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In this article, a numerical analysis of thermal processes occurring in biological tissue dur-
ing laser irradiation is presented. The mathematical model is based on the two-dimensional
Pennes equation. The analyzed tissue is exposed to the laser irradiation of a moving beam
with constant velocity along the tissue surface. The upper face of the skin tissue is sub-
jected to the vertical laser beam, and it is assumed that heat dissipation through con-
vection and radiation from the surface is negligible compared to the heat delivered by
the laser beam. Thus, the surface is treated as thermally insulated surface. The effect
of the laser beam’s transitional speed and power on the temperature distribution within
the skin tissue are investigated. Moreover, the perfusion rate and the effective scattering
coefficient are treated as variables dependent on tissue damage. In the computational part
of this study, the finite pointset method (FPM) is applied. The temperature distribution
computed with FPM is compared with an analytical one obtained for a three-dimensional
problem by analyzing a relevant cross-section under the same conditions. This modeling
of the dynamic thermal processes within biological tissue subjected to laser irradiation
supports the evaluation of biological tissue damage and provides a basis for determining
the time and intensity of laser irradiation. In the last part of the article, numerical exam-
ples and conclusions are presented.
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1. Introduction

Heat transfer within living tissue is a complex process involving conduction
in a heterogeneous medium, blood perfusion through the tissue, and metabolic
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heat generation. Several mathematical models, nowadays including very ad-
vanced three-phase lag bioheat models, have been proposed and studied to un-
derstand the biological heat transfer within skin tissue [1]. Among these models,
the Pennes model [2], thermal wave models [3], and the dual-phase lag model
are the most commonly used [4]. In the literature, numerous studies have ad-
dressed the solution of heat transfer equations in skin tissue, particularly under
the influence of stationary or moving laser beams. An example is presented in the
work of Askarizadeh and Ahmadikia [5], where the authors derived an analytical
solution for both Fourier and non-Fourier bioheat equations. They incorporated
metabolic heat generation and blood perfusion rate in a two-dimensional skin
tissue model subjected to laser heat flux. Based on the available literature, most
studies have focused on modeling stationary laser beams, while only a limited
number of investigations have addressed moving single-point laser beams. For
example, Partovi et al. [6] solved numerically the Fourier and non-Fourier gov-
erning equations for three-dimensional case by using the standard finite element
method (FEM). Their results compare the thermal response of tissue under
moving single-point and multi-point laser.
Therefore, the application of the finite pointset method (FPM) to model

heat transfer in biological tissue is proposed in this article. The heat transfer
model is based on the transient two-dimensional Pennes equation [7]. Further-
more, the research delves into the influence of laser irradiation from a moving
beam, using an approach based on Beer’s law, which delineates the attenuation
of laser energy as it passes through tissue [8]. The model assumes that the per-
fusion rate and the effective scattering coefficient vary with tissue injury, along
with the energy ratio delivered by the laser. In this study, simplified boundary
conditions with assigned fixed temperature values of 37◦C at the corresponding
boundaries are considered. This temperature, representing the inner layer of skin
tissue, is assumed to be the same for all considered boundaries. The rationale
behind this simplification is to reduce computational burden and to align our
approach with a reference solution [6], enabling straightforward comparison of
results. Such a comparison is essential for assessing the applicability of numeri-
cal techniques to novel problems, including the one addressed here. The authors
are aware that this approach does not fully capture the complexity of real phys-
iological conditions. To better represent heat transfer in biological tissue, future
work will consider a three-layer skin model. In addition, parameter variations
found in the literature will be replaced with fuzzy parameters to account for
uncertainties and enhance the realism of the simulation.
The use of meshless methods in modeling bioheat transfer is not popular in

