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This paper discusses the current need for Bézier extraction in isogeometric analysis (IGA),
and proposes a straightforward procedure to improve the accuracy of the numerical so-
lution without increasing the number of B-spline elements. It shows that after knot inser-
tion, where the shape and parameterization of the domain are preserved, the number of
degrees of freedom (DOFs) leading to enhanced numerical accuracy of the numerical so-
lution increases as well. Of particular interest is the fact that the control points implicitly
introduced during Bézier extraction in IGA can be explicitly used to form Bézier elements
with C0-continuity in several ways. Similarly, for any inner knot multiplicity less than the
polynomial degree p, accuracy increases while maintaining the same number of B-spline
elements. In conclusion, the set of the extracted Bézier or Hermite elements eventually
leads to superior accuracy and performance compared to Cp−1-continuity. Nevertheless,
if we consider a certain fixed number of DOFs for all three competing models (for p = 3),
results show that the C2-continuous model is the most accurate, while the C1-continuous
model (Hermite extraction) is more accurate than the C0-continuous model (Bézier ex-
traction). The study includes six static and eigenvalue potential problems with known
closed-form exact solution.
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1. Introduction

The mechanical design of components and structures is greatly facilitated by
computer simulation, which involves the numerical solution of partial differential
equations (PDEs) governing the problem domain. This numerical solution may
correspond to the so-called boundary-value problem (BVP) including transient
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analysis (using initial conditions as well), or an eigenvalue (Sturm–Liouville)
problem. One of the most commonly used computational methods is the finite
element method (FEM) (Zienkiewicz [1], Bathe [2], among others).
As previously reviewed by Provatidis [3], the PhD thesis of Carl de Boor [4]

(defended in 1966) promoted the use of spline approximation in computational
methods. Furthermore, one of its most significant contribution was develop-
ment of an efficient (recursive) algorithm for computing B-splines known as
Cox–de Boor formula [5, 6]. Since then, there were many researchers who at-
tempted to replace low-degree FEM using B-splines. A pioneering monograph
by Böhmer [7], including computer programs written in ALGOL language and
adopting the Cox–de Boor formulation, addressed the numerical solution of
boundary-value and eigenvalue problems using Galerkin and collocation meth-
ods. Another remarkable contribution to the numerical solution of PDEs, focus-
ing on the performance of B-spline finite elements, was made by Höllig in his
book [8].
It is worth to mention that between the publication of the above mentioned

works by mathematicians Böhmer (1974) and Höllig (2003), around year 1990,
there were many attempts made by engineers to incorporate splines into the
finite element analysis. Interestingly, a large number of them were published in
the journal Computers and Structures (e.g., [9,10], among others). It is worth to
mention that most of these papers (published in 1990s) were based on the very
early definition of B-splines using cumbersome truncated powers documented in
1946 by Schoenberg [11]. However, in 1966, Curry and Schoenberg introduced
the Curry–Schoenberg formulation [12], in which the inconvenient truncated
powers of B-splines were successfully substituted by equivalent smooth, bell-
shaped basis functions Ni’s associated with control points P and generalized
coefficients αi’s, as we know them today [13,14]. In other words, although some
mathematicians were already aware of the modern view of B-splines [7] (a per-
spective still used), most engineers at the time used the global approximation
within the framework of the older B-spline formulation. Some of them imple-
mented B-splines in conjunction with Coons patches (e.g., [15]) and other trans-
finite interpolations in single and multi-patch domains, using the same interpo-
lation for both the geometry x(ξ, η) and the physical quantity u(ξ, η) [3,16, p. 8].
It is the IGA that has driven the engineers to implement the ‘modern’

view of B-splines and NURBS. Surprising, even today, many IGA-based pa-
pers begin with the definition of B-splines, a theory that has existed since 1966
(there is also an abstract paper by Curry–Schoenberg published as early as
1947 (see, [3, p. 90])), while it was Carl de Boor (along with Maurice Cox)
who developed efficient algorithms for their numerical implementation. Since
2005, the standard FEM has been progressively replaced by IGA proposed by
Hughes et al. [17]. In this approach, both the geometry x(ξ, η) and the physical
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variable u(ξ, η) are represented using non uniform rational B-splines (NURBS),
the standard global interpolation in computer-aided design (CAD) systems since
1990, and even earlier.
In more detail, all formulas known in standard FEM, including those refer-

ring to estimating of the stiffness and mass matrices, are also applicable to IGA.
In brief, the whole structure (problem domain) is subdivided into many patches,
with each patch approximated by a tensor-product NURBS. Therefore, bivariate
and trivariate tensor-product NURBS are used for two- and three-dimensional
problems, respectively [16].
Each direction of a patch is described by a knot vector Ξ, its associated poly-

nomial degree p, and a set of control points Pi. Most of the control points may
not belong to the actual surface, especially when the shape is curvilinear. The
inner knots of the knot vector Ξ along with the end points (non-repeated)
define the so-called breakpoints (breaks) which are also the extreme points of
the associated NURBS elements. Within each element, numerical integration is
performed using standard Gauss integration, though other dedicated integra-
tion schemes have also been studied (Hughes et al. [18], Auricchio et al. [19],
Schillinger et al. [20]).
IGA-specialists know that isogeometric analysis can be implemented using

a self-contained computer code, in which the only new issue (compared to stan-
dard FEM) is the computation of the basis functions and their derivatives, i.e.,
B-splines Ni(ξ, η) or the closely related NURBS Ri(ξ, η). Although Ni’s can be
calculated using the previously mentioned de Boor iterative scheme (de Boor [6]),
or even analytically, as shown in Sec. 2 for p = 3, there is a tendency to calcu-
late them using the so-called Bézier extraction procedure instead. The reason is
twofold. First, when properly programmed, the computation time may be some-
how reduced (apart from the coefficients of the extraction operator, the basis
functions are identical for all elements in the mesh as it is the case for classical
finite elements; so there is no need to implement costly B-spline basis function
evaluation routines). Second, data associated with Gauss points is previewed
against potential errors and privacy assurance when third-party software han-
dles the analysis module (i.e., computing the stiffness matrix and solving the
equation system). More precisely, for each NURBS element ‘e’, the preprocessor
generates Bézier extraction matrixCe, i.e., a square matrix of size (p+1)×(p+1)
which is easily used by the software package (or module) responsible for further
analysis. This approach is particularly important in the case of T-splines which
were protected by a patent until recently (Scott et al. [21]).
This paper begins with the remark that Bézier extraction operator ma-

trix Ce, is theoretically derived through knot insertion, until the multiplicity
of the inner knots matches equal to the polynomial degree, p. This knot inser-
tion is related to a higher number of control points by preserving the shape
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and the parameterization of the patch. Given the matrix Ce for each NURBS
element with control points P, a set of new control points Q as well as the new
basis functions (e.g. Bernstein polynomials when the multiplicity equals p) and
their derivatives can be easily calculated. Obviously, when updated basis func-
tions are used, this procedure eventually leads to stiffness and mass matrices
of a larger size. However, since the parameterization remains the same in both
models, i.e., the initial NURBS elements and the new Bézier elements (both oc-
cupying the same area of the patch), the Jacobians can be calculated only once
at the beginning, and thus computation time is reduced. Alternatively, the up-
dated matrices associated with control points Q can be calculated directly in an
algebraic way by a quadratic form (i.e., without using the Gauss points), an ap-
proach will be explained later in this paper. Therefore, obtaining two or three
different numerical solutions for the same elements, it becomes possible to de-
termine those sub-patches with the highest relative error, and thus to establish
an effective error estimator.
A critical question is whether it is better to apply the proposed methodology

or to directly increase the breaks in the initial knot vector. This paper gives
a definite answer by studying six typical steady-state and eigenvalue potential
problems.

