
∂q
∣
y

dq̂
du
∣
y

⎤⎥⎥⎥⎥⎦
∆u = −g(u (m),q (m+1)) ↝∆u

update of global variables

u (m+1) ← u (m) +∆u ↝ u (m+1)

until the convergence criterion is fulfilled
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algorithm (MLNA) to finite elements if Eq. (14)2 is non-linear in the internal variables qn+1. This
scheme is based on the implicit function theorem, see [16, 30], leading to the classical structure of
implicit finite element programs. In Table 1 the method is assembled, which has a certain appeal if
at Gauss-point level the internal variable computation can be solved very efficiently, see examples
in [12].

2.2. Internal numerical differentiation

In the case of internal numerical differentiation, the entire time integration step, e.g., in Runge-
Kutta-type methods, both the stage quantities and stage derivatives as well as the starting values
is assumed to be dependent on the parameters κ, [5, 34]. The stage quantities and derivatives
represent further vectorial values evaluated at the integration points of the time integrator. The
starting value is a vector of quantities computed in previous steps, see, for example, [11]. Applying
the ε-embedding method, see [11], in combination with the Backward-Euler method to the DAE-
system (7) yields

g(tn+1,un+1(κ),qn+1(κ),κ) = 0,

l̃ (tn+1,un+1(κ),qn+1(κ),qn(κ),κ) = 0,
(16)

with

l̃ (tn+1,un+1(κ),qn+1(κ),qn(κ),κ) = qn+1(κ) − qn(κ) −∆tnr (tn+1,un+1(κ),qn+1(κ),κ), (17)
see Eq. (15). Here, the starting value qn also depends on the parameters κ.

2.2.1. Sensitivities based on multilevel-Newton algorithm

The first approach is similar to the ideas presented in [3, 25, 26]. To show this, the implicit function
theorem has to be applied, i.e., we assume that a function q̂(un+1(κ),κ) exists, which we insert
into the equilibrium equations (16)1,

g(un+1(κ), q̂(u(κ),κ),κ) = 0, (18)

see also [19]. The derivative with respect to the parameters κ yields the linear system (after some
rearrangements)

[Gun+1 +Gqn+1Qun+1]Dun+1 = −Gκn+1 −Gqn+1Qκn+1, (19)

with

Qun+1 = ∂q̂
∂un+1

and Qκn+1 = ∂q̂
∂κ

(20)

where the coefficient matrix on the left-hand side is exactly the same as in the MLNA (global level),
see Table 1, because the tangential stiffness matrix reads explicitly

Gun+1 +Gqn+1Qun+1 = ∂g
∂un+1

+
∂g

∂qn+1

∂q̂
∂un+1

.

In other words, if the MLNA fulfills the convergence criterion, i.e., g = 0 and l = 0, the last tangential
stiffness matrix can be used to solve the linear system (19) with several right-hand sides. In the case
of an LU-decomposition – in a finite element simulation using a direct solver – this implies only
additional back-substitutions. The required quantity, namely Qκn+1, see Eq. (20)2, can be provided
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on the so-called “local level”, since the internal variables are only formally assembled, i.e., they
are decoupled from spatial integration point to spatial integration point. In order to show this, we
insert q̂(un+1(κ),κ) into the integration step of the internal variables (14)2 leading to

l̃(un+1(κ), q̂(un+1(κ),κ),qn(κ),κ) = 0. (21)

The derivative with respect to the parameters yields

Lun+1Dun+1 + Lqn+1Qun+1Dun+1 + Lqn+1Qκn+1 + LqnQκn + Lκn+1 = 0,

with

Lun+1 = ∂̃l
∂un+1

, Lqn+1 = ∂̃l
∂qn+1

, Lqn = ∂̃l
∂qn

= −1, and Lκn+1 = ∂̃l
∂κ

. (22)

Since

Lun+1 + Lqn+1Qun+1 = 0, (23)

see local level of MLNA of Table 1, we arrive at the linear system

Lqn+1Qκn+1 = Qκn − Lκn+1. (24)

If we insert Eqs. (23) and (24) into the system (19), we arrive at

[Gun+1 +Gqn+1L −1qn+1Lun+1]Dun+1 = −Gκn+1 +Gqn+1L −1qn+1[ −Qκn + Lκn+1]. (25)

Here, the matrix Lqn+1 = ∂̃l/∂qn+1 is already known from the last iteration (local level in the
MLNA). Since the internal variables qn+1 were only assembled formally, see Eq. (5), small linear
systems with nκ right-hand sides at Gauss-point level of dimension nq have to be solved,

∂̃l

∂qn+1

∂q̂

∂κ
= −dqn

dκ
−
∂̃l

∂κ
(26)

with l̃ ∈ Rnq and qn ∈ Rnq evaluated at time tn+1 for element e and Gauss-point ξ
(j).

