
Computer Assisted Methods in Engineering and Science
32(1): 3–24, 2025, https://doi.org/10.24423/cames.2025.1730

Comparison of Particle Swarm Optimization
Algorithms in Hyperparameter
Optimization Problem of Multi Layered Perceptron

Kenta SHIOMI, Tetsuya SATO, Eisuke KITA∗

Graduate School of Infomatics, Nagoya University, Nagoya 464-8601, Japan
∗Corresponding Author e-mail: kita@i.nagoya-u.ac.jp

This paper describes the application of particle swarm optimization (PSO) for the hy-
perparameter optimization problem of multi-layered perceptron (MLP) model. Several
PSO algorithms are presented by many researchers; basic PSO, PSO with inertia weight
(PSO-w), PSO with constriction factor (PSO-cf), local PSO-w, local PSO-cf, union of
local and global PSOs (UPSO), PSO with second global best particle (SG-PSO), and
PSO with second local best particle (SP-PSO). The wine dataset is taken as a numerical
example and hyperparameters of MLP the model are determined by the above-mentioned
PSO algorithms. The sets of hyperparameters determined by these PSO algorithms are
compared with the results of the traditional algorithms for hyperparameter optimization
such as random search, tree-structured Parzen estimator (TPE), and covariance matrix
adaptation evolution strategy (CMA-ES).
Numerical results indicate that PSO-cf is the best-performing and local PSO-w is

the second best among the PSO algorithms. The sets of hyperparameters determined
by the PSO algorithms were relatively similar. An important finding from the numerical
results is that PSO algorithms could find better hyperparameters than random search,
TPE, and CMA-ES. This demonstrates that PSO is suitable for the hyperparameter
optimization problem in MLP models.

Keywords: multi layered perceptron (MLP), hyperparameter optimization, particle swarm
optimization (PSO), wine dataset.

Copyright © 2025 The Author(s).
Published by IPPT PAN. This work is licensed under the Creative Commons Attribution License
CC BY 4.0 (https://creativecommons.org/licenses/by/4.0/).

1. Introduction

Neural network models have evolved with the proposal of deep learning,
and now are widely applied to various problems [1, 2]. In order to improve the
prediction accuracy of neural network models, it is necessary to appropriately set
hyperparameters [3–5]. Therefore, in recent years, research on hyperparameter
optimization methods has been actively conducted.

https://cames.ippt.pan.pl/index.php/cames
https://doi.org/10.24423/cames.2025.1730
mailto:kita@i.nagoya-u.ac.jp
https://creativecommons.org/licenses/by/4.0/

4 K. Shiomi et al.

Several methods are applied for the hyperparameter optimization problems
of neural network models; grid search, random search, Bayesian optimization,
and evolutionary computation including genetic algorithm (GA) and particle
swarm optimization (PSO) [6–9].
This study explores the application of PSO to hyperparameter optimization

problems. The application of PSO to hyperparameter optimization in neural
network models has been presented by several researchers [10–13]. They apply
the PSO algorithm to the hyperparameter optimization of convolutional neu-
ral network (CNN) and deep neural network (DNN) models. However, various
PSO algorithms have been proposed by several researchers over time. The PSO
algorithms used in this research include basic PSO [14], which is the original
algorithm, PSO with inertia weight (PSO-w) [15], PSO with constriction factor
(PSO-cf) [16], local-PSO-w, local-PSO-cf [17], union of global and local PSOs
(UPSO) [18], PSO with second global best particle (SG-PSO), and PSO with
second personal best particle (SP-PSO) [19]. A discriminant problem from the
wine dataset using multi layered perceptron (MLP) model is taken as an analysis
example and, then, the hyperparameter optimization problem of the MLP model
is solved by the aforementioned PSO algorithms. The results are compared with
those obtained by random search, tree-structured Parzen estimator (TPE) [20]
and covariance matrix adaptation evolution strategy (CMA-ES) [21].
The structure of this paper is as follows: the MPL model is explained in

Sec. 2. PSO algorithms, TPE and CMA-ES [21] are introduced in Sec. 3. The
solution of the hyperparameter optimization for the MLP model using PSOs is
defined in Sec. 4. Section 5 discusses the experimental results. Section 6 provides
the conclusion and outlines directions for future work.

2. Multi-layered perceptron (MLP)

2.1. Network structure

An MLP is a network with multiple layers, created by adding intermediate
layers to a single-layer perceptron (Fig. 1).
The relationship between the input and output in the generalized MLP hid-

den layer is given as follows:

Xi+1 = ϕ(W T
i Xi), (1)

where i is the layer number (i = 1, ..., N),Xi+1 is the output vector of the hidden
layer, Xi is the input vector of the hidden layer, W T

i represents the transposed
weight vector of the hidden layer, and ϕ denotes the activation function such as
a sigmoid function, rectified linear unit (ReLU) function, LeakyReLU function,
and exponential linear unit (ELU) function.

Comparison of particle swarm optimization algorithms. . . 5

Output layer

Hidden layer

Input layer

Fig. 1. Network structure of an MLP.

2.2. MLP hyperparameters

Multi-layered perceptron hyperparameters can be broadly classified into hy-
perparameters related to the hidden layer, activation function, batch size, and
regularization [7–9,22].

2.2.1. Hidden layer. There are two main types of hyperparameters re-
lated to the hidden layer. These are its depth and width. The depth of the
hidden layer refers to the number of hidden layers, and the width refers the num-
ber of nodes in each hidden layer. The larger their values are, the better the
expressive power of MLP will be. But, on the other hand, overfitting to train-
ing data may occur. Therefore, the depth and width of the intermediate layer
should not be arbitrarily large. Instead, they must be adjusted through trial and
error to maximize the generalization performance of the model, depending on
the problem at hand.