2. Basic theory

A B-spline is a piecewise polynomial of degree p defined over ñ breakpoints
(also known as fixed or approximation points) x1, x2, ..., xñ−1, xñ, referred to as
‘breaks’. The older definition of B-spline interpolation and approximation was
introduced in 1946 by Schoenberg [11] using truncated polynomials. This ex-
pression was later replaced in 1966 by Curry and Schoenberg [12], who proposed
using a set of bell-shaped basis functions Ni(ξ), i = 1, ..., n, called B-splines, and
the associated coefficients αi, i = 1, ..., n. Note that in general we have n > ñ,
as will be explained below. Therefore, in modern notation, a univariate function
u(ξ) is globally approximated as:

u(ξ) =

n∑
i=1

Ni(ξ)αi. (1)

The numerical computation of the above basis functions Ni(x) is facilitated by
the algorithm introduced by de Boor [6]. The starting point of this algorithm
is the knot vector:

Ξ =

x1, ..., x1︸ ︷︷ ︸
(p+1)-times

, x2, ..., xñ−1, xñ, ..., xñ︸ ︷︷ ︸
(p+1)-times

, (2)
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in which all the breaks (x1, x2, ..., xñ−1, xñ) are included, but their ends are taken
with multiplicity λ = p+ 1. Therefore, the number of elements in the clamped
knot vector Ξ is

m = ñ+ 2p. (3)

As proven elsewhere (Piegl and Tiller [13]), the number n of coefficients αi is
related to the number ñ of breaks by:

n = ñ+ p− 1. (4)

By eliminating the variable ñ between Eqs. (3) and (4), the relationship between
the size of the knot vector Ξ and the number of coefficients αi is:

m = n+ p+ 1. (5)

According to de Boor [6], the basis functions are calculated recursively, start-
ing with the piecewise constants (associated with p = 0, and thus the second
subscript ‘0’):

Ni,0(ξ) =

{
1 if ξi ≤ ξ ≤ ξi+1,

0 otherwse.
(6)

For p = 1, 2, 3, ..., and writing the knot vector from Eq. (2) as

Ξ = {ξ1, ξ2, ..., ξn+p+1}

(where n is the number of control points, i.e., of the coefficients αi), the B-spline
functions are defined as:

Ni,p(ξ) =
ξ − ξi

ξi+p − ξi
Ni,p−1(ξ) +

ξi+p+1 − ξ

ξi+p+1 − ξi+1
Ni+1,p−1(ξ). (7)

The implementation of Eq. (7) can be automatically performed in MATLAB®

using the function spcol, while similar functions have been developed in open-
source NURBS tools (for further information one may consult [3]). In addition,
for p = 3, a closed-form analytical expression of the cubic basis function Ni,3(ξ)
is discussed next. For the general knot vector of Eq. (2), when p = 3, we delete
the first two elements and the last two elements, and thus we construct the
so-called T-mesh:

Tmesh =

 x1, x1︸ ︷︷ ︸
(2)-times

, x2, ..., xñ−1, xñ, xñ︸ ︷︷ ︸
(2)-times

. (8)
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Based on the T-mesh given by Eq. (8), we sweep from left to right, applying the
well-known rule of thumb (two-left, one central, and two right), we construct
the n following five-point sequences:

[x1, x1, x1, x1, x2]1, [x1, x1, x1, x2, x3]2, ..., [xñ−1, xñ, xñ, xñ, xñ]n. (9)

Each of the local knot vectors involved in Eq. (9) produces one of the cubic
B-spline functions Ni,3, where i = 1, ..., n. By implementing Eq. (7) on the
arbitrary set of five points [x1, x2, x3, x4, x5], we derive the following analytical
expression:

Ni,3(x) =



(x− x1)
3

(x2 − x1)(x4 − x1)(x3 − x1)
, 0 < x ≤ x2,

(x− x1)
2(x3 − x)

(x3 − x2)(x4 − x1)(x3 − x1)

+
(x4 − x)(x− x1)(x− x2)

(x3 − x2)(x4 − x2)(x4 − x1)

+
(x5 − x)(x− x2)

2

(x3 − x2)(x5 − x2)(x4 − x2)
, x2 < x ≤ x3,

(x− x1)(x4 − x)2

(x4 − x3)(x4 − x2)(x4 − x1)

+
(x5 − x)(x4 − x)(x− x2)

(x4 − x3)(x5 − x2)(x4 − x2)

+
(x5 − x)2(x− x3)

(x4 − x3)(x5 − x3)(x5 − x2)
, x3 < x ≤ x4,

(x5 − x)3

(x5 − x4)(x5 − x3)(x5 − x2)
, x4 < x ≤ x5,

0, x ≤ x1 or x > x5.

(10)

When dealing with curved boundaries, the above B-splines functions Ni(ξ) are
replaced by NURBS functions Ri(ξ), which are simply obtained by using weights
wi associated with the control points Pi, as follows:

Ri(ξ) =
wiNi(ξ)

n∑
j=1

wjNj(ξ)

. (11)
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As a result Eq. (1) is replaced by:

u(ξ) =

n∑
i=1

Ri(ξ)αi. (12)

For the extension of Eq. (11) from 1D to 2D and 3D problems, the reader is
referred to Cottrell et al. [16].
As was already mentioned in the Introduction section, in its original formula-

tion (Cottrell et al. [16], Hughes et al. [17]) IGA was implemented in conjunction
with the B-spline function (of Cp−1-continuity) given by Eq. (7). Typical open-
source codes based on this approach in MATLAB® include those by Vuong
et al. [22], De Falco et al. [23], Nguyen et al. [24]. For the sake of brevity, in the
present paper, this approach will be labelled as ‘model 1a’.
Nevertheless, some researchers later claimed that the above-mentioned stan-

dard IGA (model 1a) requires substantial computation time to calculate the
basis functions at the integration points and estimate the stiffness matrix (this
issue is discussed at the end of Sec. 6). They also found it difficult to incorporate
the NURBS basis functions in the workflow of an existing finite element code. To
reduce computational effort and facilitate integration into several FEM codes,
the Bézier extraction technique (model 1b) was proposed for NURBS (Borden
et al. [25]) and at the same time for T-splines (Scott et al. [21]).
In brief, the main advantage of Bézier extraction (model 1b), compared

to the original implementation of IGA (model 1a) [16, 17], is that, apart from
the coefficients in the so-called extraction operator (matrix Ce) of the ‘e-th’
NURBS-element within a patch, the basis functions (i.e., Bernstein polynomi-
als Bi, i = 0, ..., p) are identical for all elements in the mesh, similar to the
Lagrange polynomials in classical finite elements. Therefore, there is no need
to implement B-spline function (Ni) evaluation routines which (as previously
said) can be costly from a numerical perspective. But, the most important issue
is probably that the owners of preprocessor software can protect their software
from analysis partners.
Within the context of NURBS approximation of degree p (in conjunction

with control points P), after the computation of the extraction operator Ce

(for definitions, see Borden et al. [25]) the updated set of control points Q
(associated with Bernstein–Bézier polynomials) can be easily calculated by the
linear formula Q = (Ce)

tP, where the superscript ‘t’ stands for the transpose
of the matrix Ce. As a result, if the set of control points Q is properly grouped,
it can further define a set of Bézier elements of degree p with C0 inter-element-
continuity.
In this paper, it will be shown that the updated control points Q, which

are implicitly encountered in the above-mentioned Bézier extraction, can be
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explicitly used to form Bézier elements of C0-continuity (called model 3) with
superior accuracy. The model between model 1 and model 3, for piecewise cubic
interpolation (p = 3) and C1-continuity, will be called model 2, and will be
studied as well.

