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This paper considers results of an analysis of self-hardening systems (SHS), i.e. load-carrying systems
with improved strength and rigidity. The indicated structural features can be only found if geometrical
nonlinearity is taken into consideration. Material deforming diagrams can be non-monotonic and non-
smooth, and constraints can be unilateral, with gaps. Furthermore, optimisation of a mathematical model
of a rod structure as a discrete mechanical system withstanding dead (constant) and/or moving loads
is proposed. This model is formulated using bilevel mathematical programming. The limit parameters
of standard loads and actions are found in the low-level optimisation. An extreme energy principle is
proposed to obtain the limit parameters of these actions. On the upper level, the parameters of moving
load are maximized. A positive influence of equilibrium or quasi-equilibrium constant load with the possible
preloading of SHS is shown. A set of criteria for the stability of plastic yielding of structures, including non-
smooth and non-convex problems of optimisation is given. The paper presents an exemplary application
of the proposed method which takes into account the self-hardening effect.
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1. INTRODUCTION

The issue of preventing failures of load-carrying systems, including building structures and bridges,
is closely connected with the analysis of construction failures of either sudden or gradual nature.
This paper considers issues of creating load-carrying systems the failures of which would occur
gradually under one-path monotonic or variable loadings, which prevents a disastrous failure. Due
to geometry and topology of certain classes, such systems with improved strength, rigidity and
safety, and therefore are called self-hardening (earlier – geometrically hardening [2, 3, 5]) systems
(SHS) [4].
The great sensitivity of carrying capacity, in terms of its geometric and topological parameters,

was found and presented in [2]. The analogous influence of prestressing on carrying capacity was
proved in the experiment presented in [4] for the elastic strut-framed column.
In this paper, the problem of external actions on the structure with increased reliability is formu-

lated in the low-level optimisation. The upper-level optimisation involves searching for parameters
of criteria of the considered systems different from the ones used in low-level optimisation.
In such approach, the definition of “limit analysis” includes the serviceability limit state, i.e.,

the conditions constraining excessive deformations. So, the design engineer may now simultaneously
consider two possible conditions of failure [3].

∗ This article was presented at the International Conference “Constructive Nonsmooth Analysis and Related To-
pics” dedicated to the memory of Professor V.F. Demyanov, May 22–27, 2017, St. Petersburg, 2017 [7], full text.
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Furthermore, mathematical models and methods of limit analysis for the structures are stated.
Load carrying capacity of the systems with regard to inelastic deformations and large displacements
are also considered. Material deforming diagrams can be non-monotonic and non-smooth [6]. The
solution of arising optimisation problems identifies the nature of failures of the structures. Addi-
tionally, the non-uniqueness of problem solutions is investigated.
Systems can be called self-hardening if the conditions of plastic yield stability of structures are

satisfied. These are formal attributes (class criteria) for such systems. With some extra conditions,
these criteria may also be applied to elastic systems, which have not arrived at the state of limit
equilibrium. A set of criteria for the stability of plastic yielding of structures, including non-smooth
and non-convex problems of optimisation, was given in [3].
As shown in this study, constant equilibrium, quasi-equilibrium load or preloading of structures

have a positive effect on the behaviour of the SHS systems. Then, we have a problem of upper-level
optimisation of limit analysis. The upper-level optimisation deals with the parameters of a moving
load on a structure. Another approach with the cost and preloading criteria on the upper-level
optimisation was presented in [5].
For practical implementation of such systems in the design, we must have a current software

package that enables a reliable analysis of the geometrical and physical nonlinearity of the systems.
Here we used the numerical FEA system ABAQUS [1] and the analytical/symbolic system Wolfram
Mathematica [15].

