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In the era of Industry 4.0, one of the key challenges facing underground mines is the
real-time tracking of both the production process and machinery movements. Significant
emphasis is placed on comprehensive monitoring to achieve situational awareness to en-
sure informational continuity of operations in dispersed organizations. This knowledge is
fundamental for safe and efficient extraction, current production reconciliation, and all
operational and planning activities, particularly when considering specialized simulation
environments for production optimization. So far, implementations of such solutions on an
industrial scale have primarily been encountered in open-pit mines or smaller underground
mines. This article presents a solution for machine monitoring and tracking based on data
from a collision avoidance system, specifically designed for multi-site underground min-
ing enterprises, where the scale of implementation is incomparably more challenging. This
anti-collision system was originally designed for detecting machine-to-machine or machine-
to-worker collisions. Consequently, the development of validation algorithms, including er-
ror correction and adaptive filtering, was imperative. This also required integration with
enterprise resource planning (ERP) systems. Moreover, it was also essential to enhance
the system infrastructure with additional sensors to enable the registration of machine lo-
calization in specified mining zones (e.g., heavy machinery chamber, mining area, loading
and unloading point). As part of this study, several analytical models (enhanced by ma-
chine learning techniques) were developed to identify movement patterns and cooperation
among wheeled transport machinery, as well as the entire course of ore logistics within
the mining area. Finally, the process of implementing the system in the target environ-
ment is presented, along with a description of the user interface, which features manager
dashboards for production visualization.
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1. Introduction

In the modern mining landscape, achieving real-time awareness of the pro-
duction process and machinery movement is crucial for maintaining operational
continuity and maximizing productivity. Traditional monitoring methods often
fall short of providing timely and comprehensive insights into the dynamic na-
ture of underground mining environments. Therefore, there is a growing need
for advanced monitoring solutions that are capable of capturing real-time data,
facilitating informed decision-making, and being, at the same time, reliable and
easy to maintain.
Access to a multidimensional characterization of ore logistics processes is cru-

cial for developing DSS-class systems or so-called digital twins. Otherwise, man-
agement will be based on a classical approach where analytical models are fuelled
by catalogue data or generally accepted statistics, without considering the di-
versity of machinery, local operational conditions, or random events. Due to the
highly unpredictable nature of transportation processes, it is difficult to guar-
antee the accuracy of such an approach. Therefore, access to data measured
under real-world conditions becomes an important element, as well as the abil-
ity to track the flow of ore in the transport network over time and space, with
an awareness of operational contexts. The breakthrough in underground mining
was not the emergence of control-measurement equipment, but the possibility of
building broadband teletransmission networks based on fiber optic technology,
which initiated full information exchange between the underground and the sur-
face of the mine. Obtaining partial information about the operation of haulage
machines 10–15 years ago would have required a large number of manual mea-
surements. Even with significant human resources involved, it would have been
difficult to achieve results comparable to those currently available in real-time
through operational technology.
In underground mines, operations are conducted under highly dynamic and

challenging conditions. Both mine personnel and a diverse array of mining equip-
ment, including stationary and mobile machinery, are dispersed throughout var-
ious sections of the mine. While the width of the workings typically spans a few
meters, the length of the underground excavations can extend for hundreds
of kilometres [1]. The underground mining environment is full of various ad-
verse factors that hinder reliable communication and monitoring systems, such
as uneven structure, poor visibility, dust and gas concentration, humidity, as
well as the presence of numerous other sources of interference or mechanical
damage [2]. Communication in underground mining represents one of the key
elements of mine operation, ensuring safety, increased productivity, reduced op-
erational costs, as well as the protection of the work environment. The need for
access to real-time data also applies to teleoperation of mining assets, partic-
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ularly in exceptionally hazardous conditions [3, 4]. As indicated in [5], current
trends in the digitization of the mining industry are moving towards real-time
processing and big data, artificial intelligence (AI), automation and robotics,
the Internet of Things (IoT), and simulation modeling.
The effectiveness assessment of the production process reveals the signifi-

cant role of tracking the operation of wheel loaders and haul trucks. Recently,
significant advancements have been made in systems for acquiring operational
parameters, as well as in cycle detection algorithms. Typically, dozens of pa-
rameters are recorded in the monitoring scope, offering great potential for the
development of predictive maintenance. However, maintaining such systems at
full scale poses significant technical and cost challenges [6–9]. In [10], an analysis
of the operating time of automatic long-haul-dump machine (LHD) in an under-
ground mine in Sweden was presented. Particular emphasis was placed on the
impact of total machine downtime. This study also applied the fault tree analy-
sis (FTA) to analyze the total operating time. The issue of estimating the re-
maining machine life, with particular emphasis on changes in operating modes,
based on a homogeneous Markov process, was further proposed in [11]. The
authors of [12] conducted a review of the most popular key performance indi-
cators (KPIs) used to select optimal (in terms of maintaining the net present
value (NPV) of assets) machine maintenance strategies. Article [13] reviewed
the literature on measures of efficiency in the process of ore selection, loading,
and transportation in the mining industry. Article [14] presented a method to
increase equipment utilization efficiency by reducing ineffective machine oper-
ating time. In [15], the author presented an analytical model identifying factors
inhibiting the productivity of haul trucks used in the Conzal mine. The results
of the study allowed for the development of recommendations aimed at eliminat-
ing these factors and optimizing production, particularly by improving worker
cooperation, reducing haulage distances, maintaining road surfaces properly, and
decreasing machine downtime due to breakdowns. A similar factor analysis was
presented in [16].
Methods for assessing the utilization of wheel machines found in the liter-

ature yield satisfactory results, but their applicability in localizing machines
in the mining corridor has not been noted. In extensive mines, the situational
awareness of such solutions is therefore limited. As given by the authors in [17],
one of the most reliable localization systems for underground mines is tagging
technology. Moving machinery or personnel can be tracked by a local radio-
frequency identification (RFID) reader at a distance of a few meters for passive
tags and several tens of meters for active tags. On the other hand, a moving
vehicle can track its position in the mining corridor through passive or ac-
tive RFID reader identification (with known coordinates) defined as reference
points.
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Tagging technology is currently also being used to track ore logistics in con-
tinuous transport systems [18]. In the literature, one can find many applications
of such solutions in industry [19]. Such solutions, in combination with hyper-
spectral cameras, allow for the tracking of ore flow in the transport network
and its mixing, especially if the ore deposit structure is non-heterogeneous [20].
However, their primary application in the production process is found in safety
systems. In this regard, collision avoidance systems (CASs) are very popular,
as they inform the machine operator about the possibility of a collision with an-
other machine or a pedestrian during machine operation and stationary phases.
Many solutions also send warning signals to workers near machines [21, 22].
An overview of available anti-collision systems is presented in [23]. RFID tech-
nology has also found various other applications in the production process over
the years. For example, authors [24–27] present solutions for tracking personnel
and vehicles, tracing detonators and boosters, monitoring ore and the deposit
boundary, and providing navigation.
As mentioned earlier, the optimal solution toward which modern under-