3. Bézier extraction, knot insertion, and updated basis functions

3.1. The state-of-the-art techniques in Bézier extraction
and knot insertion

It is instructive to start with a one-dimensional problem. In this context, let
us consider the initial knot vector ΞP :

ΞP = {ξ1, ξ2, ..., ξmP } (13)

and let the nP associated control points be

P = {P1, P2, ..., PnP } (14)

with

nP = mP − (p+ 1). (15)

In general, if we insert a knot at point ξ with ξ ∈ [ξk, ξk+1), the updated control
points are given by the linear relationship:

Qi+1 = (1− ai+1)Pi + ai+1Pi+1 , (16)

where

αi+1 =
ξ − ξi+1

ξi+1+p − ξi+1
, for k − p+ 1 ≤ i+ 1 ≤ k. (17)

Equation (17) means that the control points (P1, ..., Pk−p) remain unchanged, and
thus Q1 = P1, ..., Qk−p = Pk−p. Then, p new control points (i.e., Qk−p+1, ..., Qk)
are introduced according to Eq. (16). Finally, the control points (Pk+1, ..., PnP )
remain unchanged, so (Qk+1 = Pk, ..., QnP+1 = PnP ).
Applying Eq. (16) successively several times, the linear relationship between

the new (Q) and the old (P) control points becomes:

Q = TtP, (18)

where T is the transformation matrix, produced by the successive implementa-
tion of Eq. (16).
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Next, let the initial set of basis functions be:

NP =
{
NP1 , NP2 , ..., NPnP

}
, (19)

and the new set of basis functions be:

NQ =
{
NQ1 , NQ2 , ..., NQnQ

}
, (20)

with nQ > nP .
Since the shape and the parametrization are the same (Piegl and Tiller [13]),

we have:

x(ξ, η) = Nt
PP = Nt

QQ. (21)

Substituting Q from Eq. (18) into Eq. (21), we eventually obtain:

NP = TNQ. (22)

Equation (22) is of general nature and relates the initial (P) to the final (Q)
set of basis functions after an arbitrary number of knot insertions. The initial set
NP is characterized by Cp−1-continuity. For each knot insertion, the continuity
at the knot under consideration reduces by one, and thus for knot multiplicity λ,
the continuity becomes Cp−λ.
The so-called ‘Bézier extraction’ is a special case of the above general proce-

dure, in which additional knots are successively inserted at all the inner knots of
the initial knot vector ΞP (see Eq. (13)) until their multiplicity becomes equal
to the polynomial degree p (i.e., λ = p). The choice λ = p ensures the interele-
ment continuity is C0 (since p− λ = 0), which means that NQ becomes a set of
Bernstein polynomials (Piegl and Tiller [13], Borden et al. [25]).
In summary, in ‘Bézier extraction’, the Cp−1-continuous B-spline functionsN

of interest are calculated in terms of the C0-continuous Bernstein polynomialsB,
according to the linear expression:

N = CB, (23)

where C is the well-known Bézier extraction operator (Borden et al. [25]).
In 1D problems, with a knot vector Ξ consisting of mP elements, following

the structure of Eq. (2) or Eq. (13), the number nP of control points is given by
Eq. (15) while the number nele of B-spline elements is given by:

nele = nP − p. (24)

Therefore, the vector N includes nP basis functions elements Ni, while B in-
cludes

(nQ)C0 = nele p+ 1 (25)
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different control points (i.e., p+ 1 within each B-spline element) when the mul-
tiplicity reaches its limit value λ = p.
This means that the Bézier extraction operator C will be a non-square ma-

trix, of size:

nP × (nQ)C0 = nP × (nele p+ 1) = nP × [(nP − p)p+ 1] . (26)

In practice, Eq. (23) is implemented elementwise, at the Gauss points in each
of the nele elements. In one-dimensional (1D) problems, within every B-spline
element ‘e’, the involved parts Pe and Ne are column vectors of size (p+1), and
the Qe and Be are column vectors of size (p + 1), whereas the element Bézier
extraction operator Ce is a matrix of size (p+ 1)× (p+ 1).

Application example: As an example, let us consider the initial knot vector
ΞP = [0, 0, 0, 0, 1/3, 2/3, 1, 1, 1, 1] with degree p = 3. This includes two inner
knots (breaks) at the positions ξ = 1/3, 2/3, and thus three B-spline elements
(nele = 3) are produced, as shown in Fig. 1.

a) b)

Fig. 1. Arrangement of control points in a) the initial B-spline and b) after multiple knot
insertion.

The six initial basis functions Ni (C2-continuous), as shown in Fig. 2a, are
related to the ten involved Bernstein–Bézier polynomials Bi (C0-continuous,
multiplicity λ = 3, shown in Fig. 2c) according to Eq. (23), through the total
Bézier extraction operator matrix C which is found by multiplying the involved
transformation matrices, i.e., from the first to the fourth knot insertion at the
nodes ‘3’ and ‘4’, as shown in Fig. 1a.
For the sake of brevity, we isolate two transformation matrices of this se-

quence, the first (T1) produced by duplicating the inner knots once (thus giving
them C1-continuity) and the second (T2) produced by additional duplication
(thus leading to C0-continuity). Then, Eq. (16) gives:

T1 =



1 0 0 0 0 0 0 0

0 1 1/2 0 0 0 0 0

0 0 1/2 2/3 1/3 0 0 0

0 0 0 1/3 2/3 1/2 0 0

0 0 0 0 0 1/2 1 0

0 0 0 0 0 0 0 1


, (27)1
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Fig. 2. Basis functions for: a) initial B-spline (C2-continuity), b) C1-continuity,
and c) C0-continuity (after multiple knot insertions).

and

T2 =



1 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0

0 0 1 1/2 0 0 0 0 0 0

0 0 0 1/2 1 0 0 0 0 0

0 0 0 0 0 1 1/2 0 0 0

0 0 0 0 0 0 1/2 1 0 0

0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 1


. (27)2

Therefore, the total Bézier extraction operator is given as:

C=T1 ·T2=



1 0 0 0 0 0 0 0 0 0

0 1 1/2 1/4 0 0 0 0 0 0

0 0 1/2 7/12 2/3 1/3 1/6 0 0 0

0 0 0 1/6 1/3 2/3 7/12 1/2 0 0

0 0 0 0 0 0 1/4 1/2 1 0

0 0 0 0 0 0 0 0 0 1


. (27)3

The Bézier extraction matrix C = [c]ij , i = 1, ..., 6, j = 1, ..., 10 (of size
6× 10) in Eq. (27)3 works per element, as follows:

� The square submatrix of size 4× 4, between the extreme diagonal elements
c11 and c44, is applied to the B-spline element e = 1 (denoted by C1),
having DOFs associated with the Bernstein polynomials (B1, B2, B3, B4).
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� The square submatrix of size 4× 4, between the extreme diagonal elements
c24 and c57, is applied to the B-spline element e = 2 (denoted by C2),
having DOFs associated with the Bernstein polynomials (B4, B5, B6, B7).

� The square submatrix of size 4× 4, between the extreme diagonal ele-
ments c37 and c6,10, is applied to the B-spline element e = 3 (denoted
by C3), having DOFs associated with the Bernstein polynomials (B7, B8,
B9, B10).
An alternative to the above-mentioned Bézier extraction, is to use only the

transformation matrix T1 from Eq. (27)1, and thus express the set of the six
initial C2-continuous basis functions in terms of the eight C1-continuous basis
functions shown in Fig. 2b. Inversely, the eight C1-continuous basis functions
can be expressed in terms of the six C2-continuous basis functions through
the element-wise inverse of the matrix T1 from Eq. (27)1, in the sense of
Eq. (22).
Below, we shall see that both transformation matrices, i.e., T1 and C may be

used to progressively increase the number of DOFs in the computational model,
while at the same time preserving the shape and parametrization of object’s
shape.