2.2.2. Activation function. Hyperparameters in activation functions
mainly correspond to the types of activation functions. There are many types,
but the most representative ones include the sigmoid function (Eq. (2)), softmax
function (Eq. (3)), and ReLU function (Eq. (4)).
The sigmoid and softmax functions are nonlinear functions, whereas ReLU

function, which does not cause the vanishing gradient problem, is increasingly
used in the x > 0 region.

6 K. Shiomi et al.

The sigmoid function is defined as:

σ(x) =
1

(1 + e−a)
, (2)

where the threshold a is a hyperparameter of the sigmoid function, which is
generally set to 1. A feature of the sigmoid function is that it can convert the
output value into a range of 0 to 1, making it suitable for converting the fi-
nal output value into a probability value in binary classification. Another prob-
lem with the sigmoid function is that when it is introduced as an activation
function in the hidden layer, a vanishing gradient problem occurs, making op-
timization in the hidden layer difficult. In contrast, the softmax function is an
activation function that converts output values into probability values in classi-
fication of two or more classes.
The softmax function is defined as:

softmax(xk) =
exk∑
j e

xj
, (3)

where k is the serial number of input values (k = 1, ...,m), exk is the out-
put when the k-th input vector is processed through the exponential function,∑

j e
xj is the sum of outputs when all input vectors are passed through the

exponential function as input. The softmax function has roughly the same char-
acteristics as the sigmoid function, but its major feature is that it can convert
multiple input values into probability values.
The ReLU function is defined as:

ReLU(x) =

{
x (x ≥ 0),

0 (x < 0).
(4)

The ReLU function is highly effective as an activation function for intermediate
layer. However, one limitation is that it cannot be learned using the gradient
when the activation function becomes 0. Therefore, derivative models of the
ReLU function such as the leaky ReLU function, randomized ReLU (RReLU)
function, and parametric ReLU (PReLU) function are used.

2.2.3. Optimizer for weighting coefficients and thresholds. Neural
network models use optimization algorithms or optimizers to adjust parame-
ters such as weighting coefficients and thresholds. The parameter that deter-
mines the update frequency of the parameters is called the learning rate. There
are various types of optimization algorithms, including stochastic gradient algo-
rithm (SGD), momentum, adaptive gradient propagation (AdaGrad), root mean
squared propagation (RMSProp), and adaptive momentum estimation (Adam).

Comparison of particle swarm optimization algorithms. . . 7

2.2.4. Batch size. In parameter learning for neural network models, the
training data is divided into training data subsets called mini-batches, and batch
normalization is applied to them.
The amount of data required to update the parameters in one iteration is

called the batch size. When the batch size is equal to the total number of training
data, it is called batch learning. When the batch size is smaller than the number
of training data, it is called mini-batch learning. Batch learning uses all the
training data at once, so it has the disadvantage of increasing computational
costs. It is common to use mini-batch learning. Commonly used batch sizes are
16, 32, 64, 128, 256, 512, 1024, and larger.

2.2.5. Normalization. Normalization is a data transformation technique
that transforms data into a distribution with a mean of 0 and a variance of 1.
Batch normalization is normalization performed in batches in each dimension.
By introducing batch normalization, it is expected that the learning speed will
be improved.
There are various types of normalization methods, including batch normal-

ization, layer normalization, instance normalization, and group normalization.

2.2.6. Regularization and dropout. Measures against model overfitting
include a norm penalty (a regularization term) and dropout. A norm is an index
for measuring the distance of vectors, including L0 norm, L1 norm, L2 norm,
L∞ norm, and so on,

∥x∥p = (|x1|+ |x2|p + · · ·+ |xD|p)1/p, p = 0, 1, 2, ...,∞. (5)

Norm penalty is a method of limiting parameter values based on norms so that
they do not take extreme values,

Lnorm(y(x), t) = L(y(x), t) + λ∥x∥p, (6)

where L(y(x), t) is the error function, λ is the weight of the norm penalty, and
Lnorm(y(x), t) is the error function with the norm penalty. Typical norm penalty
methods include lasso regression (L1 norm) and ridge regression (L2 norm).
Norm penalties are not required in model learning and are determined by the
model designer. When using a norm penalty, it is necessary to appropriately
adjust both the type of norm penalty and the hyperparameter λ of the norm
penalty.
Dropout, on the other hand, is a method that prevents model overfitting

by randomly eliminating a certain percentage of nodes. By using dropout, one
can reduce biased learning that depends on specific nodes. This can prevent the
model from learning overly detailed features of the training data.

8 K. Shiomi et al.

2.2.7. Number of epochs. The number of epochs, which refers to the
number of training times the model is trained, directly affects the generaliza-
tion performance of the model. The more times a model learns based on the
entire training data, the greater the risk of overfitting, where the model over-
fits the training data. If the number of epochs is too small, the model will be
in an unlearning state, where it has not sufficiently learned the data, and in
neither case it cannot be said that the model learns properly. Therefore, model
designers need to adjust the number of epochs to ensure the model can learn
appropriately.

3. Optimization algorithms of hyperparameters

3.1. Particle swarm optimization

Particle swarm optimization (PSO), introduced by Kennedy and Eberhart
in 1995 [14], is an optimization method inspired by the behavior of birds and
fish to efficiently search for food in groups. Individuals, such as birds and fish,
that behave in groups, are called particles, and groups of particles from what is
called particle swarms.
Particles have a position that represents the solution to the optimization

problem and a velocity that updates the position. In the basic PSO, at the
beginning of the PSO algorithm, the position and velocity of a particle are
updated by the following equations:

xi(t+ 1) = xi(t) + vi(t+ 1), (7)

vi(t+ 1) = vi(t) + c1r1(x
p
i (t)− xi(t)) + c2r2(x

g(t)− xi(t)), (8)

where i is the particle number (i = i, ..., N), N is the number of particles, and
t is the time step. xp(t) and xg(t) refer to the personal best and global best
particles, respectively. The personal best and global best particles denote the
solution that each particle has found so ever and the solution that all particles
in the swarm have found, respectively. c1 and c2 are the weight parameters
related to the personal best and global best particles, respectively. r1 and r2
are random numbers belonging to different random number sequences in the
range [0, 1].
The basic PSO algorithm is summarized as follows:
1. Definition of the number of generations:

� Define the maximum number of generations tmax.
� Initialize the number of generations t as t = 0.