ground mining is heading is the IoT technology. However, infrastructural con-
straints in communication, data management, and storage are the main reasons
that prevent mines from achieving fully integrated, automated systems deployed
on a large scale. Nevertheless, the literature reveals numerous applications of IoT
sensors. For instance, the work of [28] presents an electronic solution integrated
into a bracelet for collecting and processing worker’s vital parameter data to
minimize the physical strain on miners. The acquired data is transmitted via
Bluetooth. Additionally, sensors for monitoring gas concentration and miner lo-
cation within the mine workings, with wireless communication capabilities, are
embedded in mining lamps. A similar solution was presented in [29]. Essentially,
many operational, technical, and economic factors influence the operation of
LHDs and haul trucks. Many of these factors have a random nature [30], which
can be unravelled through the use of IoT sensors that provide access to data on
various operational contexts crucial for optimizing the production process. An
example of this is the use of a cost-effective and non-invasive IoT inertial sensor
for multidimensional assessment of dynamic overloads acting on the machine,
with factor analysis considering the operational regime (loading, full-load driv-
ing, unloading, empty-load driving), road conditions, shape and length of the
road, operator driving style, etc. [31]. Other applications of this sensor include
tracking machine manoeuvres [32], localization [33], or detecting damages to
structural elements (joints) [34]. In [35], the authors conceptually presented the
use of IoT platforms employing RFID technology for the localization and track-
ing of machines and miners in an underground mine.
Decision-making under uncertainty is inherent to the mining industry. Max-

imizing an organization’s operational potential requires the development of spe-
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cialized computational, engineering, analytical, and simulation environments, as
well as optimization-support systems for existing processes and planning opera-
tions based on accurate and reliable information. This reduces intuitive decision-
making to a minimum. The authors of [36] presented the results of a case study
on a safety management system in a mine, utilizing a simulation model of mining
truck transport operations, based on the example of an underground limestone
mine in Danyang, South Korea. Data from three months of truck operation
were analyzed. The model predicted parameters such as ore hauling time, cycle
count, production volume, and delay times under various boundary conditions.
Article [37] addressed the issue of modeling the heterogeneous ore flow from the
mining field to the extraction shaft via conveyor transport in an underground
copper mine. The authors utilized the dedicated FlexSim environment to con-
struct a simulation model of underground transport for tracking ore logistics,
incorporating functionality for estimating the qualitative and quantitative pa-
rameters of the ore. In [38], the author also utilized the FlexSim environment
to develop a simulation model of the logistical system in an underground coal
mine. The simulation and analysis of coal transportation, along with auxiliary
operations, demonstrated the potential for a 30% increase in efficiency through
the use of current support technologies and faster coal transportation.
In conclusion, the issues of monitoring production processes, tracking ore

logistics, and optimizing the operation of transport machinery are well recog-
nized in the literature. However, most methods described in the literature focus
on relatively small mines, case studies, or research and development projects.
Many studies do not present ready-made systems based on real-time monitored
data. It is common for studies to rely on several months of historical data sam-
ples. Additionally, many studies do not focus on underground mines, or their
research conditions differ from those of a typical underground mine. There is
a lack of clear guidelines on how to obtain reliable information about opera-
tional parameters and haulage statistics in a dependable and cost-effective way.
Additionally, exploring how to automate the entire process of data fusion from
different sources and its validation is essential for further development of meth-
ods that support both operational and managerial processes.
This paper presents an analytical system based on data from an anti-collision

system integrated into self-propelled machines. The system was tested at KGHM,
a multi-plant mining company, offering an incomparably larger research scope,
diversity, and volume of collected data.
The article first describes (in the following section) the anti-collision sys-

tem used and the data obtained from it, the necessary data cleaning and fusion
procedures, as well as three separate algorithms proposed for efficiency analy-
sis. These algorithms consider the detection of operator working time, machine
working time, and the detection of ore haulage cycles for haul trucks and load-
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ers. Section 3 presents the output of the system in forms of reports created in
cooperation with plant engineers (end-users). Finally, the article ends with our
conclusions.

2. Materials and methods

The research presented in this article was conducted using a custom-made
collision avoidance detection system installed in one of the KGHM Polska
Miedź S.A. copper mines in Poland. Previously, the mine has been using this
system to improve overall safety in all mine areas. However, as the informa-
tional potential of the data became increasingly valuable, the company decided
to explore it further, thus leading to this research project. Consequently, several
procedures for data cleaning and fusion, along with advanced algorithms for ef-
ficiency analysis, were developed. These are presented in detail in the following
part of this section.

2.1. Collision avoidance system

The main idea behind the collision avoidance system (CAS) implemented in
the studied mine was to utilize radio-based devices already mounted on all ma-
chines. Therefore, most components of the CAS were custom-made to meet that
specific needs of the mine. For this reason, the entire machinery park was made
system-compatible with little to no additional work. For worker equipment, each
mining lamp required modification; however, after the initial setup period, the
system was fully operational online.
The CAS consists of three main components: the active unit, the passive

unit, and the gate (all presented in Fig. 1). At the time of this research, more
than one hundred active units, nearly a thousand of passive units, and around
a dozen gates were installed. The characteristics of each following device are as
follows:

� Active unit – similar to RFID technology, it is used for both receiving and
transmitting radio signals. One unit is mounted on each mining machine,
and its main task is to inform the machine operator about the number
of nearby unprotected workers (i.e., those not seated in other machines).
The active unit also records every contact between the machine and other
active and passive units, and transmits this data to storage whenever the
machine is close to a system transmitting gate. The main power source of
the active unit is the machine itself; therefore, and the active unit does
not record any data when the machine is turned off.