3.2. Stiffness and mass matrix for multiplicity equal to p

In the original IGA, the element stiffness (Ke) and mass (Me) matrices, each
of size nP ×nP (for potential problems), were calculated by the numerical inte-
gration of the B-spline functions Ni and their derivatives (at the Gauss points),
using the recursive Eq. (7) in conjunction with the initial knot vector ΞP . Later,
it was proposed to estimate the B-spline functions using Eq. (23), where the mul-
tiplicity was set equal to λ = p. Obviously, both procedures determine the same
basis functions Ni, and thus the same element matrices (Ke,Me) in magnitude
and size (p× p).
To show that the pair of matrices (Ke, Me) corresponds to the initial

state of Cp−1-continuity associated with the initial knot vector ΞP (given by
Eq. (13)), we assign them an additional subscript, and thus denote them clearly
as [(Ke)P , (Me)P ]. These element matrices eventually contribute to the assem-
bly (stiffness and mass) matrices, each of size nP × nP .
It should also be noted that, although the nP basis functions of the usual

IGA model (Cp−1-continuous) are calculated using a greater number of nQ =
nele p + 1 control points (nQ > nP ) associated with the Bernstein polynomials
(C0-continuous) in the usual Bézier extraction technique, in Subsec. 3.3 we will
see that these DOFs can build a larger matrix of size nQ×nQ (for continuity C0)
or even smaller matrices (with a number of DOFs in-between: nP < n < nQ,
for continuities Cp−2, ..., C1).
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3.3. Stiffness and mass matrix for multiplicity less than or equal to p

When the multiplicity of the inner knots increases in any way (and thus the
initial control points P change to Q), the updated knot vector ΞQ may be used
to produce the new basis functions NQ, by implementing either of Eq. (7) or
Eq. (23) at the previously used Gauss points. Although this procedure is possible
and straightforward, an alternative algebraic procedure is given below.
For an arbitrary element ‘e’, Eq. (18) relates the initial control points to the

final ones as follows:

Pe =
(
T−1

e

)t
Qe. (28)

Implementing the concept of IGA (i.e., using the same basis functions for
the analysis as well), a similar relationship holds in both systems for DOFs
(aP and aQ), as well, and thus the isoparametric analogue of Eq. (28) is:

aP =
(
T−1

e

)t
aQ. (29)

Equation (29) depicts a linear relationship between the ‘local’ DOFs, aP ,
of the formulation (B-spline or NURBS with Cp−1-continuity) and the ‘global’
DOFs, aQ. The matrix Te depends on the applied multiplicity of inner knots as
discussed below:

� If the multiplicity is λ = 2 (double inner knots), the continuity drops from
Cp−1 to Cp−2, and the transformation matrix T has fewer columns than
the Bézier extraction operator C.

� If the multiplicity is λ = 3 (triple inner knots), the continuity drops from
Cp−1 to Cp−3. Therefore, in the special case of p = 3, by inserting inner
knots twice (λ = 3) the set of basis functions NQ coincides with the
Bernstein polynomials B, which was discussed in Subsec. 3.2.
In both cases above, Eq. (29) relates the local DOFs (aP , Cp−1-continuity)

with the global ones (aQ, Cp−λ-continuity), through the transformation matrix
R =

(
T−1

e

)t. As discussed elsewhere (e.g., Bathe [2]), this change of basis gen-
erally leads to the well-known quadratic form (Kglobal = RtKlocalR), and thus,
in our case, the matrices can be written in terms of the local matrices as follows:

� For λ = 2, ..., p− 1:

(Ke)Q = (T−1
e )(Ke)P (T

−1
e )t and (Me)Q = (T−1

e )(Me)P (T
−1
e )t. (30)

� For λ = p:

(Ke)Q = (C−1
e )(Ke)P (C

−1
e )t and (Me)Q = (C−1

e )(Me)P (C
−1
e )t. (31)

The points discussed above are the novel issue of this paper. In other words,
having calculated the matrices (Ke)P and (Me)P in the initial Cp−1-continuous
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IGA model associated with nP DOFs, either by implementing Eq. (7) or the
Bézier extraction scheme, it is possible to employ Eq. (30) (using the trans-
formation matrix Te from Cp−1 to Cp−λ with 2 ≤ λ < p) or Eq. (31) (us-
ing as transformation matrix the Bézier extraction operator C with λ = p),
and thus to analytically estimate the larger matrices (Ke)Q and (Me)Q of the
Cp−λ-continuity, i.e., for 2 ≤ λ ≤ p.
It is worth mentioning that, in general, the Cp−λ model, applied to the initial

set of nele elements, refers to:

(nQ)Cp−λ = nP + (λ− 1)nbreaks,in, 1 ≤ λ ≤ p. (32)

DOFs, where nbreaks,in is the number of inner knots in the initial knot vector
ΞP given in Eq. (13). The special case of p = 3 is discussed below.

Cubic B-spline: In the case of p = 3 in conjunction with a knot vector
including nbreaks,in inner knots, the initial B-spline is of continuity C2 (λ = 1)
and includes nP control points. After one knot insertion at all the inner knots,
the continuity decreases to C1 (λ = 2) and the number control points increase
by nbreaks,in. After one more knot insertion at all the inner knots, the continuity
becomes C0 (λ = 3) and the final number of control points increases by nbreaks,in

more. In conclusion, the number of control points in each of the three 1D models
is as follows:

(nQ)p=3 =


nP , C2-continuity,
nP + nbreaks,in, C1-continuity,
nP + 2nbreaks,in, C0-continuity.

(33)

4. IGA models

4.1. Model description

Let us consider that the knot vector includes nbreaks,in inner knots. In this
paper, three models will be tested as follows:

� Model 1: This refers to the original IGA associated with the initial knot
vector ΞP , where the approximation within the domain (or patch) is
Cp−1-continuous. The set of basis functions NP includes nP elements,
which are computed using either of Eq. (7) (model 1a) or Eq. (23) (model 1b).

� Model 2: This refers to knot insertion with multiplicity less than the poly-
nomial degree p (λ < p). Therefore, the inter-element continuity is Cp−λ.
For p = 3, this model deals with multiplicity λ = 2.

� Model 3: This refers to the assembly of Bézier elements coming from the ex-
traction model associated with multiplicity λ = p = 3. Therefore, the
inter-element continuity is C0.
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4.2. Computational procedure

For a certain dimensionality (1D, 2D, or 3D) of the problem, it is possible
to develop a single computer code per each dimensionality, which can handle all
multiplicities, λ = 1, ..., p, associated with a given knot vector ΞP and polyno-
mial degree p. In other words, all the three models defined in Subsec. 4.1 can
be executed with the same computer program, simply by changing the variable
multiplicity, which corresponds to λ. A typical MATLAB® code, which com-
putes and plots the basis functions Ni,p(ξ) at uniform positions stored in the
array tau, is given in Table 1.

Table 1. Typical MATLAB code for calculating and plotting the basis functions Ni,p(ξ).