2. Initialize particle swarm:
� Define the number of particles N .

Comparison of particle swarm optimization algorithms. . . 9

� Initialize the position xi(0), of each particle, with a random number
within the range that satisfies the constraints of each design variable.

� Initialize the velocity vi(0) of each particle to 0.
3. Fitness evaluation:

� Evaluate the fitness function from the particle position information.
4. Terminal judgment:

� If t = tmax, terminate the process. Otherwise, proceed to the next
step.

5. Update of personal best particle:
� If t = 0, set the particle evaluated in step 3 as the personal best
particle. If t > 0, compare the fitness value of each particle calculated
in step 3 with the personal best particle from the generation and
update the particle with the better fitness value as the personal best
particle, as follows:

Sp(t) = Sp
j (t) =

{
xi(t), t = 0,

{xpi (t− 1), xi(t)}, t > 0,
(9)

xpi (t) ← arg min
Sp
j (t)∈Sp(t)

f(Sp
j (t)), (10)

where i, N and t are the particle number, the number of particles,
the number of generations, respectively. xp(t) and f(x) denote the
personal best particle and the fitness function, respectively.

6. Update of global best particle:
� If t = 0, set the particle with the best fitness value from the personal
best particles evaluated in step 5 as the global best. If t > 0, compare
the personal best particles updated in step 5 with the global best par-
ticle from the previous and set the particle with the better evaluation
value as the global best, as follows:

Sp(t) = Sp
j (t) =

{
xi(t), t = 0,

{xpi (t− 1), xi(t)}, t > 0,
(11)

xg(t) ← arg min
Sg
j ∈Sg

f(Sg
j), (12)

where i, N and t are the particle number, the number of particles,
the number of generations, respectively. xp(t), xg(t) and f(x) de-
note the personal best particle the global best particle, and the fitness
function, respectively.

10 K. Shiomi et al.

7. Update the position and velocity of each particle by Eqs. (7) and (8),
respectively.

8. Update the number of generations:
� Update the current number of generations t as t← t+1 and to step 3.

3.1.1. Basic PSO. As described in the previus subsection, the basic PSO
uses the velocity update rule given by Eq. (8) [14].

3.1.2. PSO with inertia weight. PSO with inertia weight (PSO-w) is
an algorithm that introduces an inertia term w into the velocity update equa-
tion of basic PSO [15]. The inertia term w suppresses the velocity of particles
as the generations progress and it acts to balance the search range and search
speed. Increasing the value of the inertia term w improves the search perfor-
mance across the entire particle swarm solution space. It, however, reduces the
convergence speed. On the other hand, reducing the value of the inertia term w
limits the search performance in the entire solution space, but improves the
convergence speed. The update equations for velocity is given as follows:

vi(t+ 1) = wvi(t) + c1r1(x
p
i (t)− xi(t)) + c2r2(x

g(t)− xi(t)). (13)

The inertia term w generally takes a large value at the initial stage of the
search and gradually decreases [15]. The purpose of this is to focus the search
performance for the entire solution space in the early stages of the search, and to
improve the search performance around the optimal solution in the final stages of
the search. The formula for calculating the value of the inertia term w according
to the value of the number of generations is given:

w = wmax − (wmax − wmin)×
t

tmax
, (14)

where wmax and wmin are the maximum and minimum values of the inertia
term w. t and tmax are the current number of generations and the upper limit
of the number of generations, respectively.

3.1.3. PSO with constriction factor (PSO-cf). This algorithm was
proposed by Clerc and Kennedy and aims to stabilize the behavior of particle
groups by introducing a convergence coefficient K [16]. It has been suggested
that it is effective to use the convergence coefficient K for ensuring the con-
vergence of the particle group in the PSO algorithm. The update formula for
velocity is shown:

vi(t+ 1) = K[vi(t) + c1r1(x
p
i (t)− xi(t)) + c2r2(x

g(t)− xi(t))]. (15)

Comparison of particle swarm optimization algorithms. . . 11

The convergence coefficient K is defined by the following equation:

K =
2

|2− φ−
√

φ2 − 4φ|
. (16)

The value of the convergence coefficient K is determined by the value of φ, and
the value of φ must be greater than 4.0. However, as the value of φ increases, the
value of the convergence coefficient K decreases, and the diversity of particles
decreases. Therefore, the typical value of φ is c1 = c2 = 2.05, and it is generally
defined as φ = 4.1 [16].

3.1.4. Local-PSO-w/local-PSO-cf. The PSO algorithm described above
has the property that its local search ability is poor at the beginning of the
search, and its overall search ability of the solution space is poor at the end of
the search. Therefore, local PSO-w and local PSO-cf are proposed with the aim
of balancing global search and local search capabilities in the solution space.
These algorithms employ a new concept called the local best particle, which
replaces the global best particle when updating the position and velocity of the
proposed particle [17]. The local best particle refers to the particle with the best
solution among the neighboring particles of the particle being updated. Kennedy
and Mendest suggest that reducing the number of neighboring particles leads to
better search for solutions in complex optimization problems, while increasing
the number of neighboring particles allows for faster search in simpler optimiza-
tion problems. The update formula of the velocity is given as follows [17]:

� local-PSO-w

vi(t+1) = wvi(t)+c1r1(x
p
i (t)−xi(t))+c2r2(x

l
i(t)−xi(t)); (17)

� local-PSO-cf

vi(t+1) = K[vi(t)+c1r1(x
p
i (t)−xi(t))+c2r2(x

l
i(t)−xi(t))]. (18)

In these equations, xli refers to the position of the local best particle, which
is the particle with the best solution among the neighboring particles. In this
study, the number of the neighboring particles is NP = 5.