the literature. In particular, the FPM method remains a novel approach and
represents a contribution to the development of numerical methods for heat
flow with potential medical applications. To the best of the authors’ knowl-
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edge, this study is the first to apply FPM to two-dimensional bioheat problems.
This method relies on the weighted least-squares technique to estimate spatial
derivatives and solve elliptic partial differential equations. Several studies have
explored FPM applications in other areas of mechanics, including fluid mechan-
ics [9], radiative [10] and conductive heat transfer problems [11], and linear
elasticity-related issues [12]. Notably, one of the key advantages of this meshless
approach is its capacity to handle complex geometries and irregular bound-
aries [11]. Unlike traditional FEM or finite difference method, FPM does not re-
quire a structured mesh. Instead, it utilizes a scattered set of points distributed
across the domain, showcasing exceptional flexibility in handling intricate geo-
metrical configurations, and even time-varying geometries. Additionally, mesh-
based approaches prove inadequate for addressing issues related to extensive
mesh deformations, dynamic discontinuities, or scenarios necessitating constant
remeshing throughout the solution process due to their inherent high computa-
tional costs. In response to these challenges, meshless methods have emerged as
viable alternatives, offering potential solutions to alleviate some of the limita-
tions associated with traditional mesh-based methodologies.
The structure of the paper is as follows: Sec. 2 shortly describes the Pennes

equation, Sec. 3 presents the fundamental concepts behind the two-dimensional
FPM and it is numerical implementation for solving the Pennes equation. Nu-
merical examples are presented in Sec. 4. Finally, conclusions and directions for
future work are given in the last section.

2. The Pennes equation

This section presents the Pennes bioheat partial differential equation, along
with appropriate boundary and initial conditions, as the mathematical frame-
work for modeling temperature distribution in biological tissues exposed to dif-
ferent heat sources, particularly laser irradiation from a moving beam with con-
stant velocity. The basic form of the Pennes equation in the two-dimensional
domain is given as follows [13]:

c
∂T

∂t
(x, y, t) = λ

(
∂2T

∂x2
(x, y, t) +

∂2T

∂y2
(x, y, t)

)
+Qperf +Qmet +Qlas, (1)

where λ [W ·m−1 ·K−1] is the thermal conductivity, c [J ·m−3 ·K−1] is the vol-
umetric specific heat, T [◦C] is the temperature, t [s] is the time, x and y [m]
denote spatial coordinates, and Qperf , Qmet, Qlas [W ·m−3] are heat sources due
to blood perfusion, metabolic activity and laser irradiation, respectively.
The laser heat source considered in this study is defined as [6]:

Qlas(x, y, t) = 2εµ′
tQ1(x, t)Q2(y), (2)
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where 2ε [m] is the width of the laser beam cross-section (Fig. 1), µ′
t [m

−1] is the
attenuation coefficient, Q1(x, t) and Q2(y) [W ·m−3] are the heat distribution of
the laser in the x- and y-directions, respectively. The laser’s impact cross-section
is modeled as an interval, representing a reduction of three-dimensional square
of size 2ε × 2ε, moving at a speed v along the tissue in the x-direction. Thus,
Q1(x, t) and Q2(y) based on Beer’s law [14] can be written as:

Q1(x, t) = δ [x− (vt+ xs)] , (3)

Q2(y) = (1−Rf)I0 exp (−µ′
ty), (4)

where Rf [ ] and I0 [W ·m−2] are the light reflection coefficient and the laser
power, respectively. In the simulations, the initial beam center is taken as point
(xs, ys) and it is the location of the laser beam at time t = 0 (in the numer-
ical calculations this point is taken as (0, 0)). The function δ(x) defines the
irradiation region by limiting it to an interval and is given by:

δ(x) =


0, x > ε,

1

2ε
, −ε < x < ε,

0, x < −ε.

(5)

Ly 

Lx 

x 

y 
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. 
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v 
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Fig. 1. Schematic of a two-dimensional skin tissue exposed to a moving laser beam.