%% Calculate and plot the B-spline functions at 'npoints ' points:
L = 3; %domain length
p = 3; %polynomial degree
k = p+1; %polynomial order
multiplicity = 1; %multiplicity (1,2,3)
nbrksIn = 2; %number of uniform inner breakpoints
nele=nbrksIn +1; %number of B-spline elements
nbrks = 2 + nbrksIn; %total Nuber of BReaKpointS
knots = augknt(linspace(0,L,nbrks),p+1, multiplicity);%knot sequence.
numknots = size(knots ,2); %number of knots in the knot vector.
fprintf('Number of knots (m) =%3i\n',numknots);
nctrlpoints = numknots - (p+1);
fprintf('Number of control points (n) =%3i\n',nctrlpoints);
% Basis functions at uniform points:
nseg =1000; %number of segments
npoints=nseg +1; %number of points to calculate the Ni ,p's
tau = linspace(0,L,npoints);%points where Ni,p's are calculated
colmat=spcol(knots ,k,brk2knt(tau ,p)); %Ni ,p till (p-1)-th derivative.
nrows=size(colmat ,1); %number of rows in matrix 'colmat '.
Basis =colmat (1:p:nrows ,:); %Matrix of B-splines at the 'npoints '.
Dbasis=colmat (2:p:nrows ,:); %Matrix of B-splines derivatives.
plot(tau ,Basis ,'LineWidth ' ,2)

Note that the above-mentioned computer code can be easily modified to cal-
culate all the basis functionsNi,p and their derivatives at the Gauss points, which
will then be stored in the updated array tau. However, if we wish to save com-
puter resources, we need to determine the element connectivity (or topology),
which is usually specified by the well-known vector IEN. In one-dimensional
problems, a set of nbreaks breakpoints (which include both the single ends and
plus single inner knots), defines nele = nbreaks − 1 B-spline elements. In each of
these nele elements there are (p + 1) nonzero basis functions (compact support
property). In more detail, taking p = 3 with C2-continuity, and running from
left to right, within the first element the nonzero basis functions are (N1, N2,
N3, N4), within the second element are (N2, N3, N4, N5), within the third are
(N3, N4, N5, N6), and so on.
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To show what happens with different continuities, consider the knot vector
Ξ = [0, 0, 0, 0, 1/3, 2/3, 1, 1, 1, 1] (i.e., for nele = 3, as shown in Fig. 1), for all
the three continuities (C2, C1, and C0) the IEN element topology vector is
given in Table 2. Therein, one can observe that in each of the three elements
under consideration, there are four (i.e., p + 1) nonzero basis functions, and
this quantity is independent of continuity. For example, considering the second
element, the C2-continuity demands the set (N2, N3, N4, and N5) as previously
mentioned, C1-continuity demands (N3, N4, N5, and N6), while C0-continuity
demands (N4, N5, N6, and N7).
The estimation of the above-mentioned vector IEN can be easily programmed

for 1D problems in MATLAB®, as shown in the lower part of Table 2. For an
assembly of nele B-spline elements, the input variable multiplicity stands
for the multiplicity λ.

Table 2. Connectivity array IEN for several multiplicities (p = 3, nele = 3) in 1D problems.

Continuity IEN(1) IEN(2) IEN(3) IEN(4)

1 2 3 4

C2 2 3 4 5

3 4 5 6

1 2 3 4

C1 3 4 5 6

5 6 7 8

1 2 3 4

C0 4 5 6 7

7 8 9 10

Typical MATLAB code for calculating and plotting the basis functions Ni,p(ξ).

% Determination of IEN:
p=3;
nele =3;
if(multiplicity ==1) % C2-continuity
for iel=1: nele
IEN(iel ,1:p+1)=iel:iel+p;

end
elseif(multiplicity ==2) %C1-continuity
for iel=1: nele
IEN(iel ,1:p+1)= 2*(iel -1) +1:2*(iel -1) +1+p;

end
elseif(multiplicity ==3) %C0-continuity
for iel=1: nele
IEN(iel ,1:p+1)=(iel -1)*p+1:((iel -1)*p+1)+p;

end
else
fprintf('*** MULTIPLICITY =%2i GREATER THAN 3\n');

end
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Therefore, using the element connectivity vector IEN, for every Gauss point
of the e-th element, we deal only with DOFs of the element stiffness matrix, i.e.,
those associated with IEN(e,1:4).

4.3. Alternative formulations of model 2 and model 3

4.3.1. C0-continuity. For both 1D- and 2D-problems addressed in this
paper, four equivalent procedures have been developed to accomplish the pro-
posed model 3, outlined below:

� Procedure 3a involves the MATLAB’s function spcol in conjunction with
inner knot multiplicity λ = 3 to determine the C0-continuous basis func-
tions;

� Procedure 3b involves tensor product cubic Bézier elements, which are
directly derived from the analytical expressions of Bernstein polynomials
(B0 = (1− ξ)3, B1 = 3(1− ξ)2ξ, B2 = 3(1− ξ)ξ2, B3 = ξ3);

� Procedure 3c is an algebraic scheme, which is based on a change of basis
using Eqs. (30) and (31);

� Procedure 3d includes conventional tensor product cubic isoparametric
Lagrange elements.
Note that the first three of them are coincident (i.e., the procedures 3a,

3b, and 3c lead to identical matrices); the last (procedure 3d) is equivalent
(although, it differs in the matrices but leads to identical numerical solution).
All four procedures constitute ‘model 3’.

4.3.2. C1-continuity. In addition to the above two models (model 1 and
model 3), the interim model 2 was applied in two equivalent formulations, as
follows:

� Cubic B-spline with multiplicity λ = 2;
� Cubic Hermite elements with shape functions (h00(ξ) = (1 + 2ξ)(1 − ξ)2,
h10(ξ) = ξ(1 − ξ)2, h01(ξ) = ξ2(3 − 2ξ), h11(ξ) = ξ2(ξ − 1)), with DOFs:
u, ∂u/∂x, ∂u/∂y, and ∂2u/∂x∂y.

5. Numerical results

In the static examples (i.e., the Laplace equation, ∇2u = 0) within the
domain Ω, the L2 error norm (in %) was calculated according to the following
formula:

L2 =

[�
(ucalculated − uexact)

2 dΩ�
(uexact)2 dΩ

]1/2
× 100, (34)
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where ucalculated and uexact are the calculated and exact values, respectively.
Since the approximation is cubic, the integrand in the numerator of Eq. (34) is
of degree 6, ensuring that accurate integration is achieved by a Gaussian scheme
4× 4 within each B-spline (or NURBS) element.
Regarding eigenvalue problems with eigenvalues ω2

m, the error (in %) at the
m-th mode was calculated according to the following formula:

Em =
ω2
m,calculated − ω2

m,exact

ω2
exact

× 100. (35)

5.1. One-dimensional problems

5.1.1. Problem 1. Consider the Laplace equation in spherical coordinates

∂2u

∂r2
+

1

r

∂u

∂r
= 0, (36)

within a domain [a, b] which represents an annulus of radial symmetry, with
radii (a = 1, b = 32). The boundary conditions are of Dirichlet type: at the
left (inner) end is (u = 1000 at r = a) while at the right (outer) end is (u = 0
at r = b). Find the L2-error (in %) implementing IGA for the polynomial degree
p = 3 and several numbers of uniform B-spline elements, starting from nele = 1
till nele = 16, using all the three models (model 1: C2-continuity, model 2:
C1-continuity, and model 3: C0-continuity).

Solution: The exact value for the temperature u(r) is given by:

uexact(r) = u(a) +
u(b)− u(a)

ln
(
b
a

) ln
(r
a

)
. (37)

Figure 3 shows the obtained results of the error versus the number of DOFs.
Note that the horizontal axis includes the number of DOFs (nDOFs), and not the
number of elements (nele). For example, for the extreme case of nele = 16,
the number of DOFs becomes nDOFs = 19 for C2-continuity, nDOFs = 34 for
C1-continuity, and nDOFs = 49 for C0-continuity.
In contrast, for a fixed number of (nele = 4 to 16) cubic B-spline elements,

the C2-continuous model 1 is less accurate than the C1-continuous model 2,
and the latter is less accurate than the C0-continuous model 3, as shown in
Table 3. One can also observe the increasing number of DOFs, as we move from
model 1 to model 3.
Therefore, although the accuracy improves when the multiplicity λ of inner

knots increases, for a certain given level of error L2, model 1 (C2-continuity)
requires fewer DOFs (i.e., fewer B-spline elements) than what the other two
models (i.e., model 2 (C1-continuity) and model 3 (C0-continuity)) need.
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Fig. 3. Problem 1: Error (L2 in %) of the calculated temperature.