� Passive unit – mounted on both worker equipment and machinery. This
unit does not emit any signals, and can only be detected by an active unit.
Passive tags do not require an active power source and can operate for
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a)

b1)

b2)

c1)

c2)

Fig. 1. Devices used in the CAS that was utilized in the studied mine: a) gate for data
transmission, b) passive units (b1 – mounted in workers’ mining lamps, b2 – mounted at other
locations), c) active units (c1 – display for the machine operator, c2 – active device mounted

on machines).

years on a battery pack. The purpose of mounting passive units on ma-
chines is to ensure they remain detectable when not in operation (i.e., when
their active units are off). For the research presented in this paper, passive
units were also mounted at locations to detect specific work operations.

� Gate – this device is used to establish contact with nearby active units and
transmit all recorded data from machines to the centralized data storage
of the system. Gates should be mounted in locations most frequently vis-
ited by machines to maximize online data availability. For this purpose,
fueling chambers were selected, as each machine tank is refueled at least
once within a three-day window (usually on a daily basis). In addition,
the fueling time was deemed to be optimal for the data transfer to be
successful.
The entire CAS works on the principle of establishing contact between active

and other active or passive units. Whenever another unit comes within range
of an active device, a contact event is generated and maintained until the other
unit leaves the detection area. At any given moment, the operator of a machine
equipped with an active unit is informed, using a display, as presented in Fig. 1c,
of the number of contacts currently established by their machine.



126 A. Skoczylas et al.

The system has several additional features specifically applicable to mining
operations. First, the system takes into account situations where a worker (with
a passive unit) can travel on another machine (which has both an active and
passive unit). In such scenarios, the system enables the option to hide (or cover)
the passive unit that is closest to the active unit. This action can be repeated,
resulting in multiple passive units being hidden. Units that are hidden remain
visible to other units; however, those units see them as “safe” and therefore
do not inform operators about additional people in the area – because they
are traveling on machines. The “hide” status can be removed by either of two
factors: (1) the machine operator terminates the “hide” status for all units or
(2) the hidden unit moves away from the active unit, and the contact is ended.

Table 1. Events supported by the CAS and their descriptions.

Event name Event category Event description

START Startup The first row saved at startup, indicating the
active unit’s startup time.

IDENTIFICATION Startup Self-identification of the active unit performed
at each startup. This row records the active and
passive IDs visible to other machines.

DATA DUMP Data transfer The active unit contacts the gate and begins
data transfer. The transfer lasts as long as the
gate is within range, sending events from oldest
to newest.

CONTACT (MACHINE) Contact start The active unit has made contact with another
active unit (mounted on another mining ma-
chine).

CONTACT (PERSON) Contact start The active unit has made contact with a passive
unit assigned to a worker.

CONTACT (OTHER) Contact start The active unit has made contact with a passive
unit assigned to other tasks, e.g., locations of
interest.

CONTACT (PARKING) Contact start The active unit has made contact with a passive
unit mounted on a machine whose active unit is
turned off (parking mode).

END OF CONTACT Contact end End of contact with another unit, applies to all
contacts.

HIDE CONTACT Hiding The operator has pressed the hide button, caus-
ing the active unit to hide the closest passive
unit.

HIDEN Hiding The active unit has contacted a passive unit that
was hidden by another active unit.

END OF HIDE Hiding The hiding status ends either manually by the
operator or when the hidden unit leaves the ac-
tive units’ range.
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Data from the CAS comes in a .csv file format, where one file is created for
each active unit. Information about established contacts is in a row-based format
with five main columns: system ID for the second unit, type of event (one row
per event), date, time, and description (standardized name and type of machine
or worker involved in the contact). The system supports 11 different event types,
and their descriptions are presented in Table 1. As the entire system operates
in Polish, the names of events were translated into the best English equivalents.
Events are registered by the CAS active units in real time as they occur

in the mine. These events are temporarily stored on the machines until the
vehicle reaches a gate unit, at which point the data are transferred to the central
event repository of CAS for the entire mine. The delay between event recording
and its appearance in the global repository depends on the machine’s operational
pattern – some machines operate near gate units, while others access them only
once per shift. This process could be made closer to real-time by equipping
machines with long-range wireless communication technologies, such as long-
term evolution (LTE) networks. Currently, the CAS system does not perform
any on-site data processing. All data stored in the central repository are raw and
include errors typical of the system’s operation. Data cleaning and preparation
are carried out by the algorithms described later in this paper.
The CAS’s main role is to increase safety by informing operators of possible

collisions. However, efforts are also underway to increase the system’s usability,
for example, by using it to locate underground personnel during rescue opera-
tions. One such application involves using system data for efficiency analysis of
mining operations, which is presented in the following chapters.

2.2. Additional passive units

The CAS can be very useful on its own; however, it can be further enhanced,
especially for efficiency monitoring, by mounting additional passive units. These
units can be installed in areas of interest to gather information and calculate
KPIs for various parts of the mining processes. During initial consultations with
mining experts, several locations were established as possible targets for the
initial stage:

� Dumping zone – The most basic form of ore transport in mines is handled
by haul trucks and loaders. During each work cycle, the haul truck is
loaded by the loader at the mining face, and then travels to the dumping
zone (common in larger enterprises) where the ore is unloaded. The work
cycle ends with the haul truck returning to the loader to begin the next
work cycle. The basic CAS functionality allows for monitoring contacts
between haul trucks and loaders, thus providing some basic KPIs, such
as their cycle duration. However, by adding another sensor mounted at the
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dumping zone, a complete picture of the work cycle can be established.
Monitoring both loading and unloading phases, a cycle can be broken
down into its individual components, allowing for more detailed efficiency
analysis.

� Heavy machinery chamber (HMC) – In the monitored mine, the work is
organized into four shifts. At the beginning of the first and third shifts,
machines are dispatched from the HMC to their respective work sites.
Machines return to the HMC after completing two work shifts – at the end
of the second and fourth shift. By mounting a sensor at each HMC, one
can begin monitoring the total time machines spend at their workplaces.
This data can be further combined with information on the first contact
between machines and their operators, as well as cycle timestamps to
further enhance time-based KPIs.
In compliance with expert recommendations, a total of 50 passive units were

installed, mostly at dumping zones, with a smaller number placed in heavy
machinery chambers.