The attenuation coefficient is defined as:

µ′
t = µa + µ′

s, (6)

where µa [m−1] is the absorption coefficient and µ′
s [m

−1] is the effective scat-
tering coefficient, which is treated as a function of tissue injury represented by
the Arrhenius integral:

µ′
s(θ = µ′

s nat exp(−θ) + µ′
s den (1− exp(−θ)) . (7)
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The injury Arrhenius integral is defined as [15]:

θ(x, y, tF ) =

tF�

0

A exp

[
− ∆E

RT (x, y, t)

]
dt, (8)

where A [s−1] is the pre-exponential factor, ∆E [J ·mol−1] is the activation
energy of the reaction, R [J ·mol−1 ·K−1] is the universal gas constant, and
tF [s] is the duration of thermal exposure. For parameter values, see Table 4.
The perfusion heat source function taken into account is as follows:

Qperf(x, y, t, θ) = cBGB (θ(x, y, t)) (TB − T (x, y, t)) , (9)

where GB [m3
blood · s−1 ·m−3

tissue] is the blood perfusion rate, cB [J ·m−3 ·K−1] is
the volumetric specific heat of blood, while TB [◦C] denotes the arterial blood
temperature. The blood perfusion coefficient is a function determined based on
the tissue necrosis and is modeled as a polynomial function [15]:

GB(θ(x, y, t)) = GB0

3∑
j=1

mjθ(x, y, t)
j−1, (10)

where mj are specified coefficients (see Sec. 4), GB0 is the initial blood perfusion
coefficient, and θ is the value of the injury integral.
To effectively model heat conduction, it is crucial to establish a suitable set of

boundary and initial conditions tailored to the specific problem outlined earlier
in this section. These conditions are considered as follows:

T (0, y, t) = Tb1, (11)

T (Lx, y, t) = Tb2, (12)

T (x, Ly, t) = Tb3, (13)

−λ
∂T

∂y
(x, 0, t) = qb, (14)

T (x, y, 0) = T0. (15)

The proposed mathematical model, which incorporates a moving laser beam
and parameters dependent on the injury integral, provides a more precise depic-
tion of the heat transfer process within living tissue compared to models based
on constant values in the standard Pennes equation.
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3. The FPM for the two-dimensional problem

The FPM is a meshless, Lagrangian, strong-form approach that employs
a weighted least-squares interpolation technique to approximate spatial deriva-
tives [16]. This method for solving partial differential equations is based on the
Taylor series expansion, facilitating the calculation of a function and its spatial
derivatives, which act as unknown coefficients within the series. Detailed im-
plementation guidelines for the FPM are available in various literature sources
[17–19]. In this section, the main concepts of the FPM are presented, with a par-
ticular focus on its application to the two-dimensional Pennes equation.
Let Ω be a given domain with a particular boundary, generally considered

in three-dimensional space. Suppose a set of points x1, x2, ..., xn is distributed
with corresponding function values T (x1), T (x2), ..., T (xn). The objective is to
find an approximate value of the function T at some arbitrary location x. For
this purpose, let us define the approximation of T (xj) using the Taylor series
expansion around x:

Taprox(xj) = T (x) +

3∑
k=1

Tk(x)dx
k
j +

1

2

3∑
k,l=1

Tkl(x)dx
k
jdx

l
j . (16)

The unknown values T (x), Tk(x), Tkl(x), (k = 1, 2, l = 1, 2) are obtained using
a weighted least squares method by minimizing the quadratic expression while
considering all neighboring points (np):

J =

np∑
j=1

wj(Ma− b)2. (17)

After some mathematical operations, the minimization of function J yields the
formal solution:

a = (MTWM)−1(MTW)b, (18)

where

w(xj , x) =

{
exp

(
−β ∥xj − x∥2 /h2

)
, ∥xj − x∥ ≤ h,

0, otherwise,
(19)

and

W =


w(x1, x) 0 · · · 0

0 w(x2, x) 0 0

...
...

. . .
...

0 0 · · · w(xnp, x)

, (20)
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where β is a positive constant. The value of h defines a set of neighboring points
around x. At this point, we assume that x belongs to the interior part of Ω. For
two-dimensional case, the matrix M, the unknown vector a, and the vector b
are defined as follows:

M =



1 dx11 dx21
1

2

(
dx11

)2
dx11dx

2
1

1

2

(
dx21

)2
1 dx12 dx22

1

2

(
dx12

)2
dx12dx

2
2

1

2

(
dx22

)2
...
...

...
...

...
...

