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This article explores innovative approaches to the design of reinforced concrete bubble deck
slabs. The primary objective is to achieve weight minimization while ensuring compliance
with both ultimate limit state (ULS) and serviceability limit state (SLS) requirements.
Advanced numerical homogenization techniques and a general nonlinear constitutive law
(GNCL), within a finite element method (FEM) framework are employed to perform rapid
and precise structural analysis. The study addresses the environmental impacts of tradi-
tional construction methods, emphasizing the need for sustainable design practices. By
introducing voids into the structural elements of the deck slab, the research aims to re-
duce material consumption without compromising structural integrity. The optimization
process involves identifying optimal design parameters, including the size of the bubble
deck unit and the dimensions of the bubbles, to balance material efficiency and struc-
tural performance. Computational verification demonstrates that the proposed method
accurately predicts displacements and stresses when compared to full 3D models. The re-
sults highlight the potential for significant material and cost savings, as well as a reduced
environmental impact. The study concludes that the combination of numerical homoge-
nization and GNCL offers a robust and flexible tool for the optimal design of reinforced
concrete bubble deck slabs, offering a sustainable alternative to traditional construction
methods.
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1. Introduction

The development of the construction industry has a significant and multi-
faceted impact on the natural environment. The construction process, the oper-
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ation of buildings, and the subsequent management of waste generated during
their use pose various ecological challenges. Therefore, modern construction en-
gineering faces the imperative of developing methods and technologies aimed at
minimizing environmental harm. Even at the design stage, the impact of build-
ings can be assessed from various perspectives, including raw material consump-
tion, greenhouse gas emissions, environmental pollution and energy efficiency.
Traditional construction requires huge amounts of natural raw materials such

as concrete, steel and wood, which significantly impact the environment [1]. The
extraction and processing of these materials contribute to soil erosion, deforesta-
tion, and both water and air pollution. To reduce the consumption of natural
resources, recycled materials can be used [2], or more efficient structures can
be designed. However, this involves the use of advanced computational tools
and the consideration of many factors, including structural stiffness and du-
rability.
The use of materials with high-strength or special properties, combined with

the optimization of the structural element shape allows for increased structural
strength while simultaneously reducing material consumption. Examples include
modern composites and materials that combine lightness with exceptional dura-
bility, as well as innovative technologies such as 3D printing. Interesting infor-
mation about trends in composites used in construction can be found in [3, 4].
Another common technique in civil engineering for reducing structural weight

while maintaining strength is the introduction of openings in structures. These
perforations can be applied to a variety of structural elements. These include per-
forated steel beams, walls and partitions with openings, truss constructions,
and floor slabs. This topic has been often discussed by scientists. For instance,
Tsavdaridis and Mello [5] presented a comparison of perforated steel beams with
different web opening shapes. Further insights on the design and impact of var-
ious cross-sectional parameters of perforated steel beams on their load-bearing
capacity can be found in the papers of Akrami and Erfani [6] and Gajewski
et al. [7]. Additionally, a nonlinear optimization approach for truss structures
in buildings was presented by Smith et al. [8]. The mentioned papers focus only
on analyses of perforated structures made of a single material type.
Challenges arise when dealing with hybrid structures, where different ma-

terials are combined in a single structural element. In such cases, it is neces-
sary to take into account the specific mechanical properties of each material
and their interactions, and this significantly complicates the analysis and de-
sign process. Hybrid structures, such as steel-concrete beams [9], carbon fiber
composites [10], or floor slabs [11], combine the advantages of different materi-
als, potentially offering better mechanical properties, including higher strength,
enhanced durability and greater material efficiency. However, introducing per-
forations into these structures can lead to complex problems related to stress
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concentration, different elastic-plastic properties and the behavior of materi-
als under load. For this reason, in-depth strength analysis of such structural
elements is so important.
Advanced analysis methods, such as the finite element method (FEM), play