Now, the results of the aforementioned discussion become clear: the finite element approach of
computing the sensitivities on Gauss-point level (24), Dqn+1 = ∂q̂/∂κ, and solving the linear system
with global tangential stiffness matrix (19) at the end of the MLNA yields the sensitivities Dun+1,
which are required in Eq. (10). The sensitivities ∂q̂/∂κ computed in Eq. (26) must be stored for
the next time-step, in which they represent the quantity dqn/dκ for the next time-step. The total
amount of storage is nel × n

e
GP × nq × nκ.

2.2.2. Sensitivities based on chain rule

Alternatively, we can also apply the chain rule to system (16), since the equations have to be
fulfilled for all κ,

Gun+1Dun+1 +Gqn+1Dqn+1 +Gκn+1 = 0,

Lun+1Dun+1 + Lqn+1Dqn+1 + LqnDqn + Lκn+1 = 0.
(27)

If we eliminate the sensitivities Dqn+1 with respect to the internal variables from Eq. (27)2, and
exploit Eq. (22)3,

Dqn+1 = −L −1qn+1 [Lun+1Dun+1 − LqnDqn + Lκn+1] , (28)

and insert this expression into Eq. (27)1, we obtain, after rearrangement, the linear system

[Gun+1 −Gqn+1L −1qn+1Lun+1]Dun+1 = −Gκn+1 +Gqn+1L −1qn+1[ −Dqn + Lκn+1]. (29)

This expression determines the sensitivities Dun+1 and is equivalent to Eq. (25), i.e., both approaches
are identical (here, Qκn = Dqn holds).
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2.3. External numerical differentiation

In solid mechanics, it is more common to apply external numerical differentiation using numerical
differentiation, particularly a forward differential formula. In this regard, the sensitivities (10) are
approximated by

dũn+1

dκ
≈ nd∑

i=1

nκ∑
j=1

ũn+1(κ +∆κjej) − ũn+1(κ)
∆κj

eie
T
j , (30)

with the “unit vectors” ei ∈ Rnd (all entries are zero except for one having a 1 in row i) and
ej ∈ Rnκ . The vectors ũn+1(κ) are determined by solving the DAE-system (14)1,2. Here, the results
un+1, n = 0, . . . ,N −1, must be stored with sufficient accuracy. Additionally, the entire finite element
program has to be run again nκ-times with perturbed material parameters κ+∆κjej , j = 1, . . . , nκ.
Even here the resulting vectors of the required nodal displacements ũn+1(κ +∆κjej) have to be
stored. If high accuracy requirements are necessary, the external numerical differentiation might
lead to an insufficient iteration scheme to obtain a local minimum.

2.4. Equivalence of SSE and IND

We can show that – when applying the same time integrator, in this case the Backward-Euler
method, to Eqs. (2) and (11) – the non-linear system (14) (SSE) is equivalent to IND presented in
Subsec. 2.2. To this end, Eq. (14)4 is rearranged, leading to

[1 −∆tnRqn+1]Dqn+1 = Dqn[Run+1Dun+1 +Rκn+1]. (31)

Since

Lqn+1 = 1 −∆tnRqn+1, Dqn = Qκn, Lun+1 = −∆tnRun+1, and Lκn+1 = −∆tnRκn+1, (32)

hold, Eq. (31) is identical to Eq. (29). Thus, all the schemes mentioned above are equivalent.

3. SENSITIVITIES IN REACTION FORCE COMPUTATIONS

To the best knowledge of the author, there is no literature on sensitivity determination in reaction
force computations. Our focus, however, lies in clear presentation of the displacement and reaction
force sensitivities in finite element computations, since forces are often measured in experiments
as well, and, accordingly, commonly occur in the parameter identification process. Thus, we refer
to [14], where the reaction force computation is explained in detail. Classical formulations, which
are based on the principle of virtual displacements, do not explicitly contain reaction forces. In this
context, the Lagrange-multiplier method is the method of choice. It leads to the DAE-system

F(t,y(t), ẏ(t)) ∶=
⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

ga(t,ua(t),q(t)) +Mλ(t)

Cc(t,ua(t))

q̇(t) − r(ua(t),q(t))

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭

= 0 (33)

with

y(t) ∶=
⎧⎪⎪⎪⎨⎪⎪⎪⎩

ua(t)
λ(t)
q(t)

⎫⎪⎪⎪⎬⎪⎪⎪⎭
and the initial conditions y(t0) ∶=

⎧⎪⎪⎪⎨⎪⎪⎪⎩

ua(t0)
λ(t0)
q(t0)

⎫⎪⎪⎪⎬⎪⎪⎪⎭
=
⎧⎪⎪⎪⎨⎪⎪⎪⎩

ua0
λ0

q0

⎫⎪⎪⎪⎬⎪⎪⎪⎭
∶= y0. (34)
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In the following, the vector of all nodal displacements ua ∈ Rnu+np , which is separated into degrees
of freedom that are unknown, u ∈ Rnu, and degrees of freedom where displacements are prescribed
as û ∈ Rnp , uT

a = {uT , ûT } represents the unknown. The constraint condition is given by

Cc(ua(κ)) = û(κ) − u =M Tua(κ) − u = 0, with M =
⎡⎢⎢⎢⎢⎣

0nu×np

1np

⎤⎥⎥⎥⎥⎦
. (35)