3.1.5. Union of global and local PSOs (UPSO). This algorithm prob-
abilistically selects two velocity update patterns to update the particle velocity;
one is based on the global best particle and the other is based on the local best
particle [18]. The update formula for velocity is given as:

vi(t+ 1) = uGi(t+ 1) + (1− u)Li(t+ 1), (19)

12 K. Shiomi et al.

where Gi(t+ 1) and Li(t+ 1) are the velocities calculated from the global best
and local best particles, respectively. The respective velocity is determined by
the parameter u. In UPSO based on the PSO-w algorithm, Gi(t+1) and Li(t+1)
are defined as follows:

Gi(t+ 1) = wGi(t) + c1r1(x
p
i (t)− xi(t)) + c2r2(x

g(t)− xi(t)), (20)

Li(t+ 1) = wLi(t) + c1r1(x
p
i (t)− xi(t)) + c2r2(x

l
i(t)− xi(t)), (21)

where xg(t) and xli(t) represent the global and local best particle positions,
respectively.

3.1.6. PSO with second global best particle (SG-PSO). In order to
solve the problem of convergence to a local solution in the conventional PSO
method, the value of the second global best, which has the second best solution
in the particle group, is used to update particle velocity information [19]. The
update formula for velocity is given as:

vi(t+1) =


wvi(t) + c1r1(x

p
i (t)− xi(t))

+ c2r2(x
g(t)− xi(t)) + c3r3(x

g2(t)− xi(t)), r ≤ 0.5,

wvi(t) + c1r1(x
p
i (t)− xi(t)) + c2r2(x

g(t)− xi(t)), r > 0.5,

(22)

where xg(t) and xg2(t) denote the global best and second global best particle po-
sitions, respectively. c3 is the weighting coefficient of the velocity update formula
considering the second global best, and r and r3 are random numbers belonging
to different random number sequences in the interval [0,1].

3.1.7. PSO with second personal best particle (SP-PSO). In this
method, in order to solve the problem of convergence to a local solution in
the conventional PSO method, the value of the second personal best, which
is the second best solution found by each particle, is used to update the parti-
cle velocity information [19]. In SP-PSO, the update formula for position and
velocity is given as follows:

vi(t+1) =


wvi(t) + c1r1(x

p
i (t)− xi(t))

+ c2r2(x
g(t)− xi(t)) + c4r4(x

p2(t)− xi(t)), r ≤ 0.5,

wvi(t) + c1r1(x
p
i (t)− xi(t)) + c2r2(x

g(t)− xi(t)), r > 0.5,

(23)

where xpi (t) and xp2i (t) denote the personal best and the second personal best
particles, respectively. c4 is the weighting coefficient in the velocity update for-
mula considering the second personal best particle, and r and r4 are random
numbers belonging to different random number sequences in the range [0,1].

Comparison of particle swarm optimization algorithms. . . 13

The second global best in SG-PSO is a single piece of information common to
a group of particles, but the second personal best in SP-PSO consists of multiple
pieces of information, each defined for an individual particle. Therefore, it is
suggested that the SP-PSO particle group can search a wider solution range
than the SG-PSO particle group [19].

3.2. Random search

Random search is an optimization method that randomly searches for com-
binations of searchable solutions using a random number generator. Charac-
teristics of random search include that all evaluations can be performed asyn-
chronously and that the search space can be of a wide variety of variable types,
including continuous, discrete, and categorical.

3.3. Tree-structured parzen estimator (TPE)

TPE is an algorithm classified as Bayesian optimization. This method con-
sists of two components: a probabilistic surrogate model and an acquisition
function [20]. The distribution of objective functions and hyperparameters is
expressed from observed data using a surrogate model, and promising hyperpa-
rameters are efficiently searched for using an acquisition function. TPE employs
a surrogate model based on kernel density estimation to perform Bayesian op-
timization.

3.4. Covariance matrix adaptation evolution strategy (CMA-ES)

Since CMA-ES is a type of evolutionary computation, the basic algorithm
involves generating individuals and evaluating the fitness of each individual [21].
If the objective is also to optimize hyperparameters, each individual will main-
tain a combination of hyperparameters, and the fitness of the individual will be
calculated based on the defined objective function. In CMA-ES, individuals are
generated from a normal distribution, meaning the information they hold is only
of continuous values. Therefore, when dealing with discrete values or categorical
values, it is necessary to discretize or categorize the continuous values.

4. Hyperparameter optimization using PSO

4.1. Dataset

The wine dataset, sourced from the UCI Machine Learning Repository, is
used for the experiments in this study. The wine dataset has 178 data items.
The explanatory variables are 13 wine characteristics, which are based on the
results of chemical analysis of three different wine varieties grown in the same

14 K. Shiomi et al.

region of Italy. The 13 explanatory variables are alcohol content, malic acid,
ash content, ash alkalinity, magnesium, total phenolic content, flavonoids, non-
flavonoid phenols, proanthocyanins, color intensity, hue, absorbance ratio of di-
luted wine solution, and proline. Of these, only magnesium and proline take
integer values, and all other explanatory variables take continuous values. The
objective variables are the three types of wine, which form the basis for the ex-
planatory variables. The objective variables are classified into classes 1, 2, and 3,
and the number of data items for three classes is 59, 71, and 48, respectively.
Table 1 shows the data for the first five items of the wine dataset.

Table 1. Explanatory variables of the wine dataset.