2.3. Data cleaning and fusion

In an ideal situation, contact events related to a specific object should follow
several predictable sequences. The most basic case is where an active unit detects
other units, and after some time, contact ends due to loss of range. In this case,
only two events are generated:

CONTACT (MACHINE, PERSON, OTHER, PARKING)

→ END CONTACT. (1)

Another basic situation is when the active unit detects a passive one that was
previously hidden by another active unit. In this situation, only two events are
recorded:

HIDEN→ END CONTACT. (2)

The situation becomes a little bit more complex if the hidden status is termi-
nated before the contact ends. If this happens, a contact event is created to
indicate that the given worker is no longer actively hidden:

HIDEN→ CONTACT (PERSON)→ END CONTACT. (3)

Finally, the most complex situation is when an active unit hides another passive
unit. In such a situation, one event is generated when the hiding operation starts
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and another when the hiding is completed, regardless of whether the hiding was
completed by the operator or by the unit exiting the active unit range.

CONTACT (PERSON)→ HIDE CONTACT
→ END OF HIDE → END CONTACT. (4)

However, during initial research, it was found that processing the hidden
status is not really helpful in efficiency analysis, but instead, it can help correct
some of the data processing inconsistencies. Therefore, all HIDEN and HIDE
CONTACT statuses were replaced with CONTACT (PERSON), and END OF
HIDE was replaced with END CONTACT.
The CAS is based on radio waves, which naturally leads to some errors, such

as contact breaks occurring at the edge of the communication range. In un-
derground mines, these disturbances in radio-based communication are further
naturally amplified; however, the data cleaning and processing methods devel-
oped and described below have allowed us to minimize this negative impact.
The three most common problems found in the data were:

� Hanged contacts – sequences of events that start with CONTACT (MA-
CHINE, PERSON, OTHER, PARKING) but lack a corresponding END
CONTACT event. This results in an incorrect order of events, as if the
machines meet again, a new star event will be logged without the previous
contact being properly closed.

� Contacts broken into multiple pieces – most probably because of the char-
acteristics of radio technology, all contacts (even the closest ones) can be
broken into multiple parts. This results in a start event occurring right
after (even at the same time with) an end event.

� Data latency – because data flow, there is a possibility for some machines
that the data will be transferred with some latency. This is a problem
of machines that do not need frequent visits to fueling stations. To ad-
dress this, it was decided that with each data processing, the algorithms
recalculate data going back up to three days (i.e., that is for day X, data
from X-3 onward are reprocessed) in order to refresh incomplete KPIs for
machines with latency.
To fix the aforementioned problems, a cleaning procedure was implemented

that runs separately for each unique pair of a machine and another object,
processing only the start and end of contacts (with hiding events treated as
contacts as well). This procedure iteratively analyzes events, one after another,
and when an event is repeated multiple times, one of two actions is performed.
First, if the repeated events occur within 15 minutes of each other, the pro-
cedure marks the earlier event as valid for contact starts or the later event as
valid for contact ends. Second, if the gap between repeated events is longer
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than 15 minutes, the procedure inserts an artificial event to either start or end
the contact (depending on which is missing) with the same timestamp. This
action results in the creation of contacts with a duration of 0 s, which symbol-
izes data loss, but still provides useful information for subsequent algorithms.
After fixing the event order, the original row-oriented data can be transformed
into column-oriented data and cleaned again. In this new format, there are
no events, and each row represents one contact with the following parameters:
start and end time, duration, information about the machine (an active unit
that recorded such a contact), and information about the contacted object. The
second cleaning removes duplicated rows (which sometimes occurs) and then
merges all contacts separated by less than 30 s.
Finally, a fusion with other systems operating in mines is performed in order

to further enhance subsequent analyses. The most important system to connect
is the human resources (HR) system, which allows linking operators to their
machines and associating machines that have worked in the same area. This
linkage also allows for shortcuts in data processing, as only selected parts of
machines are being taken into account (ones that have an ore haulage work
assigned in HR).
Each day, over 600 000 events are reported by the CAS units. These events

are stored in a central database in raw format and later processed by the algo-
rithms described in this paper to generate reports. After cleaning, approximately
200 000 unique contact events – with defined start and end times – are identified
(by the cleaning methods). These contacts form the foundation for the report-
ing process described in the following section. Data from the CAS system are
collected in the central repository independently from other systems, as they
are retrieved from machines via gate units. At specified time intervals, algo-
rithms are executed to clean the data and generate reports. Currently, the pro-
cess of data cleaning and report generation is carried out twice daily; however,
it can be configured for more frequent runs – such as once per shift or even
hourly. The current schedule reflects the specific requirements of the mining
enterprise.

2.4. Algorithms for efficiency analysis

The objective of processing CAS data was to establish KPIs related to time
management and ore haulage parameters. To achieve this target, three algo-
rithms were designed: one for detecting operator working time, one for detecting
machine working time, and one for detecting work cycles. Each algorithm pro-
cesses data on a daily basis rather than by individual work shifts. This approach
was chosen because overtime work by both operators and machines was quite
common in the studied mine. All three algorithms were designed to operate
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independently; however, results from time detection algorithms were used to
support the cycle detection algorithm, as this will be discussed in more detail
later.

2.4.1. Detection of operator work time. The main purpose of opera-
tor work time detection was to select all contacts between an operator and their
machine, thereby establishing the total work time of the operator. As a sec-
ondary purpose, these contacts can be used for disciplinary action, as operators
are prohibited from leaving their vehicles for safety reasons. The detailed proce-
dure for detecting operator work time is presented in Fig. 2. Initially, operators
are matched to their respective machines using data from the HR system. Under
normal conditions, the CAS records some short contacts between the operator
and their machine at the start of a shift, where the necessary inspection and
other formalities take place. Then, after leaving the heavy machinery chamber,
the operator is expected to maintain one long contact until the end of the shift.
The exception to this pattern occurs with machines such as drilling jumbos,
where operators need to leave the machine in order to connect the necessary
power and water supply.
Unfortunately, during the research, it was found that operators have a habit

of shutting down machine power supplies when returning to heavy machinery
chambers (mainly at the end of the second and fourth shifts). This action causes
the active CAS unit to stop working, without properly ending all contacts, thus
resulting in “hanged” contacts. In a situation where the operator maintained un-
interrupted contact with the machine throughout the shift, this action results in
eliminating the contact, leaving a zero-second contact as an indication of some-
thing missing. Unfortunately, no solution was found to recover this lost contact
ending. Instead, an alternative was designed using contact interpolation. As this
situation usually happens whenever machines are returning to HMCs, the con-
tact’s end time is interpolated to match the time the operator’s passive CAS
unit meets the sensor mounted in the HMC. This interpolation is quite accu-
rate because usually only a few minutes elapse between meeting the sensor and
the operator finishing work.
In large mining enterprises, it is relatively common for the HR records not to

fully match the actual situation. Once every few days, operators may change ma-
chines (either through shift changes or replacements), and sometimes these mod-
ifications are not updated in the HR system. On such occasions, the following
solution was implemented: when there are too few contacts with the assigned
operator, the algorithm checks contacts with other personnel. If it identifies
a worker with one long contact that lasts for hours, it assumes that such a sit-
uation happened, and algorithms note the change of operators. However, for
safety reasons, this contact needs to be uninterrupted to avoid misinterpret-
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ing situations where two machines collaborate during a shift and generate large
combined contact times.
The overall result of this detection is the estimation of each operator’s start

and end of work, as well as confirmation of who actually operated the machine.
In addition, all selected machine-operator contacts are visible in reports, en-
abling mining foremen to better enforce health and safety policies. The topic of
reporting is further extended in Sec. 3.