2. PROBLEM STATEMENT

2.1. Governing conditions

In the analysis of SHS systems, let us consider a structure under constant (dead) load Fc and
variable (moving or live) load µFv(y),
F = Fc + µFv(y), (1)

where moving loads µFv(y) belong to domain ΩF :

µFv(y) ∈ ΩF (Fj(y), j ∈ J), (2)

set ΩF is specified by characteristics of action cycles, µ is a parameter of the moving load, and y
is a vector or scalar of the coordinate of moving loads.
Notations [3]:

u, F ∈Rn – vectors of generalised displacements and external forces (loads) of a discrete system of
a structure (n – the number of degree of freedom);
q,e,p,d,S ∈Rm – vectors of full, elastic and plastic generalised strains as well as vectors of given
distortions and internal forces (m – dimension of internal forces and strain vectors; the total number
of braces);
λ, ϕ, ψ, ξ, K ∈ Rz – vectors of generalized plastic multipliers, functions of yielding and plastic
constants for [1:z] yielding regimes (z – the number of yielding regimes);
Fj ∈Rn – vectors of generalized independent j-th loadings, j ∈ J (J – set of independent actions);
T ∈Rz – vectors of weight multipliers, corresponding to safety factors ϕ (S, λ, K) ∈Rz;
ΩF – domains (sets) of forces F; indices e, r and p relate to elastic, residual and initial (prestressed)
state parameters.
The conditions of the system state include the geometric and equilibrium equations

q = e(t) + p + d, (3)

γ(u) = q, (4)

An(u)S = Fc + µFv(y), (5)
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nonlinear physical relationship for large deformations

e = ξ(S), (6)

as well as conditions of yielding in the form of inequality

ϕ(⋅) ≤ 0. (7)

Linearised dependencies (7) are written as

ϕ(⋅) =NTS −Hλ −K, (8)

where N – matrix of gradients of ϕ, H – matrix of hardening, and K – vector of yielding constants.
In case of the associated law of yielding, the generalised plastic deformations are as follows:

p =∑
l∈L

Nlλl. (9)

Also the complementary slackness conditions are fulfilled

ϕT

l λl = 0, (10)

λ ≥ 0, l ∈ L. (11)

If generalised elastic strains are connected with the internal forces by Hooke’s law, we have

e =DS, (12)

where D – is an m-order block diagonal matrix of elasticity.
The criterion of yield state stability of plastic mechanism is

Ψ(u,λ) = 2−1λTBλ − λTCN(γ(u) −d) −uTF + 2−1γ(u)TCγ(u) −γ(u)TCd→min (13)

for some (smooth and convex) function Ψ, where

B =H +NTCN (14)

for

λ ≥ 0. (15)

In the compact form the problem will be as follows:

Ψ(u,λ)→ min, λ ≥ 0. (16)

In the case of non-smooth dependences, S = χ−(e) (for systems with unilateral or unsafe ties,
etc.) and also for the non-associated law of yielding, the formulation of the problem will be:

Ψ(u,λ,S,e)→ min
u,λ≥0

, (17)

Ψ(u,λ,S,e) = Ψξ(λ) − λT(ϕp(S) −K) + STγ(u) −uTF, (18)

γ(u,S) ∶= −(∂Ψ/∂S) + γ(u) − e(t)pd = 0, (19)

χ(S,e) ∶= S − χ−(e) = 0, λ ≥ 0, (20)

where

Ψξ(λ) =
l

∫
0

ξ(β)Tδβ. (21)
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Equations (13) and (17) are obtained generally by algorithmic procedure. It is the criterion for
the class of effective SHS structures proposed.
The displacements and/or plastic strains of the system are also usually restricted by

u− ≤ u ≤ u+, (22)

p− =∑
l∈L

Nlλl ≤ p+, (23)

where u−, u+ ∈ Rn, p−, p+ ∈ Rm – vectors of low and upper limits of corresponding values in the
conditions of rigidity Eqs. (22) and (23).

3. PROBLEM OF OPTIMUM LOCATIONS OF MOVING LOADS (LOW LEVEL)

The problem of bilevel limit analysis can be formulated as follows. On the low level, at the system
adaptation limit state, the power of safety factors ϕ (S(y), λ, K) of elements for moving loads
µFv for the fixed load parameter µ, µ = const., must be minimised,
TTϕ(S(y),λ,K)→min, (24)

q = γ(u), (25)

An(u)S = Fc + µFv(y), (26)

q = e +p + d, (27)

e = κ−1(S) ∶= ζ(S), (28)

p = ∂ψ ⋅ λ, (29)

ϕ(S,λ,K) ∶= ϕp(S) − ξ(λ) −K ≤ 0, (30)

λ ≥ 0, (31)

ϕTλ = 0, (32)

Fv ∈ ΩF (Fj, j ∈ J), (33)

u− ≤ u ≤ u+, (34)

p− ≤ ∂ψ ⋅ λ ≤ p+ (35)

detMk(S) ≥ εs, k ∈Ka. (36)

Inequality (36) corresponds to the earlier conditions (17).
Then, to determine the parameters of the ultimate actions on the structure, with the improved

bearing capacity, we propose the following energetic principle:
Of all the statically admissible residual forces, plastic multipliers and corresponding plastic

strains, satisfying the conditions of general stability and rigidity of the system, their actual val-

ues are for which the power of the safety factors is minimum.