Name Type Value

Alcohol content Continuous 14.23, 13.20, 13.16, 14.37, 13.24

Malic acid Continuous 1.71, 1.78, 2.36, 1.95, 2.59

Ash content Continuous 2.43, 2.14, 2.67, 2.50, 2.87

Ash alkalinity Continuous 15.60, 11.20, 18.60, 16.80, 21.00

Magnesium content Discrete 127, 100, 101, 113, 128

Phenol content Continuous 2.80, 2.65, 2.80, 3.85, 2.80

Flavonoids Continuous 3.06, 2.76, 3.24, 3.49, 2.69

Non-flavonoid phenols Continuous 0.28, 0.26, 0.30, 0.24, 0.39

Proanthocyanidin Continuous 2.29, 1.28, 2.81, 2.18, 1.82

Color intensity Continuous 5.64, 4.38, 5.68, 7.80, 4.32

Hue Continuous 1.04, 1.05, 1.03, 0.86, 1.04

OD280/OD315 of diluted wine solution Continuous 3.92, 3.40, 3.17, 3.45, 2.93

Proline Discrete 1065, 1050, 1185, 1480, 735

4.2. Network architecture and hyperparameters

The architecture of the MLP model is shown in Fig. 2. This architecture
consists of 2 to 10 fully connected layers. Components highlighted in blue in

Fig. 2. Network structure of the MLP model.

Comparison of particle swarm optimization algorithms. . . 15

the figure are targets to be optimized, according to the range of possible values
for the design variables. The SoftMax function is used in the output layer to
convert the output values into probabilities value, making it suitable for the
classification problem. Table 2 shows the hyperparameters of the MLP model
and their respective possible value ranges.

Table 2. List of hyperparameters.

Name Type Range

Learning rate lr Real 1e−5 ≤ lr ≤ 1e−1

Dropout rate drx Real 0.0 ≤ drx ≤ 1.0 (x = 1, 2, ..., 9)

Weight decay lr Real 1e−10 ≤ lr ≤ 1e−3

Number of fully
connected layers ln

Integer 2 ≤ ln ≤ 10

Number of nodes
at layer x nnx

Integer 60 ≤ nnx ≤ 125 (x = 1, 2, ..., 9)

Number
of epochs epoch

Integer 2 ≤ epoch ≤ 10

Activation
function fnx

Category fnx = {ReLU, LeakyReLU, ELU, PReLU, RReLU}

Batch normalization
layer bnx

Category bnx = {True, False} (x = 1, 2, ..., 9)

Batch size batch Category batch = {8, 16, 32, 64, 128}
Optimization
methods opt

Category opt = {SGD, Momentum, AdaGrad, RMSProp, Adam}

4.3. Optimization problem

4.3.1. Objective function. Since the wine classification problem is a three-
class classification problem, the cross-entropy error function, which is an error
function that can be used to evaluate the three-class classification of the MLP
model, is adopted as the objective function:

F (x) = −
∑
k

tk log yk, (24)

where x is a combination of design variables and y is the MLP output value. t is
a vector in which correct labels are converted to 1 and the incorrect labels are
converted to 0.

4.3.2. Design variables. The hyperparameters shown in Table 2 are
taken as the design variables.

16 K. Shiomi et al.

In the PSO algorithm, the design variables should be defined as continuous
ones. When optimizing discrete and categorical hyperparameters, the continu-
ous variables optimized by PSO are converted into discrete and categoral ones.
When optimizing discrete hyperparameters such as the fully connected lay-

ers ln, fully connected layer x and number of epochs epoch, the continuous
values are optimized by PSO and then converted to discrete values by perform-
ing a discretization process that rounds the decimal parts of the continuous
design variables to integer values.
When optimizing categorical hyperparameters such as activation function fnx,

batch normalization layer bnx, batch size batch, and optimization methods opt,
continuous design variables are discretized and the discrete values are treated
as indices for the elements of the categorical hyperparameters.

5. Numerical results

5.1. Effect of weight coefficients for search performance

The search performance of PSO algorithms strongly depends on the weigh
coefficients c1, c2, c3, and c4. The effect of these weigh coefficients on the search
performance is discussed here.
Some parameters are fixed as shown in Table 3. The maximum number of

generations is specified as tmax = 100 and the number of particles is set to
N = 30 and 100. Simulations are performed 10 times with different parameters
and the average values of the obtained results are compared.

Table 3. Fixed parameters for PSO algorithms.

Name Value Description

tmax 100 Maximum number of generations

N 30, 100 Number of particles

wmax 0.9 Maximum value of the inertia term for PSO-w

wmin 0.4 Minimum value of the inertia term for PSO-w

NP 5 Number of neghboring particles for local PSO

u 0.5 Parameter for UPSO

The weight parameters with the best search performance at N = 30 and
100 are determined by random search, which is summarized in Tables 4 and 5,
respectively. The best parameters for PSO-cf, local PSO-cf and UPSO are similar
in both cases. But, the others are different. It is concluded that the adequate
parameters depend on the PSO algorithms.

Comparison of particle swarm optimization algorithms. . . 17

Table 4. Best weight parameters for PSO algorithms at N = 30.

Algorithm C1 C2 C3 C4

Basic PSO 2.0 2.0 – –

PSO-w 0.04 1.96 – –

PSO-cf 2.02 2.02 – –

Local PSO-w 0.0 2.0 – –

Local PSO-cf 2.01 2.01 – –

UPSO 2.02 2.02 – –

SG-PSO 0.02 1.98 0.5 –

SP-PSO 0.5 1.5 – 1.0

Table 5. Best weight parameters for PSO algorithms at N = 100.