2.4.2. Detection of machine work time. Machine work time detection
is a task very similar to operator work time detection. The main goal here is
to establish the actual times when a machine leaves and returns to the HMC
(heading to and returning from work). This seemingly simple task is, in reality,
more complicated due to various exceptions and noise in the data. Commonly,
the machine comes into contact with the passive unit mounted at the HMC
during regular work operations. There is also a common practice of leaving the
machine at the workplace after the second and fourth shifts. For this reason, an
algorithm (shown in Fig. 3) was designed to detect machine working time and
then adjust it based on input from the HR system.
The function begins by iteration over the unique shifts of each machine.

For each shift, all contacts with the HMC sensor are selected; the earliest con-
tact within the first half of the shift is estimated as the “going to work” time,
while the latest contact within the second half is considered the “return from
work” time. In cases where one of these two times is missing, the corresponding
shift boundary is used as an estimate. This basic detection is later verified and
corrected using data from the HR system. Each detected work time is then re-
analyzed, and if a corresponding HR entry is found (documenting that the ma-
chine did in fact operate during that shift), the detection is classified as success-
ful. In situations where only a “return from work” event is detected and there
is no HR entry for the selected shift but there is one for the following shift, the
algorithm assumes that the machine began working earlier (prior to the current
shift boundary). In analogical situations where only “going to work” event is
found and there is no HR entry for the selected shift but there is one for the pre-
vious shift, the algorithm assumes that the machine remained at the workplace,
working overtime. In both situations, contacts, interpreted as either “returning
from work” and “going to work” are reversed, and the entries are merged with
adjacent shifts (either next or previous shifts).

2.4.3. Detection of ore haulage cycles. The core of ore haulage cy-
cle detection lies in the parametrization of work cycles performed by both the
haul truck and the loaders. From this action, one can derive a set of the fol-
lowing KPIs: cycle duration and its components, the number of loaded haul
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START

STOP

Iterate over unique machine-shifts for one day

Select all contacts between specified machine
and HMC sensor during one shift

Skip to next machine-shift
or exit the procedure

Are they any contacts?

Mark first contacts in first half of the shift
as ''going to work'', and last contact in second

half of the shift as "returning from work"

Interpolate "going to work" with shift beginning
 and "returning from work" with shift ending

 if not detected

Is HR for this
specific

machine-shift
found?

NO

YES

YES

NO

Save machine working time

NO

NO

Change detected "returning 
from work" to "going to work" 
and merge input with next shift

Change detected "going to work" 
to "returning from work" and 

merge input with previous shift

YES

YES

Is HR found for the next
machine-shift & "going 
to work" interpolated?

Is HR found for the 
previous machine-shift 

& "returning from work" 
interpolated?

Discard detection results

Fig. 3. Simplified diagram of the procedure for detecting machine work time
using data from the CAS system.

trucks (for loaders), and the number of completed cycles. The latter is of great
importance for mining operations, as, in most cases, this fundamental metric
is recorded based on the operator’s verbal statement. In many situations and
different environments, it has been proven that falsifying this value is difficult
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to detect (without specialized computer aid) and can negatively impact subse-
quent stages of the process. The CAS is an ideal computer-assisted aid for this
specific task; therefore, ore haulage detection was chosen as the primary focus
of this research.
Generally, in mines, there are two ways in which wheeled transport for ore

haulage can be conducted. The ore can be transported either by the loader alone
or through a cooperation of a loader and a haul truck. In the second case, the
loader stays at the mining face and loads every truck (usually more than one)
that arrives. In smaller mines, the ore is transported by the haul truck directly
to the surface through the portal. However, in larger mines, the truck trans-
ports the ore to the next processing point, the dumping zone, at which the
ore is broken down using a rock breaker and loaded onto the next means of
transport, usually a belt conveyor or underground train.
When machines perform ore haulage at the dumping zone, a CAS passive

unit can be mounted at the rock breaker location. This allows one to detect
repeated cyclical contacts of machines (trucks or loaders) with the dumping
zone. In the case of haul trucks, specific contacts between the truck and the
loader can also be filtered, thus providing further insight into actual operations.
Both of these situations are visualized in Fig. 4.

a) Haul truck – dumping zone:

Haul truck – loader:

∆t

b)

∆t

Loader – dumping zone:

Fig. 4. Diagram of the work cycles as seen from the CAS for a) cooperation between the haul
truck and the loader, and b) standalone operation of the loader. Contacts between the dumping
zone and loaders or haul trucks are marked with green rectangles, while contacts between haul

trucks and loaders are marked with orange ones.

The environment of a real-life underground mine is very complex and full of
exceptional situations that do not follow the patterns specified above. During
research, dozens of such exceptions were found and dealt with through continu-
ous and iterative improvements to the cycle detection algorithm. The following
list summarizes the most common problems found in the data from CAS:

� In general, a direct connection between one loader and one haul truck can-
not be established because, in larger mining faces, multiple loaders work
in close proximity. In such situations, it is common for loaders to switch
and load the trucks that are available, causing frequent alternations of
loaders from the haul truck’s perspective.
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� A direct connection between one machine and a single dumping zone for
shift cannot also be made, as sometimes two or more dumping zones are
used during one machine-shift (as per the mining plan).

� Each haul truck (usually) is loaded with three loader buckets. In the CAS
data, this action appears as three separate contacts, a smaller number of
contacts with varying durations, or one long contact that spans the entire
operation.