M ∈ R(nu+np)×np assigns all unknown nodal displacements ua to the known displacements u ∈ Rnp .
The algebraic part of the DAE-system also contains

ga(t,ua,q) =
⎧⎪⎪⎨⎪⎪⎩

g(y)
g(y)

⎫⎪⎪⎬⎪⎪⎭
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

nel∑
e=1

Z eT
⎧⎪⎪⎨⎪⎪⎩

ne
GP∑
j=1

we(j)Be(j)
T
h(Ee(j),qe(j))detJe(j)

⎫⎪⎪⎬⎪⎪⎭
− p(t)

nel∑
e=1

Z
eT
⎧⎪⎪⎨⎪⎪⎩

ne
GP∑
j=1

we(j)Be(j)
T
h(Ee(j),qe(j))detJe(j)

⎫⎪⎪⎬⎪⎪⎭

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

, (36)

where the matrices Z e ∈ Rne
u×nu and Z

e ∈ Rne
u×np , see Eq. (4), assemble the element contributions

into a large vector ga ∈ Rnu+np . The differential part of the DAE-system given by the evolution
equations of the internal variables is not affected.
Applying the Backward-Euler method yields

g (tn+1,un+1(κ), ûn+1(κ),qn+1(κ),κ) = 0,

g (un+1(κ), ûn+1(κ),qn+1(κ),κ) +λn+1(κ) = 0,

Cc(tn+1, ûn+1(κ)) = 0,

l (un+1(κ), ûn+1(κ),qn+1(κ),qn(κ),κ) = 0.

(37)

Since u ∈ Rnp are the prescribed and known displacements, û cannot be dependent on the ma-
terial parameters κ if a solution is found (fulfillment of the constraint). As a result of applying
the Backward-Euler/MLNA procedure, where the constraints (algebraic part of DAE-system) are
fulfilled after each time-step, the system (37) degenerates to

g (tn+1,un+1(κ),qn+1(κ),κ) = 0,

g (tn+1,un+1(κ),qn+1(κ),κ) +λn+1(κ) = 0,

l (un+1(κ),qn+1(κ),qn(κ),κ) = 0,

(38)

i.e., we observe, see Eqs. (38)1 and (38)3, the same system as in (16). Additionally, an equation for
the Lagrange multiplier (reaction force) is provided, Eq. (38)2. Based on Eqs. (381 and (38)3, it is
possible to determine the sensitivities Dun+1 and Dqn+1 as before, and they can then be inserted
into the sensitivity of the Lagrange-multiplier equation

Dλn+1 = −Gun+1Dun+1 −Gqn+1Dqn+1 −Gκn+1 (39)

with

Dλn+1 = dλn+1

dκ
∈ Rnp×nκ , Gun+1 = ∂g

∂un+1
∈ Rnp×nu ,

Gqn+1 = ∂g
∂qn+1

∈ Rnp×nQ , Gκn+1 = ∂g
∂κ
∈ Rnp×nκ .
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If we insert the sensitivity (28), we arrive at

Dλn+1 = − [Gun+1 −Gqn+1L −1qn+1Lun+1]Dun+1 +Gqn+1L −1qn+1[Dqn − Lκn+1] −Gκn+1, (40)

where the first large matrix represents a particular tangential stiffness matrix,

Kpu = nel∑
e=1

Z
eT
keZ e, (41)

compiled by parts of the element stiffness matrix ke. In other words, there is essentially no additional
work to provide the sensitivities for reactional forces since the sensitivities of the displacements are
computed before.

4. CONCLUSIONS

In this paper, we were able to show that – in the context of finite elements and where the con-
stitutive equations are of evolutionary type – material parameter identification procedures, which
require the sensitivity matrix, can be interpreted as internal numerical differentiation scheme de-
veloped in numerical mathematics. Moreover, the internal numerical differentiation is equivalent to
the simultaneous simulation of sensitivities for the same time integrator. We were also able to show
that internal numerical differentiation can be interpreted by two schemes: one that is based on
the implicit function theorem (close to the multilevel-Newton algorithm), and another where static
condensation (Newton-Schur step) is exploited. The entire formal procedure proposed becomes pos-
sible because the finite element discretization is interpreted as the solution of differential-algebraic
equations after the spatial discretization. As the first approach, we chose the Backward-Euler
method in combination with the multilevel-Newton algorithm (as in the classical implicit finite
elements). A side-product is also the sensitivity of the reaction forces, which requires only addi-
tional matrix-matrix products of quantities already provided in the sensitivity analysis. Thus, we
obtained a closed and systematic framework – making it possible to also consider other high-order
time integration schemes applied to DAE-systems.
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