Algorithm C1 C2 C3 C4

Basic PSO 0.5 1.5 – –

PSO-w 0.51 1.5 – –

PSO-cf 2.02 2.02 – –

Local PSO-w 0.49 1.5 – –

Local PSO-cf 2.02 2.02 – –

UPSO 2.05 2.04 – –

SG-PSO 0.5 0.5 1.0 –

SP-PSO 1.0 1.0 – 1.0

5.2. Comparison of fitness convergence

The convergence histories of the fitness values at N = 30 are shown in
Figs. 3 and 4, and for N = 100 in Figs. 5 and 6. The figures are plotted with
the generation as the horizontal axis and the fitness values of the best particles

Generation

Be
st

 fi
tn

es
s

basic PSO
PSO-w
PSO-cf
local-PSO-w
local-PSO-cf
UPSO
SG-PSO
SP-PSO

0 20 40 60 80 100
0.0

0.2

0.4

0.6

0.8

1.0

Fig. 3. Convergence histories of best fitness values at N = 30.

18 K. Shiomi et al.

basic PSO
PSO-w
PSO-cf
local-PSO-w
local-PSO-cf
UPSO
SG-PSO
SP-PSO

Generation

Fi
tn
es
s

0 20 40 60 80 100
0.0

0.2

0.4

0.6

0.8

1.0

Fig. 4. Convergence histories of average fitness values at N = 30.

basic PSO
PSO-w
PSO-cf
local-PSO-w
local-PSO-cf
UPSO
SG-PSO
SP-PSO

Generation

Be
st

 fi
tn
es
s

0 20 40 60 80 100
0.0

0.2

0.4

0.6

0.8

1.0

Fig. 5. Convergence histories of best fitness values at N = 100.

basic PSO
PSO-w
PSO-cf
local-PSO-w
local-PSO-cf
UPSO
SG-PSO
SP-PSO

Generation

Fi
tn
es
s

0 20 40 60 80 100
0.0

0.2

0.4

0.6

0.8

1.0

Fig. 6. Convergence histories of average fitness values at N = 100.

as the vertical axis. When comparing figures at N = 30 and 100, it is noticed
that the figures for N = 100 converge faster than those for N = 30. Figure 3
indicates that, at N = 30, local PSO-cf and local PSO-w show the faster conver-
gence than the others. Besides, Fig. 5 indicates that at N = 100, PSO-cf shows

Comparison of particle swarm optimization algorithms. . . 19

the fastest convergence than the others. Therefore, it is concluded that PSO-cf
and local PSO-cf are attractive from the perspective of convergence.

5.3. Comparison of classification accuracy trends

The number of particles is set to N = 100. Figure 7 shows the average and
standard deviation of the classification accuracy calculated by each particle for
each generation in 10 simulations. The figure is plotted with the classification
accuracy on the vertical axis and the number of generations on the horizon-
tal axis. The error bars in the graph represent the standard deviation. For all

a) Basic PSO b) PSO-w

c) PSO-cf d) Local-PSO-w

e) Local-PSO-cf f) UPSO

g) SG-PSO h) SP-PSO

Fig. 7. Comparison of convergence histories of fitness.

20 K. Shiomi et al.

PSO methods, the improvement in classification accuracy slows down after 10
to 20 generations, and the change in classification accuracy levels off after about
40 generations, indicating that particles converge to a specific solution at an
early stage of the process.

5.4. Comparison of optimized hyperparameters

The optimized hyperparameters are compared. The number of particles is
N = 100. PSO algorithms, random search, TPE and CMA-ES are used for
searching the hyperparameters.
The hyperparameters are determined from the best particles that are finally

obtained in 10 simulations. They are summarized in Tables 6, 7, 8, and 9, re-
spectively. Table 6 also shows the fitness which is estimated as the average value
of the fitness of the best particles from 10 simulations with the determined
parameters.
Table 6 shows that the fitness of PSO algorithms is better than random

search, TPE and CMA-ES. The best fitness value in PSO algorithms is evaluated
as 0.974, achived by PSO-cf. The best fitness value among random search, TPE
and CMA-ES is 0.878, obtained by random search. The best fitness value of
PSO-cf is about 10% higher than that of random search.

Table 6. Optimized hyperparameters for the MLP (1).

Algorithm Fitness Learning rate Dropout rate Weight decay

Basic PSO 0.961 0.0121 0.0 1.00×10−05

PSO-w 0.957 0.0148 0.0 1.00×10−05

PSO-cf 0.974 0.1 0.0 1.00×10−05

Local-PSO-w 0.973 0.0885 0.0 1.00×10−05

Local-PSO-cf 0.969 0.0536 0.0 1.00×10−05

UPSO 0.959 0.0017 0.0 1.00×10−05

SG-PSO 0.968 0.0270 0.0 1.00×10−05

SP-PSO 0.964 0.0728 0.0 1.00×10−05

Random search 0.878 0.0255 0.321 0

TPE 0.849 0.0074 0.120 0

CMA-ES 0.793 0.0203 0.044 0

Table 6 also shows the learning rate, dropout rate and weight decay. As
for the ‘learning rate’, all algorithms selected different values. However, the
algorithms with high fitness values, such as PSO-cf, local-PSO-w, chose a larger
learning rate than the others. For the ‘dropout rate’, all PSO algorithms selected
the same value. For the ‘weight decay’, all algorithms selected the same value.

Comparison of particle swarm optimization algorithms. . . 21

Table 7 shows the number of epochs, batch size, and optimization method.
Except for UPSO, the other algorithms take similar values of 9 or 10. For the
‘batch size’, PSO algorithms selected either 8 or 16, which is similar to random
search, TPE and CMA-ES. Similarly, for the ‘optimization method’, AdaGrad,
RMSProp and Adam were selected.

Table 7. Optimized hyperparameters for the MLP (2).