� Malfunction of CAS active units sometimes happens, causing loss of data
from a single contact point (e.g., haul truck being loaded by a missing
loader). To deal with this specific problem, a procedure for reversing miss-
ing contacts was implemented, allowing the algorithms to fix around 90%
of such cases.

� A haul truck or loader may have contacts with a dumping zone different
from the one where unloading actually took place. This sometimes hap-
pens when other dumping zones are located close to the machine’s path,
resulting sometimes in a contact being recorded.

� Most dumping zones were equipped with passive CAS units; however,
some remain undetectable by the system. In such cases, cycle detection
relies solely on analyzing contacts between haul trucks and loaders. If ore
haulage is done exclusively by loaders – detection is impossible.

� It is quite common for machines to operate for more than one shift. Op-
erators quite often take overtime, working up to 1.5 times the length of
a normal shift. This is one of the main reasons why the algorithms process
data on a daily basis rather than by individual shifts.
The task of cycle detection in an underground mine is complicated because

of all the above-mentioned exceptions. Therefore, to utilize CAS data in the best
possible way and extract all achievable information about the process, a complex
multi-layered procedure was developed (shown in Fig. 5).
The detection begins by filtering all data to retain only contacts that are

potentially related to ore haulage. Usually, there are hundreds of thousands
of contacts recorded daily by CAS. Because the system operates bidirectionally
(meaning contacts between two machines should be recorded by both of them), it
was decided that cycle detection is primarily focused on haul trucks and loaders
that do not cooperate with haul trucks (i.e., contacts between the loader and the
dumping zone). Analyzing every single contact would be a very tedious task;
therefore, only a selected subset of the data is initially filtered to be taken into
account in the analysis. Contacts that meet at least one of the below-mentioned
criteria are initially labeled as parts of ore haulage and used as samples for
subsequent procedures:

� The contact occurs between a haul truck or loader and the dumping zone
passive CAS unit.
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START

STOP

Filtering contacts that indicate possible
haulage operation

Ore haulage cycles detection from single source data
(loaders, haul trucks with missing loaders)

Ore haulage cycles detection from double source data
(haul trucks cooperating with loaders)

Cycles validation

Assignment of cycles to shifts

Fig. 5. High-level scheme of the procedure for ore haulage cycle detection.

� The contact occurs between a haul truck and a loader, and the HR infor-
mation for both machines indicates ore haulage, and the same information
indicates a similar workplace.
The initial filter for contacts reduces the overall daily sample to only a few

thousand events for all machines. From that point, data from one machine day
is selected and undergoes one of two possible flows. The simpler flow (detection
from single-source data) is designed to detect cycles based only on contacts with
the dumping zone (without involving a second machine). The entire procedure
consists of the following five steps:
1. Contacts with each unique CAS object are transformed into a normalized
binary vector sampled every 1 s. The vector length is 86 400 (seconds in
24 hours), with contact time with the object being marked by ones and
zeros indicating no contact.

2. On every vector, an autocorrelation is performed to check whether con-
tacts are repetitive. Only vectors that meet the autocorrelation threshold
proceed to the next steps; however, this criterion is really low in order to
also account for occasional visits to the dumping zone.

3. An addition operation is performed on every vector that successfully passes
the autocorrelation check. This action creates one integer vector in which
each second represents the number of dumping zones, the machine had
contact with (usually one, but up to two in rare cases).

4. The vector is divided at moments when the machine loses contact with
the dumping zone sensor, and each individual fragment is measured in
length. The duration of all fragments is then collected into a single array
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and cleaned using the 1.5 IQR rule to remove shifts in beginnings and
endings (usually visibly longer). Finally, after cleaning, the mean duration
is established.

5. The mean duration is used to determine whether given fragments qualify as
cycles. If a fragment’s duration xi is close to the mean x (0.5x ≤ xi ≤ 1.5x),
it is detected as a work cycle.
When contacts with both the dumping zone and the loader (strictly for haul

trucks) are recorded during the day, a different detection procedure is used. The
simplified flow of the algorithm for double-source detection is presented in Fig. 6.
The start of the procedure is similar to the single-source method; all unique con-
tacts of the truck with loaders and dumping zones are vectorized (marked on
a binary vector of length 86 400). In the double-source approach, the algorithm
skips the autocorrelation criterion, as it is not compatible with the contact
signals from loaders. Instead, all possible contacts are initially taken into ac-
count, and problems are later fixed during the cycle validation procedure. In
the second step, both vector groups (vectors of contacts with loaders and vec-
tors of contacts with dumping zones) are summed along the vertical axis within
each group. This action creates two vectors that describe the number of loaders
and dumping zones seen at every second of the haul truck’s operation. Then,
all endings of dumping zone contacts are identified (moments when the amount
of visible dumping zones drops from a positive value to zero), and their indices
are saved. These points are then used to divide the loader signal into fragments,
each of which could be a possible cycle. The decision on whether each fragment
is actually a cycle is made by a random forest model that uses a set of five
statistics from each fragment.
During research, many different forms of algorithms were tested to carry out

cycle detection. Initially, the work was focused on creating a single model that
would take input signals from the CAS and return the number of cycles. The
main problem found during this procedure was the lack of a source that accu-
rately recorded how many cycles the machine actually completed. Mine statis-
tics were made based on operator’s verbal reports, which were susceptible to
fraud; there is no other system for such detection, and the CAS itself sometimes
has problems or noise in the data. Consequently, the global approach failed,
as none of the tested architectures (ranging from standard classifiers and deep
learning models to various data handling and cleaning strategies with different
inputs and outputs) returned satisfactory results. Instead, a random forest clas-
sifier was trained for the subtask of binary classification. The main task of this
model was to process a set of input statistics (derived from the contact vector
with loaders) and determine whether a loading operation actually occurred. As
fragments are separated by the dumping zone signal (indicating possible un-
loading), each time the model declares loading operations, the process estimates
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that a haulage cycle occurred during this fragment. The model input consists of
a set of five statistics chosen after initial reconnaissance:

� Total length of the fragment (duration of the full haulage cycle).
� Time from the start of the fragment to the first contact with the loader
(duration of haul truck’s travel with an empty box from the dumping zone
to the loading site).

� Time from the end of last contact to the end of the fragment (duration
of haul truck’s travel with full box from the loading site to the dumping
zone, including unloading time).

� Number of unique contacts (number of buckets that the haul truck was
filled with).