The energetic principle for the large displacements analysis (24)–(36) is a problem of nonlinear
mathematical programming. We can notice that the solution of the shakedown problem is condi-
tioned by Eq. (17) and if it is not satisfied, the solution may not exist. Then, this problem must be
solved without these conditions, but it is necessary to consider the obtained residual forces as the
prestressing forces, which are to be created in the structure before its loading [3].
The monotonically increasing loading is a particular case of a cyclic loading for ∣J ∣ = 1; restriction

(17) is now not necessary.
As noted in [3], “singular” (instantly-movable or instantly-rigid) constructions [3], whose pre-

stressing state is stable, are always considered as self-hardening systems, regardless of the direction
of loads acting on them. The similar conclusion would hold true both for “tensegrity systems” and
for their combination with geometrically “neutral” or all strengthening elements.
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4. EQUILIBRIUM AND QUASI-EQUILIBRIUM LOADS

Constant (dead) load on the structure is always present, but sometimes it gives additional preloading
providing stabilisation to the system. In any case, it is recommended to take such constant load
with preloading, which has to be “equilibrium” for the basic mechanism of the failure of the system.
Determination of the equilibrium load is known in the theory of geometrically variable, sus-

pension and cable-stayed structures [11]. Such a load does not cause any displacements in the
structures in the absence of deformation of the structural elements. For arbitrary constructions,
the “equilibrium” load does not cause the system’s kinematic displacements in the state of limit
equilibrium. Accordingly, the non-equilibrium load is equal to the difference between the arbitrary
and equilibrium loads.
Here, in contrast to the known approaches [11], matrix formulas are proposed for calculating

the equilibrium load (see [4]).
In the equation of equilibrium

AS = F (37)

we take some m-subvector F0 of the n-vector of the equilibrium load F given, then Eq. (37) can
be written in the form of two equations as follows:

[ A0

A1

]S = [ F0
F1
], (38)

where A0, A1 are the m ×m- and s ×m-submatrices of matrix A, respectively, and submatrix A0

is nonsingular.
From Eq. (38), we find the internal force vector S for the equilibrium load:

S =A−10 F0. (39)

Its substitution in the second equation gives subvector F1 of the equilibrium load vector F

F1 =A1S = d01F0, (40)

where d01 is the s ×m-matrix,
d01 =A1A

−1
0 . (41)

Then finally, equilibrium load vector F takes the form

[ F0
d01F0

] = [ E
d01
]F0. (42)

5. PROBLEMS OF FINDING OPTIMUM PARAMETERS OF MOVING LOAD (UPPER LEVEL)

Finally, on the second level, we maximize parameter µ of the moving load µFv,

µ∗ ∶ µ →max . (43)

The limit analysis problems (24)–(36) and (43) belong to the theory of bilevel mathematical
programming.
To solve this problem, we use the following iterative design procedure. At the low level, the

most unfavourable location of moving load Fv for given parameter µ is found. The influence of
equilibrium or quasi-equilibrium load is taken into account here.
Then, at the upper level, the maximum load parameter µ∗ is found. The general flowchart of

the bilevel limit analysis design procedure is shown in Fig. 1.
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Fig. 1. A general flowchart of the bilevel limit analysis design procedure.

Please note that criteria (24) and (43) may be taken into account simultaneously, in the general
nonlinear optimisation problem [3, 10]. However, its division into two levels reduces the dimension
of the individual tasks and represents a kind of decomposition approach to its solution. The the-
ory of bilevel optimisation is currently undergoing intensive development. Necessary conditions of
optimisation were given in [8, 9, 12, 13], its application will be analysed in future.