Algorithm Number of epochs Batch size Optimization method

Basic PSO 10 8 AdaGrad

PSO-w 10 8 RMSProp

PSO-cf 10 8 AdaGrad

Local-PSO-w 10 8 AdaGrad

Local-PSO-cf 10 8 RMSProp

UPSO 7 8 Adam

SG-PSO 10 16 RMSProp

SP-PSO 10 8 AdaGrad

Random search 9 8 RMSProp

TPE 9 16 RMSProp

CMA-ES 9 16 AdaGrad

Table 8 shows the number of fully connected layers and the number of nodes
at each layer. Except for basic PSO and UPSO, the other PSO algorithms se-
lected simpler network as evidenced by the number of fully connected layers
being 2 or 3.

Table 8. Optimized hyperparameters for the MLP (3).

Algorithm Number of fully connected layers Number of nodes at layer

Basic PSO 8 [85, 65, 60, 67, 81, 91, 67, 60]

PSO-w 2 [60, 103]

PSO-cf 2 [60, 60]

Local-PSO-w 2 [125, 125]

Local-PSO-cf 2 [60, 125]

UPSO 6 [60, 114, 125, 63, 110, 110]

SG-PSO 2 [125, 60]

SP-PSO 2 [125, 60]

Random search 2 [90, 99]

TPE 2 [89, 62]

CMA-ES 3 [102, 107, 95]

22 K. Shiomi et al.

Table 9 shows the activation function and batch normalization layer. ELU,
ReLU and LeakyReLU are selected as the activation function while the batch
normalization layer was used in some algorithms.

Table 9. Optimized hyperparameters for the MLP (4).

Algorithm Activation function Batch normalization layer

Basic PSO ELU TRUE

PSO-w ELU TRUE

PSO-cf LeakyReLU TRUE

Local-PSO-w ReLU TRUE

Local-PSO-cf ELU TRUE

UPSO ELU TRUE

SG-PSO ReLU TRUE

SP-PSO ELU TRUE

Random search LeakyReLU TRUE

TPE ReLU TRUE

CMA-ES LeakyReLU TRUE

6. Conclusion

PSO is a type of swarm intelligence optimization method inspired by the
group behavior of living organisms. In addition to the basic PSO, which is
the most basic algorithm, PSO methods include PSO-w, PSO-cf, local-PSO-w,
local-PSO-cf, UPSO, SG-PSO, SP-PSO and so on. In this study, a PSO method
was applied to the hyperparameter optimization problem of an MLP model.
While traditional PSO deals only with continuous variables, the hyperparame-
ters of an MLP model may take discrete or categorical variables. Hyperparam-
eter optimization experiments were performed by converting continuous values
into discrete or categorical variables. Random search, TPE, and CMA-ES were
employed as comparison methods. The wine dataset was adopted as the subject
of the numerical experiments. The results showed that PSO-cf performed the
best and local PSO-w performed the second best among the PSO algorithms.
The set of hyperparameters detemined by the PSO algorithms was relatively sim-
ilar. The velocity update rules of PSO-cf and PSO-w were very similar, although
they were presented individually by different researchers. The effect of the in-
ertia term in the velocity update rule is controlled by the weight w in PSO-w
and the constriction factor K in PSO-cf. In the early stages of the search, both
algorithms tend to search better solutions from a wide solution space. Since the
fitness function has a complicated distribution, there exist many local optima
in the solution space. It is considered that the control of the inertia term in the

Comparison of particle swarm optimization algorithms. . . 23

velocity update rule is effective for escaping local solutions and finding the opti-
mal solution. An important observation from the numerical results is that PSO
algorithms could find better hyperparameters than random search, TPE, and
CMA-ES. Thus, it can be concluded that PSO is suitable for the hyperparameter
optimization problem of MLP model.
This study discussed the search performance of PSO algorithms for the hy-

perparameter optimization problem of the MLP model in the wine dataset alone.
To assess the validity of PSO algorithms for this problem, we plan to apply them
the other dataset problems. After that, we will extend the same approach to de-
sign neural network models with different network structures.

References

1. I. Goodfellow et al., Generative adversarial networks, Communications of the ACM,
63(11): 139–144, 2020, https://doi.org/10.1145/3422622.

2. V. Mnih et al., Human-level control through deep reinforcement learning, Nature, 518:
529–533, 2015, https://doi.org/10.1038/nature14236.

3. M. Ferrari Dacrema, P. Cremonesi, D. Jannach, Are we really making much progress?
A worrying analysis of recent neural recommendation approaches, [in:] Proceedings of the
13th ACM Conference on Recommender Systems (RecSys ’19), Association for Comput-
ing Machinery, New York, NY, USA, pp. 101–109, 2019, https://doi.org/10.1145/3298
689.3347058.

4. J. Bergstra, R. Bardenet, Y. Bengio, B. Kégl, Algorithms for hyper-parameter optimiza-
tion, [in:] Advances in Neural Information Processing Systems 24 (NIPS 2011), Vol. 24,
pp. 2546–2554, 2011.

5. J. Snoek, H. Larochelle, R.P. Adams, Practical Bayesian optimization of machine learning
algorithms, [in:] Advances in Neural Information Processing Systems 25 (NIPS 2012),
Vol. 25, pp. 2951–2959, 2012.

6. M. Feurer, F. Hutter, Hyperparameter Optimization, [in:] F. Hutter, L. Kotthoff, J. Van-
schoren [Eds.], Automated Machine Learning: Methods, Systems, Challenges, Chapter 1,
pp. 3–33, Springer, Cham, 2019, https://doi.org/10.1007/978-3-030-05318-5 1.

7. R.Z. Cabada, H.R. Rangel, M.L.B. Estrada, H.M.C. Lopez, Hyperparameter optimization
in CNN for learning-centered emotion recognition for intelligent tutoring systems, Soft
Computing, 24(10): 7593–7602, 2020, https://doi.org/10.1007/s00500-019-04387-4.