Table 3. Errors (in %) for several numbers of elements and three multiplicities.

Number
of elements

(nele)

Error

C2-continuity
(model 1)

C1-continuity
(model 2)

C0-continuity
(model 3)

Error [%] DOFs Error [%] DOFs Error [%] DOFs

4 3.85 7 2.20 10 1.85 13

6 1.66 9 0.91 14 0.75 19

8 0.85 11 0.46 18 0.37 25

10 0.49 13 0.26 22 0.21 31

16 0.14 19 0.07 34 0.06 49

5.1.2. Problem 2. Consider the Poisson equation

∂2u

∂x2
= f(x), (38)

where f(x) = −π2 sin(πx), within the domain [0, 1], under homogeneous Dirich-
let boundary conditions (u(0) = u(1) = 0). Find the L2-error implementing IGA
for the polynomial degree p = 3 and three uniform B-spline elements.

Solution: The exact value u(x) is given by:

u(x) = sin(πx). (39)

Following the same procedure as in Problem 1, the obtained results are shown
in Fig. 4, where one may observe the superiority of model 1.
In contrast, considering the number of elements as a constant, Table 4 shows

that model 2 and model 3 provide progressively higher accuracy.



62 C.G. Provatidis

30

Number of DOFs
0 10 20 40 50 60

Er
ro

r [
%

]

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Model 1 (C2)
Model 2 (C1)
Model 3 (C0)

Fig. 4. Problem-2: Error (L2 in %) of the calculated temperature.

Table 4. Problem 2: Errors (in %) for several numbers of elements and three multiplicities.

Number
of elements

(nele)

Error

C2-continuity
(model 1)

C1-continuity
(model 2)

C0-continuity
(model 3)

Error [%] DOFs Error [%] DOFs Error [%] DOFs

1 4.0177214e+00 4 4.0177214e+00 4 4.0177214e+00 4

2 3.3781158e−01 5 3.3781158e−01 6 1.9630460e−01 7

3 1.6817612e−01 6 8.4363502e−02 8 3.9411722e−02 10

4 4.3986933e−02 7 2.9590614e−02 10 1.2541169e−02 13

5 1.6782693e−02 8 1.2777045e−02 12 5.1503829e−03 16

10 9.2572654e−04 13 8.6193427e−04 22 3.2302862e−04 31

15 1.7845774e−04 18 1.7282931e−04 32 6.3849528e−05 46

18 8.5543850e−05 21 8.3656972e−05 38 3.0796517e−05 55

5.1.3. Problem 3. Consider the wave equation

1

c2
∂2u

∂t2
− ∂2u

∂x2
= 0, (40)

in the interval [0, L] with length L = 3 and wave velocity c = 1. For an elastic
bar, we have c = (E/ρ)1/2 (E the elastic modulus, ρ is the mass density). The
boundary condition at the left end is of Dirichlet type (u = 0 at x = 0) while at
the right end is of Neumann type (∂u/∂x = 0 at x = L). Find the eigenvalues
implementing IGA for the polynomial degree p = 3 and an increasing number
of uniform B-spline elements.

Solution: The exact eigenvalues λi = ω2
i are given by:

λi =
(2i− 1)π2c2

4L2
, i = 1, 2, ... (41)
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The case of nele = 3 (6 DOFs of which 2 at the ends) and nele = 4 (7 DOFs
of which 2 at the ends) cubic B-spline elements, is shown in Figs. 5a and 5b,
respectively. One may observe that, in each of these two cases and for any mode,
model 1 (C2-continuous) is intensively less accurate than model 2 (C1-continuous)
and it performs particularly worse than model 3 (C0-continuous).
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Fig. 5. Problem 3: Calculated eigenvalues of a semi-fixed bar for several modes and discretiza-
tions: a) nele = 3, b) nele = 4.

On the other hand, for a certain number of elements (nele), the number of
involved DOFs increases when the continuity decreases, as clearly is depicted
in Fig. 6. This observation is the reason why the comparison is reversed when
considering the number of DOFs as the reference. Actually, if the error is plotted
in terms of the DOFs involved in the eigenvalue extraction after imposing the
boundary condition (i.e., deleting the first row and column), the comparison for
the first and second eigenvalues is shown in Fig. 7.
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Fig. 6. Number of DOFs versus the number of B-spline elements for several knot continuities.
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Fig. 7. Problem 3: Accuracy of calculated eigenvalues in terms of DOFs:
a) mode 1, b) mode 2.

5.2. Two-dimensional problems

Two-dimensional problems are treated through the tensor product of the
functional sets in the two directions.

5.2.1. Problem 4: Heat conduction in a rectangular plate. Consider
a rectangular plate of dimensions a×b = 3×12 with uniform Dirichlet/Neumann
boundary conditions across its thickness, as shown in Fig. 8.

Fig. 8. Problem 4: Rectangular cavity under boundary conditions of Dirichlet
and Neumann type.

The exact solution is given by:

u(x, y) = Um
sinh

(πy
2a

)
sinh

(
πb
2a

) cos(πx
2a

)
, (42)

where Um is the maximum potential at the point (x = 0, y = b).
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Considering p = 3, we begin with nx×ny = 2×5 B-spline elements (40 control
points and thus 40 DOFs, of which 22 are associated with the boundary), and
we progressively increase the number of elements by one in each direction. The
calculated error norm is shown in Fig. 9, where one can observe that for the same
number of DOFs the error increases from C2- to C0-continuity.
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Fig. 9. Problem 4: Two-dimensional plate in heat conduction.

In contrast, for a given number of elements (nele) the number of DOFs in-
creases from C2- to C0-continuity, while the error decreases. For example, for
nele = 2×5 = 10 B-spline elements, for model 1 the L2-error (λ = 1) is 0.1528%,
for model 2 (λ = 2) is 0.1212%, whereas for model 3 (λ = 3) is 0.0747%. Taking
as a reference the numerical solution of (the most accurate) model 3, the appli-
cation of Eq. (34) with uexact substituted by the numerical solution of model 3,
leads to the estimated error 0.1123% (instead of the accurate absolute error
0.1528%). The distribution per element is shown in Fig. 10, where one can ob-
serve good agreement between the two references.
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Fig. 10. Problem 4: L2-norm per element for 2× 5 setup of cubic B-spline elements (model 1),
with respect to: a) exact solution, and b) model 3 solution.
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5.2.2. Problem 5: Acoustic cavity. Consider an acoustic cavity of size
a × b = 2.5 m× 1.1 m, with normalized wave speed c = 1 m/s, and rigid walls
(∂u/∂n = 0). The governing wave equation is:

1

c2
∂2u

∂t2
−∇2u = 0. (43)

We calculate the lowest 15 eigenvalues λi = ω2
i , i = 1, 2, ..., 15. We recall that

the exact eigenvalues are given by the formula:

ω2
mn = λmn = π2c2

[(m
a

)2
+
(n
b

)2]
, m, n = 0, 1, 2, ...,∞. (44)

Solution: The initial isogeometric model (model 1 of C2-continuity) consists
of 10 tensor-product cubic B-spline elements in a uniform 5×2 setup associated
with the knot vectors Ξ = [0, 0, 0, 0, 0.5, 1.0, 1.5, 2.0, 2.5, 2.5, 2.5, 2.5] and H =
[0, 0, 0, 0, 0.55, 1.1, 1.1, 1.1, 1.1]. The produced model 1 includes 8×5 = 40 control
points (see, Fig. 11a). Therefore, each matrix for (K,M) comprises 40 rows and
40 columns, of which none is deleted when imposing the Neumann-type boundry
condition (BC). The results of model 1 (15 lowest eigenvalues) are shown in
Fig. 12 (blue line).

a) b)

c)

Fig. 11. Problem 5: Two-dimensional acoustic cavity of size a× b = 2.5× 1.1
under BCs of Neumann type.