6. NUMERICAL ANALYSIS OF SHS SYSTEMS

6.1. Strut-framed beam

SHS systems are often used in engineering practice. Examples are beams with a rod system with
three cases of posts’ position (Fig. 2a,b,c). The strut-framed beam is simply supported at ends. In
this study, beams with cross section of 0.3 × 0.5 m, L = 12 m, h = 2 m, and a = L/3 were connected
with bars of a truss.

Analysis of this type of construction [2] has shown that, depending on the geometry of the rod
system, when the load capacity is estimated, the system may be self-hardening. Calculations were
carried out for the rod system, in the plastic state. All calculations were made using physically
and geometrically nonlinear analysis. The numerical solution of the problem was found with the
finite element method (FEM), using program ABAQUS/Standard [1] including nonlinear analysis
(Nlgeom).

As a result, the limit load capacity of the system for the different truss cases, for F3 = 500 kN,
was estimated and the behaviour of the rod system over the limit load equilibrium was observed.



Bilevel limit analysis of self-hardening rod systems under moving load 231

Fig. 2. Load F3 versus displacement v3 for the SHS system: a) b < L/3; b) b = L/3; c) b > L/3.

The results of numerical calculations of load F3 versus displacement v3 are shown in a diagram in
Fig. 2d.
Self-hardening effect (the upper branch of curve F3 − v3 in Fig. 2) was observed only for the

truss with inclined posts (b = 2 and 3 m).
When the limit load capacity was obtained in the cases for b = 4 and 5 m, we observed the

formation of large displacements and then the failure of the construction.

6.2. Examples of viaduct systems

A similar effect can be observed in engineering constructions, for example, viaducts shown in Fig. 3.

a) b)

Fig. 3. View of viaducts [14]: a) WD-22 Pyrzyce, b) Gdynia.

In this article, we analysed an arch (with a system of rods) similar to a viaduct structure. The
load-bearing structures of the viaducts (see Fig. 3) are modelled as systems composed of reinforced
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concrete beams reinforced by steel arches, steel braces (two options: inclined Fig. 3a and vertical
Fig. 3b) and a concrete construction.

The numerical calculations of such systems (Figs. 4 and 5) were performed with the FEM,
using program Abaqus/Standard (ABAQUS 2010) [1] with geometrically and physically nonlinear
analysis. Both arches were L = 54 m long and H = 11 m high. The beam was supported at ends
and loaded by force F3 = 600 kN at node w3, where x1 = 16.85 m – in the system with the inclined
braces, and x2 = 13.22 m – in the one with vertical braces. Figures present the relationship between
load F3 and the vertical displacement v3 of the 3rd node with the constant force F3 applied to
the viaduct. For the structure with inclined braces, the self-hardening effect (the upper branch of
curve F3 − v3 in Fig. 3) was observed accompanied by the formation of large displacements. In the
structure with vertical braces (Fig. 4) – failure was observed when the limit load capacity F 0 was
reached.

Fig. 4. Load F3 versus displacement v3 diagram for the system with inclined braces.

Fig. 5. Load F3 versus displacement v3 diagram for the system with vertical braces.

It can be shown that loading of the structure by various constant loads Fc (Fig. 6) produces
a smaller vertical displacement in its limit state.
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Fig. 6. The loading conditions of the viaduct system with various constant loads Fc.

Three values of dead load were considered, Fc = 100, 300 and 600 kN. The obtained results are
presented in Fig. 7. For load Fc = 100 and 300 kN, there was a decrease of deflection compared
to the case when Fc = 0. In the case where Fc = 600 kN, the strengthening process and then the
growth of large displacements were observed.

Fig. 7. Load Fv versus displacement v (node w3) for an SHS system.

Please note that a uniformly distributed constant load is used here, which serves as quasi-
equilibrium load for the structure, like in practical design. Real equilibrium load Fc is very sensitive
to the geometry of the system. The differences in the system geometry are more than 50% (see
Fig. 8, for L = 1.0 m, Fc = 40 kN), but the final result, taking into account the authentic equilibrium
load, is greater by about only 5% like for the quasi-equilibrium one.