1 dx1np dx2np
1

2

(
dx1np

)2
dx1npdx

2
np

1

2

(
dx2np

)2
2c 0 0 −λ∆t 0 −λ∆t


, (21)

a = [T (x), T1(x), T2(x), T11(x), T12(x), T22(x)]
t , (22)

b =
[
T τ+1(x1), T

τ+1(x2), ..., T
τ+1(xnp), 2∆tQτ + 2cT τ (x) + λ∆t∇2T τ (x)

]t
.

(23)

The FPM operates as an iterative technique, where the vector a in Eq. (18) is
recomputed for each particle.
It is worth mentioning that if the point x lies on the boundary of Ω and

satisfies either the second or third type of boundary conditions, an additional
row must be added to matrix (21) and corresponding element to vector (23)
to impose such a boundary condition. For the Neumann boundary condition(
−λ∂T

∂n = qb
)
we have:

M =



1 dx11 dx21
1

2

(
dx11

)2
dx11dx

2
1

1

2

(
dx21

)2
1 dx12 dx22

1

2

(
dx12

)2
dx12dx

2
2

1

2

(
dx22

)2
...
...

...
...

...
...

1 dx1np dx2np
1

2

(
dx1np

)2
dx1npdx

2
np

1

2

(
dx2np

)2
2c 0 0 −λ∆t 0 −λ∆t

0 λnx λny λnz 0 0


, (24)

b=
[
T τ+1(x1), T

τ+1(x2), ..., T
τ+1(xnp), 2∆tQτ + 2cT τ (x) + λ∆t∇2T τ (x),−qb

]t
,

(25)
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and then for the Robin boundary condition
(
−λ∂T

∂n = α (T (x, t)− Ta)
)
we have:

M =



1 dx11 dx21
1

2

(
dx11

)2
dx11dx

2
1

1

2

(
dx21

)2
1 dx12 dx22

1

2

(
dx12

)2
dx12dx

2
2

1

2

(
dx22

)2
...
...

...
...

...
...

1 dx1np dx2np
1

2

(
dx1np

)2
dx1npdx

2
np

1

2

(
dx2np

)2
2c 0 0 −λ∆t 0 −λ∆t

0 λnx λny λnz 0 0


, (26)

b =
[
T τ+1(x1, T

τ+1(x2), ..., T
τ+1(xnp), 2∆tQτ + 2cT τ (x) + λ∆t∇2T τ (x), αTa

]t
.

(27)

4. Numerical examples

This study concludes with the presentation of results obtained from numeri-
cal computation. In the presented numerical computations, the simulations focus
on laser irradiation using a moving beam. The values of thermo-optical and ge-
ometrical parameters of the tissue used in the simulations are shown in Table 1
(Example 1) and Table 2 (Example 2), where parameters related to the Arrhe-
nius injury integral and the coefficients in the GB(θ) function (10) are given in
Tables 3 and 4, respectively.

Table 1. Theoretical thermo-optical and geometrical parameters – Example 1 [6].

Symbol Parameter Value Unit

λ Thermal conductivity of tissue 0.235 W ·m−1 ·K−1

c Volumetric specific heat of tissue 4.284 MJ ·m−3 ·K−1

GB0 Initial blood perfusion coefficient 0.05 s−1

µa Absorption coefficient of tissue 2000 m−1

Qmet Metabolic heat source 368.1 W ·m−3

cB Volumetric specific heat of blood 3.9962 MJ ·m−3 ·K−1

TB Arterial blood temperature 37 ◦C

Lx Dimension along X-axis 18 mm

Ly Dimension along Y -axis 9 mm

For the two-dimensional tissue domain, the point distribution is considered
as a regular structure, generated with a spatial step of ∆x = ∆y = 0.5 mm,
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Table 2. Theoretical thermo-optical and geometrical parameters – Example 2 [20].

Symbol Parameter Value Unit

λ Thermal conductivity of tissue 0.609 W ·m−1 ·K−1

c Volumetric specific heat of tissue 4.18 MJ ·m−3 ·K−1

GB0 Initial blood perfusion coefficient 0.00125 s−1

µa Absorption coefficient of tissue 40 m−1

µ′
s nat Effective scattering coefficient of native tissue 1000 m−1

µ′
s den Effective scattering coefficient of destructed tissue 4000 m−1

Qmet Metabolic heat source 245 W ·m−3

cB Volumetric specific heat of blood 3.9962 MJ ·m−3 ·K−1

TB Arterial blood temperature 37 ◦C

Lx Dimension along X-axis 18 mm

Ly Dimension along Y -axis 9 mm

Table 3. The coefficients of the perfusion coefficient function [15].