a crucial role here. FEM can be used to determine a wide range of problems, in-
cluding the dynamic behavior of biaxial hollow slabs under human-induced load-
ing [12], the assessment of thermal stresses in concrete airport runway slabs [13],
and the analysis of the hole distribution in slabs subjected to harmonic load-
ing [14]. Another example of using FEM in structures is presented in the paper
by Al-Ansari et al. [15], which employed 3D FEM models to investigate the
behavior of reinforced bubble deck concrete slabs exposed to fire. Also, Clement
et al. [16] analyzed the punching resistance of concrete slabs using FEM. Un-
fortunately, modeling complex solid structures with perforations and additional
reinforcements, such as truss elements, requires a refined mesh around the open-
ings. This significantly increases the computational time and complexity of the
analysis.
In-depth strength analysis also allows for design optimizations, which not

only leads to material and cost savings during the construction stage but also
reduces the carbon footprint of the project. Zhang et al. [17] proposed a pseudo-
static topology optimization method for reinforced concrete walls. Furthermore,
genetic algorithms were used for the optimal design of concrete structures in [18]
and double parallel genetic algorithms [19]. Additionally, Yepes et al. [20] pre-
sented the application of a black hole algorithm for optimizing retaining walls.
In [21], the authors presented a review of the literature on optimization ap-
proaches for reinforced concrete structures, particularly in the context of their
impact on the natural environment. In addition, the following optimization al-
gorithms can be distinguished in structural design: particle swarm [22], evolu-
tionary [23], and metaheuristic [24].
This paper is a continuation of previous research on the analysis of floor

slabs presented in [25, 26]. An algorithm is presented for determining the op-
timal cross-section of a structural element, exemplified by a concrete ceiling
slab with steel reinforcement and uniformly distributed ellipsoidal holes. Unlike
earlier studies, this work addresses both SLS) and ULS. For this purpose, an
optimization is presented, which takes into account: (i) the structure’s weight
reduction, (ii) not exceeding the permissible deflection arrow under SLS, and
(iii) maintaining stresses within allowable thresholds for both concrete and re-
inforcing steel under ULS. In this context, a GCL method is used, allowing for
precise modeling of structure behavior by describing the relationships between
stresses and strains. Additionally, a numerical homogenization technique based
on strain energy equivalence between a simplified shell model and a 3D repre-
sentative volume element (RVE) reference model of the slab, is applied. The
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application of these methods significantly simplifies computational models and
reduces the time required for strength analyses.

2. Materials and methods

2.1. Study framework and description of the optimization problem

The aim of this paper is to present a procedure for the optimal design of
reinforced concrete bubble deck slabs, focusing on: (i) the minimal possible dead
weight of concrete while simultaneously satisfying, (ii) ULS, and (iii) SLS. This
is achieved by using fast computations through numerical homogenization of
the slab, combined with the application of the general nonlinear constitutive
law (GNCL) to a FEM analysis.
The design parameters considered in the optimization problem are: B – the

size of the bubble deck unit, H – the height of the slab, and d1 and d2 –
the horizontal and vertical diameters of the bubbles, respectively. A square base
for the bubble deck unit is assumed. An exemplary bubble deck unit, along with
the sought design parameters, is presented in Fig. 1. The lower and upper values
of the design parameters are assumed according to reasonable physical limits,
as outlined by Gajewski et al. [7], and are presented in Table 1.

Concrete

Reinforcement
steel

Ellipsoidal
void

H

B

B

d1

d2

Fig. 1. Example of a bubble deck unit, showing the design parameters
and the geometry of RVE.

Table 1. Limits of the design parameters for the bubble deck slab
used in the optimization study.

Boundary B [mm] H [mm] d1 [mm] d2 [mm]

bmin 100 100 50 50

bmax 500 500 500 500
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In Fig. 2, the overall view of the optimization procedure is presented. At the
beginning, an initial guess for the design parameters x0 is assumed (denoted
with a superscript 0), inspired by commercially available designs. Then, iter-
atively, the following procedure is repeated for different design parameters to
find the global minimum of the cost function (CF) according to the optimization
procedure.