� Total time of contact with at least one loader (total time of the loading
operation).
Model training was carried out with a test sample manually created by one

of the authors. Samples and statistics were generated from a few days of work
by several haul trucks, with each fragment assigned a category of 1 – a cycle, or
0 – not a cycle, depending on the context and the author’s current knowledge.
A total of 485 fragments were assessed and then used for model training. Finally,
the random forest model achieved an accuracy of 95.8% in matching the human-
labeled detections.
The above-described procedure enables the detection of most cycles. How-

ever, there are some quite common exceptions that require additional work.
For this reason, a separate validation algorithm was designed to improve over-
all results. In this function, three frequent issues: rejected fragments that are
too long, rejected fragments that are too short, and empty fragments where no
loader signal was detected, were found. For the latter one, validation is done
using a single-source algorithm without any additional modifications. As for the
non-empty fragments, two separate procedures are designed, depending on their
duration, as shown in Fig. 7.
Fragments (f i) of long duration are defined as those greater or equal to

three times the mean duration (x) of all positively detected cycles (fi ≥ 3x).
Such cases naturally occur at the beginning of each first and third shift, where
machines need to travel from the HMC to the workplace, which increases the du-
ration of the cycle. This can also potentially happen when trucks change work-
places or perform a cycle in a dumping zone that is not supported. In all these
situations, only the last part of the fragment is a real cycle; therefore, the proce-
dure takes a segment from the right side of length equal to one mean duration (x)
and loads it into the model to check whether the cycle is really there. If the model
makes a positive prediction, the fragment is separated into waste (left side)
and a newly detected cycle (right side). This approach is presented in Fig. 7a.
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a)

Rejected long fragment

3x

Waste Cycle

Positive
prediction

x
Random

forest

x – mean duration of detected cycles–

–

–

b)
Cycle

Cycle

Cycle

Negative prediction

Positive prediction

Random
forest

W

W

Fig. 7. Symbolic representation of the validation procedure for initially rejected fragments
that are: a) too long, or b) too short.

Fragments (f i) of short duration are defined as those smaller than 80% of
the mean duration (x̄) of all positively detected cycles (fi < 0.8x̄). These frag-
ments occur when other dumping zones are present in close proximity to the
machine’s travel route or when a truck is maneuvering (or performing other
operations) near the dumping zone CAS unit. When short fragments appear,
there are usually three or more of them. Dealing with short fragments is a little
bit trickier and depends on their surroundings. If a series of short fragments is
followed by a cycle, then the main action is to attempt to merge them into that
cycle. To do this, the algorithm considers the fragments together with the sub-
sequent cycle and verifies the prediction using a random forest model. If the
prediction is successful, all fragments and the cycle are merged and classified
as a single cycle. In the case of a negative prediction, the left-most fragment is
declared a waste, and the procedure is repeated. This process continues until the
model returns a positive prediction for some combination or all short fragments
are declared a waste. This approach is presented in Fig. 7b. If merging the short
fragments with a cycle is unsuccessful or if the next fragment after a series of
short fragments is not a cycle, another approach is applied. In such situations,
the algorithm tries to create a completely new cycle by merging all short frag-
ments t and performing predictions with a random forest model. This action
follows the same iterative process, where in cases of negative prediction, the
left-most fragment is declared a waste until a cycle is found or all fragments are
declined.
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Finally, after cycle detection (regardless of the algorithm used), shift as-
signment must be performed. Trucks and loaders usually work overtime, which
causes at least a few cycles occurring after the shift ends. Each of these cycles
needs to be assigned to the previous shift, as this information is linked to the
operator driving the machine. The simplest way to perform this task is to verify
cycles against the detected operator work time. For a specific machine shift that
was detected, each cycle that is performed between the operator’s start and
endpoints is assigned to that operator In rare cases when no operator time is
detected, cycles are first sorted using shift hours and then verified (going from
latest to earliest) to see whether any given cycle is closer to the previous one or
the next shift. In cases where a cycle is closer in time to the end of the previous
shift but is currently assigned to the next shift, its assignment is adjusted to
match the previous operator’s shift. This process will continue until all cycles
have been verified.
Additionally, the proposed detection method enables not only the estimation

of the number, duration, and structure of haulage cycles, but, when combined
with machine type information obtained through data fusion, it also enables
estimation of ore mass movement. This is possible because machines of the
same type typically transport similar amounts of ore per cycle.

2.4.4. Detection of truck-loading cycles. The ore haulage detection
described in the previous chapter is used to generate KPIs for trucks and loaders
that transport ore from the mining face to the dumping zone. However, a small
modification can be made to the algorithm to also detect some metrics for
the loaders that load ore onto trucks. After successfully detecting truck cycles,
each cycle can be analyzed to extract the loader that performed the loading
operation. Because more than one loader may have contact with the truck during
a cycle, the most prominent one is chosen as the one performing work. The most
prominent loader is understood as the one with the longest contact duration with
the haul truck during one cycle, with the exception that the contact cannot last
for the entire duration of the cycle. As one loader usually loads more than one
truck, the results of this detection need to be aggregated, as shown in Fig. 8.

Loader 1

Loader 2

Haul truck 2

Ti
m

e

Switch

Haul truck 1 

Cycle M1-1

Cycle M1-2

Cycle M1-3

Cycle M1-4 Cycle M2-2

Cycle M2-3

Cycle M2-1

Fig. 8. Loader cooperation at a shared workplace during truck-loading cycles.
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Essentially, loader detection enables establishing a very similar set of re-
ports and KPIs to the one used for ore haulage cycle detection. However, as
the mine was not really interested in this particular subject, only aggregated re-
ports include the results obtained during detection (the overall number of cycles
detected compared to the HR statement).

3. Results

In the course of this research, several reports in two distinct categories were
developed to meet the mine’s needs. Each report went through a development
cycle involving regular discussions (held biweekly) with end users (mine man-
agers and foremen). During this process, it was decided that two kinds of reports
would be launched: aggregated and detailed. The purpose of the aggregated re-
ports is to present key process KPIs to the end user. If any of the values appear
questionable, the detailed reports can be used to see what happened during that
specific shift.
Due to the experimental nature of the work, the reports were run in a tempo-

rary environment. Every single day, algorithms written in Python processed the
CAS data, and the results were exported to a shared folder on the mine’s net-
work. Aggregated reports were saved in Excel format, while detailed ones were
exported as images in .png file format. As of the writing this article, interest
in reports among mine workers has grown significantly. As a result, special ef-
forts have been launched to integrate the results of this research into the mine’s
existing business intelligence environment.