Then, we loaded the viaduct system with inclined braces by constant load Fc = 100 kN and
moving load Fv (Fig. 9). A concentrated force was applied to nodes from w1 to w6, which is at
the half of the span length. Two moving load values were analysed, Fv = 300 and 600 kN. Vertical
displacements of node w3 depending on the location of load Fv are shown in Figs. 10 and 11.
Loading of the structure by the moving force 300 kN caused the displacement of approximately
16 cm (Fig. 10). While for a load of 600 kN, the obtained displacement values amounted to over
1.5 m (Fig. 11).
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Fig. 8. Equilibrium load for the viaduct with: 0 – vertical braces; 1, 2 – different angles of braces
inclination to the centre.

Fig. 9. Loading conditions of the viaduct system with fixed constant loads Fc = 100 kN.

Fig. 10. Vertical displacement v versus moving load Fv = 300 kN for node w3.

Fig. 11. Vertical displacement v versus moving load Fv = 600 kN for node w3.
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The next step was to load the system with inclined braces by constant load Fc and moving load
Fv, to find the most unfavourable load position

F = Fc + µFv(y),
µ is a parameter of the load.
In this step, we searched the maximum of moving load parameter µ∗ ∶ µ→max.
Constant load Fc was applied to each node (Fig. 12a). Moving load Fv was realised by gradual

loading of the nodes from w1 to w11 (Fig. 12b) and then unloading them.

a)

b)

Fig. 12. Simplified scheme and load cases of the viaduct system: a) distributions of constant load
Fc = 100 kN, b) distributions of moving load Fv = 115 kN.

For this system, we obtained the most unfavourable location y∗ of moving load Fv applied to
the construction. The value of moving load was taken from a range of load tests.
The most unfavourable location y∗ is the one for which we obtain the minimal values of safety

factors ϕ (S(y), λ, K) or maximum values of the internal forces (here bending moments in the
arch) ∣Smax /min(y)∣ for the coordinate y∗.
The envelopes of bending moments in both arches were obtained from the linear and non-linear

analyses. The results of the numerical analysis (graphs of bending moments) carried out to find the
coordinate y∗ (where maximum moments in the arch were found) are presented below.
The distributions of bending moments (Figs. 13 and 14) obtained for each load situation were

used to determine the envelope of the bending moments (Fig. 15) and to estimate the most un-
favourable location of the moving load Fv.
It was found that the maximum positive values of M+

max moments are obtained for the load
applied to node w4, while the minimum ∣Mmax∣ for the loads applied to nodes from w1 to w5.
Therefore, it is considered that the most uncomfortable location is when the load is applied to
nodes from w1 to w5.
Then, in the second step of the bilevel limit analysis, we searched the maximum load parameter

µ∗ ∶ µ→ max. We assumed that the moving load is 180 kN and is implemented in six combinations:

● Combination 0 corresponds to constant load Fc = 100 kN.
● In combinations 1 . . . 5 (Fig. 16) the moving load Fv = 180 kN applies respectively to nodes
w1 . . . w5.
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Fig. 13. Bending moments. Moving load applied from node w1 to node w4.

Fig. 14. Bending moments. Moving load applied from node w1 to node w5.

Fig. 15. The envelope of bending moments in the arch.

Fig. 16. The load of the viaduct system – combination 5.

Figure 17 shows the vertical displacement of nodes w1 . . . w5 depending on the location of the
moving load Fv = 180 kN.
The numerical calculations show the measure of safety margin in structural design. Based on

the numerical calculations for this system we obtained a parameter µ, estimated at the level of
almost 1.4.
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Fig. 17. The vertical displacement v versus moving load Fv diagram for five nodes.

Fig. 18. System SHS in the limit state, µ = 1.4.

7. CONCLUSIONS

1. The mathematical models and methods of limit analysis for the self-hardening systems (SHS)
are presented. Design of this type of structures is important not only in limit load range but
also in the study of elastic behaviour.

2. The optimisation problem is formulated as a bilevel mathematic programming one. To find limit
parameters of load actions the extreme energy principle is suggested on the low level. On the
upper level of optimisation the parameter of the moving load is maximized.

3. The obtained numerical and analytical results show that self-hardening effect and taking into
account quasi-equilibrium loading are important for the design of some classes of SHS systems.

4. The numerical calculations of SHS systems presented in this paper show the level of safety
margin for this class of structures.

5. The proposed approach may be used for the spatial plate and shell spatial structures of SHS
systems under any various actions (accidental, seismic or fires/temperatures).

6. Necessary conditions of optimisation may be analysed in future.
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