θ m1 m2 m3

θ = 0 1 0 0

0 < θ ≤ 0.1 1 25 −260
0.1 < θ ≤ 1 1 −1 0

θ > 1 0 0 0

Table 4. Arrhenius injury integral parameters [20].

Symbol Parameter Value Unit

A Pre-exponential factor 3.1 · 1098 s−1

∆E Activation energy 6.27 · 105 J ·mol−1

R Universal gas constant 8.314 J ·mol−1 ·K−1

while the time step ∆t is set to 0.01 sec. The neighborhood radius used in
the FPM, which determines the set of neighboring points is h = 3∆x, and the
parameter in Eq. (19) is chosen as β = 7.
The analyzed model is supplemented by the following boundary conditions:

a second type (adiabatic) condition on the tissue surface subjected to laser irra-
diation, while the inner tissue surfaces are assigned first-type boundary condi-
tions with constant temperatures Tb1 = Tb2 = Tb3 = 37◦C. The initial tempe-
rature distribution is assumed as uniform at T0 = 37◦C. The peak laser power in-
tensity is set to I0 = 1000 kW ·m−2, with a light reflection coefficient Rf = 0.024
and beam half-width ε = 1 mm [6].
In the presented model, the boundary conditions described in Eqs. (11)–(13)

were simplified by setting constant temperature values of 37◦C at the relevant
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boundaries, matching the temperature typically found on the inner side of skin
tissue. These values were also assumed equal across boundaries. This simplifi-
cation was intended to reduce numerical complexity and to ensure consistency
with the reference solution [6], thereby facilitating direct comparison of results.
Since the main objective of this article is to introduce a modern meshless FPM
scheme for applications in bioheat transfer, such a comparison is essential as it
helps in assessing the performance of numerical methods in new application do-
mains like the one introduced in this article. The authors acknowledge that this
simplification may not fully capture real physiological conditions. However, the
original algorithm description presented in the previous section enables poten-
tial readers to apply various kinds of boundary conditions and some other model
modifications beyond the scope of this article. In the future, it is intended to pro-
vide a more detailed justification of boundary conditions used, or to implement
more realistic, spatially varying temperature distributions where appropriate.
In the first numerical example, a comparison between the FPM and the

analytical solution given in [6] is conducted. The laser beam velocity was set
to 8 mm/s. In the numerical model, only the tissue absorption coefficient was
taken into account (µ′

s = 0), while the blood perfusion was kept constant, ex-
cluding the influence of the injury integral to maintain consistency with the
input data. The values of parameters listed in Table 1 were taken for this exam-
ple. In Fig. 2, the temperature computed at the central point with coordinates
(9, 0) mm using both the FPM and the analytical solution is presented, focusing
on the temperature rise above 37◦C. It can be observed that the difference in
peak temperature is only 1.29◦C (FPM – 98.38◦C; analytical – 99.67◦C) and the
difference in time is 0.085 s (FPM – 1.055 s; analytical – 1.14 s), corresponding
to an error of 7.46%. This error is acceptable, especially since the tempera-

Fig. 2. Comparison of results for the central point (temperature rise profiles).
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ture difference is just 1.29%. Similarly, the cooling process is slightly different,
likely due to the analytical solution being formulated for a three-dimensional
problems.
In the second numerical example, the laser beam velocity was set to 8 mm · s−1,

followed by tests with various other velocities. Similarly, the peak laser power
intensity was first considered as I0 = 1000 kW ·m−2 and then other values were
analyzed. In the numerical model, the influence of the injury integral on both
blood perfusion and laser heat source is considered. The values of parameters
listed in Table 2 were considered for this example.
Figure 3 depicts the profiles of both temperature and the injury integral

changing in time at the central point. It can be observed that after one second,
the injury integral reaches a value of 1, which means complete tissue necrosis.