3.1. Aggregated reports

Three aggregated reports were launched, one for each of the main detec-
tion results (operator time, machine time, and cycles). The main purpose of
these reports was to show, in a simple manner, the general results of detections
and, when possible, compare them to information from the HR systems. It was
decided that the best way to present such data is through a multilayer matrix
structure (an example of such a report is presented in Fig. 9). The following
reports were created in this category:

� Operators time – presents the detected work time for each machine oper-
ator. All cells are grouped by heavy machinery chambers and machines.
Each cell shows a value representing the detected time using data from
CAS and a color on a green-to-red (good-to-bad) scale that is scaled indi-
vidually for each machine.

� Machines work time – presents the time machines go to and return from
work for every machine. The grouping is the same as for operator time;
however, each cell contains two values instead of one. Both values are
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in hh:mm format, and the first one indicates the detected time of the
machine leaving the HMC (going to work), while the second one indicates
the machine returning to the HMC (returning from work).

� Work cycles – present the number of performed cycles (for ore haulage) or
loaded vehicles (for loading haul trucks). The format of this report corre-
sponds to the style of the previous ones, with cell ordering and formatting.
However, each cell contains multiple values, depending on the operation
performed. For standard ore haulage or truck loading, each cell contains
the number of cycles detected using CAS and the number that was re-
ported in HR. In cases where machines perform other cyclic work that is
not detected by CAS (such as stone haulage), this value is also reported
to give end users a better understanding of the work carried out.
Each of the above-mentioned reports is fully interactive. All non-empty cells

have a comment that appears whenever the mouse hovers over them. In this
section, all of the information is inserted: machine, operator, and workplace
description, work record from HR, and the detection results from all algorithms.
In addition, each cell is also a hyperlink that, when clicked, opens the detailed
report for that specific shift.
Currently, all aggregated reports have been successfully integrated into the

business intelligence environment while preserving all functionalities. Unfortu-
nately, due to security concerns at the mine site, these reports cannot be shared
in their new form.

3.2. Detailed reports

All detailed reports follow a consistent format, similar to a timetable or bar
plot. In these reports, contacts are usually plotted as rectangles, with the width
equal to their duration. As the data are processed within a daily window, reports
cover one day, with the plot space divided into four parts: shifts in chronological
order arranged from the earliest on the left to the most recent on the right, I–IV).
Every report also contains additional information extracted from the HR system;
however, because of data privacy concerns, this information is blurred out.
An exemplary, detailed report of operator working time is presented in

Fig. 10. One of such reports is created on a daily basis for each heavy ma-
chinery chamber and usually contains up to 25 machines. Each “row” of bars
represents one machine, and each bar within this row is a contact between the
machine and its operator. As operators change frequently, the color of contacts
for every second and fourth operator alternates from green to red. Each box also
contains information from HR, mainly about the operator and the types of work
performed during their shift. A corresponding report of machine working time is
presented in Fig. 11. It is structured in a very similar way to the operator work-
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ing time report. The only difference is that the bars do not represent contacts
between machines and the HMC sensor, but rather graphically present detection
results – the times when machines leave and return to the HMC.
Finally, the most unique report of ore haulage cycle detection is presented in

Fig. 12. Similar to previous reports, in every row there are plotted contacts with
one unique object (i.e., loaders and dumping zones for haul trucks and only
dumping zones for loaders). The colors of the contacts depend on the object
being plotted: red is used for loaders and blue for dumping zones. The entire
plot is divided into fragments (as it was done during the detection procedure),
and all fragments that are cycles are colored green, as opposed to all other
fragments that are grayed out (non-cycles). At the bottom of the plotting area,
there is information about detection results compared to HR statements for each
shift. In addition, below the plot itself, there is a legend where all necessary
information from HR about loader’s work is shown.
All of the above-mentioned reports are currently being transferred to the

target mine environment. Once this process is completed, they will be generated
automatically as needed. Until then, the plots are generated in a fixed image
format and shared in a common environment.

4. Conclusions

The necessity for efficient and safe extraction drives ongoing research aimed
at monitoring the movement of mining processes. This facilitates the develop-
ment of performance analyses crucial for supporting effective production plan-
ning. One of the important parameters to track is the movement of wheeled
underground machinery. This article demonstrated the feasibility of utilizing ex-
isting CAS for that purpose, revealing an additional application. The research
was based on data from KGHM Polska Miedź S.A. copper mines in Poland. The
use of data based on three detection methods was presented. The first method in-
volved tracking operator’s working time by analyzing operator-machine contacts.
In turn, the second one enabled tracking machine operating time by detecting
the moment when machines leave and return to the HMC. The third and most
intricate method focused on detecting ore haulage cycles of haul trucks and
loaders, utilizing loading and unloading points as key markers. The procedures
also account for possible data incompleteness and various types of exceptions
identified during the research. It was also necessary to develop multiple data-
cleaning procedures to maximize result accuracy. The algorithms rely primarily
on data coming directly from the mine’s existing system used to support safety,
an additional advantage of the presented methods is the low financial cost of
implementation. However, it was necessary to install additional passive tags to
detect key locations of machine operations, such as the unloading points or the
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HMC. The developed methods facilitated the creation of tailored managerial
reports that enable comprehensive monitoring of production processes. Final
visualizations, as well as the entire work process, were continuously consulted
with the end users to ensure the reports aligned with their operational needs.
Near-future plans include implementing the proposed methods and visualiza-

tions into the mine’s programming environments for automatic and on-demand
user access. During this work, three possible research directions were established
for future investigation. First is the long-term analysis of the aggregated data
from the algorithms and its comparison with other metrics commonly used in
mines. Second is the potential for automatic detection of operator actions that
violate health and safety standards, such as exiting a machine while it is in op-
eration, or entering out-of-use excavations. Finally, the third area is monitoring
refueling stations. It is quite common for queues to form near fuel distribu-
tors during rush hours, and CAS can be used to provide insights and help in
reducing the machinery idle time. In addition, expanding the proposed system
implementation to other underground mining sites is also under consideration.
A significantly broader application of the proposed solution is anticipated

in the long term, as the methods described in this paper can contribute to the
development of a digital twin of an underground mining facility. The system
could potentially provide insights into the full range of interactions within the
mine. However, in our view, an additional localization source is required to
accurately reconstruct the mining environment, as the CAS system offers only
limited localization capabilities – both in terms of spatial resolution and the
scope of equipment it covers.
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