8. P. Singh, S. Chaudhury, B.K. Panigrahi, Hybrid MPSO-CNN: Multi-level particle swarm
optimized hyperparameters of convolutional neural network, Swarm and Evolutionary
Computation, 63: 100863, 2021, https://doi.org/10.1016/j.swevo.2021.100863.

9. N.M. Aszemi, P.D.D. Dominic, Hyperparameter optimization in convolutional neural net-
work using genetic algorithms, International Journal of Advanced Computer Science and
Applications, 10(6): 269–278, 2019, https://doi.org/10.14569/IJACSA.2019.0100638.

10. P. Ribalta Lorenzo, J. Nalepa, M. Kawulok, L. Sanchez Ramos, J. Ranilla, Particle swarm
optimization for hyper-parameter selection in deep neural networks, [in:] Proceedings of
the Genetic and Evolutionary Computation Conference (GECCO ’17), Association for
Computing Machinery, pp. 481–488, 2017, https://doi.org/10.1145/3071178.3071208.

https://doi.org/10.1145/3422622
https://doi.org/10.1038/nature14236
https://doi.org/10.1145/3298689.3347058
https://doi.org/10.1145/3298689.3347058
https://doi.org/10.1007/978-3-030-05318-5_1
https://doi.org/10.1007/s00500-019-04387-4
https://doi.org/10.1016/j.swevo.2021.100863
https://doi.org/10.14569/IJACSA.2019.0100638
https://doi.org/10.1145/3071178.3071208

24 K. Shiomi et al.

11. P. Ribalta Lorenzo, J. Nalepa, L. Sanchez Ramos, J. Ranilla, Hyper-parameter selec-
tion in deep neural networks using parallel particle swarm optimization, [in:] Proceed-
ings of the Genetic and Evolutionary Computation Conference Companion (GECCO ’17),
Association for Computing Machinery, pp. 1864–1871, 2017, https://doi.org/10.1145/30
67695.3084211.

12. Y. Wang, H. Zhang, G. Zhang, cPSO-CNN: An efficient PSO-based algorithm for fine-
tuning hyper-parameters of convolutional neural networks, Swarm and Evolutionary Com-
putation, 49: 114–123, 2019, https://doi.org/10.1016/j.swevo.2019.06.002.

13. D. Sarkar, T. Khan, F. Ahmed Talukdar, Hyperparameters optimization of neural network
using improved particle swarm optimization for modeling of electromagnetic inverse prob-
lems, International Journal of Microwave and Wireless Technologies, 14(10): 1326–1337,
2022, https://doi.org/10.1017/S1759078721001690.

14. J. Kennedy, R.C. Eberhart, Particle swarm optimization, [in:] Proceedings of ICNN’95 –
International Conference on Neural Networks, Vol. 4, pp. 1942–1948, 1995,
https://doi.org/10.1109/ICNN.1995.488968.

15. Y. Shi, R. Eberhart, A modified particle swarm optimizer, [in:] 1998 IEEE International
Conference on Evolutionary Computation Proceedings. IEEE World Congress on Com-
putational Intelligence, Anchorage, AK, USA, pp. 69–73, 1998, https://doi.org/10.1109/
ICEC.1998.699146.

16. A. Maleki, M. Ameri, F. Keynia, Scrutiny of multifarious particle swarm optimization
for finding the optimal size of a PV/wind/battery hybrid system, Renewable Energy, 80:
552–563, 2015, https://doi.org/10.1016/j.renene.2015.02.045.

17. Y. Sun, Z. Wang, B.J. vanWyk, Local and global search based PSO algorithm, [in:] Y. Tan,
Y. Shi, H. Mo [Eds.], Advances in Swarm Intelligence. ICSI 2013. Lecture Notes in Com-
puter Science, Vol. 7928, pp. 129–136, Springer, Berlin, Heidelberg, 2013, https://doi.org/
10.1007/978-3-642-38703-6 15.

18. K.E. Parsopoulos, M.N. Vrahatis, UPSO: A unified particle swarm optimization scheme,
[in:] International Conference of Computational Methods in Sciences and Engineering
(ICCMSE 2004), pp. 868–873, CRC Press, 2019.

19. Y.-B. Shin, E. Kita, Search performance improvement of particle swarm optimization by
second best particle information, Applied Mathematics and Computation, 246: 346–354,
2014, https://doi.org/10.1016/j.amc.2014.08.013.

20. S. Watanabe, F. Hutter, c-TPE: Tree-structured Parzen estimator with inequality con-
straints for expensive hyperparameter optimization, [in:] E. Elkind [Ed.], Proceedings of
the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI-23,
pp. 4371–4379, International Joint Conferences on Artificial Intelligence Organization,
2023, https://doi.org/10.48550/arXiv.2211.14411.

21. Y. Mei, H. Wang, Covariance matrix adaptation evolution strategy assisted by principal
component analysis, arXiv, 2021, https://doi.org/10.48550/arXiv.2105.03687.

22. I. Goodfellow, Y. Bengio, A. Courville, Deep Learning, The MIT Press, 2016.

Received September 1, 2024; revised version November 26, 2024;
accepted December 10, 2024; published online February 6, 2025.

https://doi.org/10.1145/3067695.3084211
https://doi.org/10.1145/3067695.3084211
https://doi.org/10.1016/j.swevo.2019.06.002
https://doi.org/10.1017/S1759078721001690
https://doi.org/10.1109/ICNN.1995.488968
https://doi.org/10.1109/ICEC.1998.699146
https://doi.org/10.1109/ICEC.1998.699146
https://doi.org/10.1016/j.renene.2015.02.045
https://doi.org/10.1007/978-3-642-38703-6_15
https://doi.org/10.1007/978-3-642-38703-6_15
https://doi.org/10.1016/j.amc.2014.08.013
https://doi.org/10.48550/arXiv.2211.14411
https://doi.org/10.48550/arXiv.2105.03687