Fig. 3. Temperature and injury integral values over time at the central point.

Temperature profiles after 1, 2, 3, and 6 seconds at the tissue surface along
y = 0 can be seen in Fig. 4. The strong influence of the first-type boundary
condition can be observed here. After 2.25 seconds, when the laser beam moves
out of the tissue domain, the cooling phase begins.
Figure 5 illustrates temperature changes after 2 seconds for varying laser

power intensities (800, 1000, 1200 kW ·m−2). As anticipated, higher laser pow-
ers correspond to increased maximum temperatures and deeper heat penetra-
tion. The analysis indicates that temperature dramatically decreases beyond
3 mm depth and, therefore, heat penetration past this point is minimal for each
laser intensity and can be disregarded. Consequently, the laser heating process
demonstrated here holds promise for treating superficial skin.
Temperature variations at the central point (9, 0) mm on the skin surface for

different laser beam speeds are shown in Fig. 6. The time of observation varies
for each speed, corresponding to the moment the laser beam passes over the
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Fig. 4. Temperature profiles along the tissue surface (y = 0) at 1 s, 2 s, 3 s, and 6 s.

Fig. 5. Temperature values at x = 9 mm after 2 s for different values of I0.

Fig. 6. Temperature values at the central point (9, 0) mm at the time moment the laser beam
passes point for x = 9 mm for different values of v.
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Fig. 7. Comparison of temperature rise at the central point for different Ly.

center point. A decrease in laser speed from 9 mm · s−1 to 7 mm · s−1 leads to
a more pronounced temperature rise. As the speed of the laser beam increases,
there is less time available for heat transfer to occur. Consequently, this leads
to a reduced amount of energy being absorbed by the tissue.
Since different numerical values of thermophysical parameters can be found

in the literature for the models presented, the influence of tissue thickness on
temperature results is also examined and presented in Fig. 7. As shown in Fig. 7,
the effect of varying tissue thickness is minimal under the conditions considered,
with a peak laser power intensity of I0 = 800 kW ·m−2 and a laser speed of
9 mm · s−1.

5. Conclusions

This article demonstrated the effective application of the FPM to a two-
dimensional transient bioheat transfer problem involving tissue exposed to a mov-
ing laser beam.

� In the first numerical example, a comparison between the FPM and the
analytical solution, assuming a constant value of blood perfusion coef-
ficient and without considering the effective scattering coefficient, was
performed. The difference in value of peak temperature was only 1.29%
(1.29◦C) and the difference in time was 7.46% (0.085 s). The error is ac-
ceptable, especially in temperature. The agreement of the results of both
methods was satisfied, validating the accuracy of the FPM results.

� The second main mathematical model was developed based on the Pennes
model by considering metabolic heat generation, a blood perfusion rate
based on tissue necrosis, and a moving single-point laser beam. The ap-
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plied numerical method was effective in solving complex problems involv-
ing temperature and necrosis-dependent parameters, despite being tested
only on single-layer tissue, which represents some kind of a limitation of
the current work. Nonetheless, this approach is a good choice for mod-
eling dynamic thermal processes within biological tissue when subjected
to laser irradiation. These simulations can assist in evaluating biological
tissue damage and determining laser exposure time and intensity. Another
benefit of this numerical method is its straightforward handling of bound-
ary conditions, which opens up the potential for using it in multilayered
domains or coupled problems.

� For further research, extending the model to a three-dimensional model
and three-layered tissue structures is worth considering. An entirely dif-
ferent direction could be an application of the FPM to the dual-phase lag
model. This model considers two distinct phase lag times for heat flux and
temperature gradient, in contrast to the traditional Fourier heat transfer
model, and thus offers a more accurate representation. The Fourier model
assumes that heat waves originate from a single point within a body and
rapidly propagate instantaneously throughout the material. However, this
assumption does not always hold true, especially in living tissues, where
heat transfer is influenced by heterogeneous tissues and blood circulation.
In such scenarios, employing the dual-phase lag model can yield more
realistic outcomes.
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