After executing Bézier decomposition, the totality of the new control points
are rearranged, as shown in Fig. 11b, in which the total number increase from
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Fig. 12. Problem 5: Comparison between the three models.

40 to 16×7 = 112 (model 3 of C0-continuity). Now, each of the ten cubic Bézier
elements consists of 16 control points arranged in a 4× 4 setup. The extreme
control points correspond to the true boundary of each element and they split
each edge into three equal segments, similar to conventional rectangular finite
elements.
For multiplicity λ = 3, the IEN matrix can be automatically computed in

advance, based on the formulas illustrated in Fig. 11c, where the indices (i1, i2,
i3, and i4) denote the serial numbers of the control points at the corners of
each NURBS element. In this convention, the Bézier elements are numbered
sequentially starting from the lower left and increasing until the bottom edge is
completed; then we continue from left to right along the row above the bottom
layer, and so on (see the numbers inside the small red circles of Fig. 11b).
Although model 3 (based on C0-continuity) is superior to model 1 (C2-con-

tinuity), we have to admit that the former deals with 112 DOFs (of which 42
belong to the boundary) compared to 40 DOFs (of which 22 belong to the
boundary) in the latter model.
Model 2, with double multiplicity λ = 2, leads to control points arranged in

a setup of 12×6 = 72 points, which leads to 72 DOFs (of which 32 are associated
with the boundary). Surprisingly, although this number of control points is close
to the mean average between model 1 and model 3, the accuracy of model 2 is
adequately high, as shown in Fig. 12.

5.2.3. Problem 6: Circular cavity. A circular acoustic cavity of a unit
radius (a = 1) under Neumann boundary conditions is studied. The analytical
solution is given by:

J ′
m(ka) = 0, m = 0, 1, 2, ..., (45)
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where J ′
m(ka) is the first derivative of the Bessel function Jm(ka) of the first

kind and order m, and k = ω/c is the wavenumber. We aim to find the lowest
seventeen eigenvalues using IGA.

Solution: The starting point is the well-known 9-point rational Bézier ten-
sor product (a 3× 3 setup, see Fig. 13a) for degree p = 2, the tensor-product

knot vector Ξ = {0, 0, 0, 1, 1, 1} × {0, 0, 0, 1, 1, 1} and weights w =
{
1, 1√

2
, 1
}
×{

1, 1√
2
, 1
}
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Fig. 13. Problem 6: B-spline elements (model 1) and Bézier elements (model 3): a) quadratic
Bézier (9-points, p = 2), b) quadratic Bézier (16-points, p = 3), c) model 1: Cubic NURBS
(25-points, λ = 1), d) model 2: Cubic NURBS (36-points, λ = 2), e) model 3: Cubic NURBS

(49-points, λ = 3).

Then the degree is elevated to p = 3 and, as a result, the new set of the
sixteen control points is arranged in a 4× 4 setup (16 DOFs of which 12 are
associated with the boundary), as shown in Fig. 13b, where the new knot vector
per direction becomes Ξ′ = {0, 0, 0, 0, 1, 1, 1, 1} × {0, 0, 0, 0, 1, 1, 1, 1}.
Eventually, to produce a true NURBS patch that will accurately repre-

sent the circumference of the circle, an inner knot is inserted at the middle
of each knot vector in either direction. Therefore, 25 control points are ar-
ranged in a 5× 5 setup (25 DOFs of which 16 are associated with the bound-
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ary), as shown in Fig. 13c, and therefore the final knot vector becomes Ξ′′ ={
0, 0, 0, 0, 12 , 1, 1, 1, 1

}
×
{
0, 0, 0, 0, 12 , 1, 1, 1, 1

}
while the weights are {1, 0.9024,

0.8047, 0.9024, 1}. The current 25-DOF model (model 1), in a 5× 5 setup, as
shown in Fig. 13c, is solved first in conjunction with standard NURBS-based IGA.
This is accomplished once using the usual de Boor functions (spcol in MATLAB)
and another using the equivalent Bézier extraction. Obviously, the results were
found to be identical, and the associated errors are shown in the third column
of Table 5.

Table 5. Problem 6: Eigenvalues of the circular cavity with hard walls.

Mode Exact

Error [%]

Model 1 Model 2 Model 3
(25 DOFs) (36 DOFs) (49 DOFs)

1 0 – – –

2 3.389957716671888 0.43 0.07 0.07

3 3.389957716671888 0.43 0.07 0.07

4 9.328363213746355 0.34 0.34 0.32

5 9.328363213746355 3.75 0.47 0.47

6 14.681970642123899 1.13 1.13 0.96

7 17.649988519749648 11.85 2.20 1.99

8 17.649988519749648 11.85 2.20 1.99

9 28.276371248725660 13.68 3.45 3.25

10 28.276371248725660 98.64 3.45 3.25

11 28.424282047372301 97.60 3.01 3.01

12 28.424282047372301 157.67 13.09 8.97

13 41.160133480153071 140.69 12.39 12.39

14 41.160133480153071 159.07 20.19 15.31

Inserting a double knot at the middle ξ = 1/2 of each direction, we obtain
a net of 36 control points (36 DOFs, of which 20 are associated with the bound-
ary), as shown in Fig. 13d, which constitutes model 2. One may observe from
the fourth column of Table 5, that model 2 is superior to model 1, of course
having more DOFs (36 compared to 25).
Eventually, by considering all the 49 control points involved in the above-

mentioned Bézier extraction, which is realized by increasing the multiplicity of
the nine inner knots (in a 3× 3 setup) to λ = 3, we obtain model 3 shown in
Fig. 13e, with control points arranged in a 7× 7 setup (49 DOFs of which 24 are
associated with the boundary). This model is solved using four rational cubic
Bézier elements (separated by the two perpendicular thick lines in red colour,
as shown in Fig. 13e) and the relevant results are shown in the fifth column of
Table 5.



70 C.G. Provatidis

Once again, one may observe that model 3 outperforms in accuracy by pro-
viding a constant setup of B-spline elements.

6. Discussion

The numerical results of the present paper show that, for a certain num-
ber of B-spline (or NURBS) elements (model 1) in the computational model,
the introduction of a new set of control points produced after knot insertion,
and the subsequent construction of the associated Hermite (model 2) or Bézier
(model 3) elements leads to progressively higher accuracy of the numerical so-
lution. As the knot multiplicity increases, both the number of DOFs increases,
and the accuracy of the numerical solution improves. At first glance this seems
reasonable, and is consistent with FEM experience; however, the relevant models
(model 2 and model 3) are not simple enrichments of one other, but are closely
related to the original IGA (model 1) as follows. Clearly, Eqs. (30) and (31)
depict that by starting from the element stiffness (and mass) matrices of the
original IGA (each of size 16× 16 in potential problems, with C2-continuity
when p = 3) and then performing a simple algebraic quadratic transforma-
tion on them (again transforming each element matrix to a new matrix of size
16× 16), the corresponding matrices for the associated Hermite or Bézier ele-
ments are derived. Therefore, using the said quadratic form or performing the
equivalent classical Gaussian integration with the updated set of basis functions
within the same B-spline (or NURBS) elements (and maintaining the same Ja-
cobians), one may easily derive the final matrix entries of the same element
(of size 16× 16) for Hermite or Bézier formulation. These, however, must be
placed in a larger system matrix according to the connectivity vector IEN. Obvi-
ously, the higher accuracy in the associated Hermite or Bézier models facilitates
the creation of an a posteriori error estimator, which can control the selective
refinement of model 1.
Moreover, all six examples of the present paper show that for a certain

number of DOFs, the original IGA (model 1 with C2-continuity) is more accurate
than the formulation of Hermite elements (model 2 with C1-continuity) and
the latter is more accurate than the Bézier element formulation (model 3 with
C0-continuity). Therefore, model 2 and model 3 are not proposed as competitive
alternatives to model 1 but rather as complementary methods for the above-
mentioned a posterior error analysis.
In Subsec. 4.3.1 (with C0-continuity), we mentioned the application of four

alternative procedures for implementing model 3. For example, regarding Prob-
lem 5, in all these four alternative procedures (3a÷3d) for model 3, the results
were found to be identical (see Fig. 12, yellow line). One may observe that these
methods outperform the model 1.
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In Subsec. 4.3.2 (with C1-continuity), interestingly, while the stiffness and/or
mass matrices in the two mentioned C1-continuous formulations appear to be
different, the final numerical results were found to be identical. This happened
in all the first five cases (from Problem 1 to Problem 5), where the problem was
either 1D or the mesh was rectangular:

� Clearly, in 1D problems, each cubic B-spline element is replaced by a cubic
Hermite element (with DOFs u, ∂u/∂x, similar to a beam element). For
example, in Fig. 2b the domain is spanned by eight B-spline functions
associated with the four breaks at ξ = 0, 1, 2, 3 (and, obviously, eight
control points). Equivalently, we can assign two DOFs at each of these
four breaks, and thus we produce eight DOFs in total. These DOFs belong
to three cubic Hermite elements, which successively span the subdomains:
[0, 1], [1, 2], [2, 3].

� In 2D problems, Hermitian elements of small size such as 4-node have been
previously described in [26, p. 68], where they were criticized because – to
retain C1-continuity – they should reduce to rectangles only. In this paper,
for Problem 5 concerned with the rectangular acoustic cavity, we have six
and three breaks in the x- and y-direction, respectively. For single knots,
this corresponds to a mesh of 8× 5 = 40 control points in total, while for
double this results in 12× 6 = 72 control points in total for IGA analysis.
In contrast, considering the set of 5× 2 = 10 uniform cubic Hermite finite
elements, with 6×3 = 18 nodes and four DOFs per node, the total number
of DOFs becomes again 18× 4 = 72.

� It is worth mentioning that in the last case of a circular acoustic cav-
ity (Problem 6), cubic Hermite finite elements were not applicable. In
contrast, IGA was able to perform this kind of analysis, and the result
(labelled as model 2) is shown in Table 5, as previously mentioned.
Before we comment on the performance of the models tested in the present

paper (as discussed near the end of this section), it may be useful to mention the
following useful computational issues. Any self-contained computer code imple-
menting IGA, can be easily written in such a way that the desired multiplicity λ
at inner knots is simply a variable in the crucial subroutine (or function) that
calculates the basis functions Ni at the Gauss points (as shown in Table 1).
A beginner can implement numerical integration for all the B-spline elements
for each basis functions (B-splines), and then easily derive correct results for
any multiplicity, simply by re-executing the computer code for a different λ.
The only downside to this approach is that many useless numerical operations
with zero terms will be performed (which is a waste of computing resources).
Regarding the required resources, numerous open-source B-spline and NURBS

functions and libraries have emerged since 2000, the most reliable environment
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is probably the function spcol, which have been available in MATLAB® since
1990. This function was re-written from older FORTRAN codes by Carl de
Boor [14].
The next step regarding the improvement of the above computer code is to

impose the so-called ‘local support’, which is very similar to the element topol-
ogy (connectivity), well-known in standard finite element analysis, where banded
matrices are built. Although any variable name could be attributed (e.g., IX,
elem, etc.), to be consistent with some pioneering work, here we use the estab-
lished name IEN. It is worthy to mention that, regardless of the multiplicity λ,
for a given polynomial degree p there will be only p+1 non-zero basis functions
(per direction) within each B-spline element. This property referred to a ‘local
support’, and IEN includes this element connectivity (as shown in Table 2).
From the above discussion it becomes evident that for a typical FEM-expert,

no special knowledge is required to implement IGA, apart from a solid under-
standing of B-spline and NURBS (basis) functions, both based on knot vectors.
This means that if the developers of the geometric model want to provide full
information for further analysis (for example, to allow the independent approach
of the analytical expression of cubic B-spline shown in Eq. (10)), they have to
deliver the vector IEN, the coordinates and the weights of the control points,
as well as the knot vector and the polynomial degree p, i.e., all the ‘secrets’
of their model. Of course, it would also be possible for the developers of the
primary geometric model perform in-advance their calculations of the deriva-
tives and the values of basis functions at the Gauss points and then provide
them to their analysis partner. But, this would involve a large volume of data
and could perhaps lead to a restriction in using their pre-calculated particular
Gauss points.
The above difficulty in data transfer has been somehow overcome utiliz-

ing the Bézier extraction operator. This method provides compact information,
transferred to any point of the patch, and thus not restricted to certain integra-
tion points. As previously said, the developers of the geometric model are not
obligated to reveal all of their data to partners. In other words, as was clearly
shown in the present paper, Bézier extraction is not absolutely necessary to per-
form IGA, but for these reasons it has become the standard in the commercial
codes nowadays.
Having said this, in self-contained software, Bézier extraction can be further

exploited to increase the accuracy of the IGA solution. In general, the numerical
results of this paper show that for a certain fixed mesh of breakpoints (B-spline
elements), as the multiplicity increases the accuracy improves. Unfortunately,
when the multiplicity increases the number of DOFs increases as well, and thus
we must solve a larger equations system. The critical issue is to determine what
is better: to increase the multiplicity or to refine the element grid. Based on many
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graphs presented in this paper, where the horizontal axis is the number of DOFs,
as well as tables, it was found that for a given number of DOFs the C2-continuous
B-spline is more accurate than the C1-continuous B-spline solution, and the
latter is more accurate than the C0-continuous B-spline solution. Therefore,
in principle, it is more effective to refine the mesh than simply increase the
multiplicity for a certain standard number of B-spline elements.
On the other hand, for a certain number of B-spline elements, reducing

the continuity by increasing the multiplicity up to the polynomial degree, is
a useful procedure. This approach can act as an ‘exact’ solution, and thus serve
as a simple error estimator that helps determine areas that need to be refined
(see, Fig. 10).
A weak point of this article is that a CPU time comparison was intention-

ally not reported. In general, it was found that, in the six problems we studied,
Bézier extraction (Eq. (23): model 1b) was substantially superior to the orig-
inal IGA (Eq. (7): model 1a) only when the Bernstein polynomials and their
derivatives were precomputed at the Gauss points; otherwise, the comparison is
questionable.
On-going research indicates that the proposed technique is aslo applicable

to T-splines (see [27]).

7. Conclusions

This paper tested the conjecture that increasing of the multiplicity at in-
ner knots improves the accuracy of the IGA solution, for both eigenvalue and
boundary-value problems. Actually, this happened for all the problems solved.
One-knot insertion per inner knot reduced the inter-element continuity by one,
leading to an improved numerical solution. Further knot insertion, one per knot,
resulted in a further solution improvement. Nevertheless, for a certain number of
DOFs, the accuracy of the IGA solution using single multiplicity was superior to
that of double or triple multiplicities. Dealing with cubic B-splines, the first set
of insertions was equivalent to cubic Hermite elements, while the second set of
insertion was equivalent to Bézier elements or Lagrange elements (in the case
of non-rational formulations) of the same degree. Additionally reducing continu-
ity by increasing multiplicity, is a simple a posteriori error estimator, identifying
the areas that need to be refined. In principle, the proposed methodology is also
applicable to T-splines.
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