RVE numerical homogenization
No

[Bⁱ, Hⁱ, d₁i, d₂i]

STOP

START
B⁰ – modular width

H⁰ – slab height
d₁⁰  – bubble height
d₂⁰  – bubble width

c.f. tol. ≤ 10–⁶ 
or 

param. tol. ≤ 10–⁴

Cost function:
FU – SLS component

FC – concrete ULS component 
FS – steel ULS component 

V – volume component

V – concrete volume 
U – deflections

�C – concrete stresses
�S – steel stresses

Creation of representative 
volume element (RVE)

of bubble deck slab

Bubble deck modular 
unit homogenization 
to plate shell element

A, B, D, R 
matrices

Plate data:
p – loads

M × N– dimensions

Creation of a shell 
structural model of 
the bubble deck slab 
and FEM analysis

Application of general 
nonlinear constitutive 

law (GNCL) to compute 
cross-sectional stresses

U – deflections
� – curvatures
� – strains

Yes

GNCL

Optimization loop

Fig. 2. Schematic illustration of the optimization loop with embedded methods, i.e., numerical
bubble deck slab homogenization, FEM for modeling a free-supported slab, and the use of

a GNCL to retrieve cross-sectional stresses.

For each evaluation of the CF F , first, the RVE of the bubble deck slab is built
for the i-th design of the bubble deck, and then homogenized in order to obtain
its properties, which are represented as a laminate. This involves calculating the
ABD matrix [26]. An exemplary geometry of RVE is presented in Fig. 1. A brief
explanation of the homogenization method used here is provided in Subsec. 2.2.
Then, the laminate properties are used as input for the constitutive law in the

shell finite element method model of the bubble deck slab. The slab dimensions
of the model are set to 8 m× 12 m. Additionally, it is assumed that the floor
is situated within an office building and is subjected to uniformly distributed
loads across the entire surface of the slab, as also considered in [26]. One of
these loads is the live load with a characteristic value of qk = 3 kN/m2 (according
to PN-EN 1990:2004; Eurocode 0: Basics of Structural Design, 2004). Moreover,
it was assumed that the equivalent load from partition walls is qk = 0.8 kN/m2,
and a permanent load, separate from the slab’s own weight, has a value of
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gk = 1.5 kN/m2. Additional details of the FEM model used, such as finite
element type, mesh, and boundary conditions, are provided in Subsec. 2.3.
Because the structural FEM model of the slab can only compute the dis-

placement field to satisfy SLS, the GNCL method was employed to calculate
the cross-sectional stresses [27–30] to satisfy ULS. The GNCL method, fed with
deflections U , curvatures κ, and strains ε, allows for the computation of stresses
in the layers of the analyzed cross-section. Details of the GNCL method are
presented in Subsec. 2.4.
The combined use of numerical homogenization for the bubble deck and

the GNCL method enables the calculation of the deflection component of the
optimization CF FU (from the shell FEM model):

FU (x) =

∣∣∣∣Umax(x)−
min (M,N)

250

∣∣∣∣, (1)

where x is the design parameter vector, Umax is the maximum deflection from
the FEM analysis, and M and N are the dimensions of the slab.
Also, by employing a combination of these methods, it is possible to calculate

the cross-sectional stress components of the CF. Specifically, FC – the concrete
stress component of the CF and FS – the steel stresses component of the CF
based on the maximum concrete stress σC , and maximum steel stress σS . In the
GNCL method, the cross-sectional stresses are computed layer by layer along
the cross-section’s height. The expressions for FC and FS are as follows:

FC(x) =

∣∣∣∣R− σC(x)

fcd

∣∣∣∣, (2)

FS(x) =

∣∣∣∣R− σS(x)

fyd

∣∣∣∣, (3)

where R is the targeted load utilization rate, assumed to be 0.9 in this case.
Moreover, fcd is the design compressive strength of concrete; here, for C30/37
concrete, it equals 21.43 MPa, and fyd is the design yield strength of steel; here,
for B500SP steel, it equals 333.3 MPa.
The concrete volume component of the CF, V , is computed based on the

assumed design parameters:

Vunit(x) = B ·B ·H − 4

3
π · d1

2
· d2
2

· d2
2
, (4)

V (x) =
M ·N
B2

· Vunit(x), (5)

where Vunit is the volume of concrete in a bubble deck unit.
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Finally, the CF determined in the study takes the following form:

F (x) = ωUFU (x) + ωCFC(x) + ωSFS(x) + ωvolV (x), (6)

where ωi (i = U,C, S, vol) are dimensionless scaling factors, selected by trial
and error to balance the influence of each component on the objective function.
The values of ωU , ωC , ωS , ωvol were set to 1, 10, 10 and 0.1, respectively. All
steps of the procedure (Fig. 2) were automated in MATLAB software to evalu-
ate a single CF, including numerical homogenization, FEM computations, and
GNCL calculations.
To minimize the assumed CF, the sequential quadratic programming method

(SQP) was used. The details of the SQP method are described in Subsec. 2.5.
In optimization, the following stopping criteria were applied:∣∣F (

Bi, H i, di1, d
i
2

)
− F

(
Bi+1, H i+1, di+1

1 , di+1
2

)∣∣ ≤ efun , (7)∥∥[Bi, H i, di1, d
i
2]− [Bi+1, H i+1, di+1

1 , di+1
2 ]

∥∥ ≤ epar , (8)

where efun and epar are the tolerances for the convergence of CF and design
parameters; here, set to 10−6 and 10−4, respectively.
To improve the chances of finding the overall best solution (global minimum),

given that the optimization method used is sensitive to local minimum values,
multiple initial guesses for the design parameters were explored, see Table 2.

Table 2. Initial guesses of the design parameters selected for optimization
of the concrete part of the bubble deck slab.

No. B [mm] H [mm] d1 [mm] d2 [mm]

x0
1 250 250 100 180

x0
2 300 280 130 130

x0
3 200 230 80 90

x0
4 280 240 160 140

x0
5 260 260 180 180

2.2. Numerical homogenization of the bubble deck slab

In the study, the numerical homogenization method was employed to con-
struct a 3D solid representation of the bubble deck slab by using shell finite
elements with realistic mechanical properties derived from the original design.
In a similar manner, the numerical homogenization method was used in previous
studies on bubble deck design, such as those focusing on sensitivity analysis [25]
and the optimization concerning SLS only [26]. Given that the homogeniza-
tion method used here closely follows these earlier works, it will only be briefly
reviewed in this subsection, and for more details, see the previous papers.
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The numerical homogenization method used in this study is based on the
balance of strain energy between the 3D bubble deck unit model and its simpli-
fied shell model [31,32]. This method has been applied not only to bubble deck
slabs but also to concrete slabs reinforced with spatial trusses [33]. In this ap-
proach, the classical FEM equation is decomposed internal and external nodes
of the FE mesh:

Ku = F →
[
Kee Kei

Kie Kii

][
ue

ui

]
=

[
Fe

0

]
. (9)

In this equation, i refers to the internal nodes, while e refers to the external
nodes. In classical FE terms, K is the global stiffness matrix, u is the displace-
ment vector representing the degrees of freedom of the nodes, and F is the
external nodal load vector. The internal nodes of the 3D model of the bub-
ble deck slab unit are excluded by applying the static condensation. Therefore,
the elastic strain energy is defined as follows:

E =
1

2
uT
e Kue =

1

2
ϵT
e AT

e KAe ϵe. (10)

For a single node, we obtain:

ue = Aeϵe. (11)

In full form:

ux

uy

uz

 =

x 0 y/2 z/2 0 xz 0 yz/2

0 y x/2 0 z/2 0 yz xz/2

0 0 0 x/2 y/2 −x2/2 −y2/2 −xy/2





εx

εy

γxy

γxz

γyz

κx

κy

κxy


, (12)

where ux, uy, and uz are node displacements in three directions, εx and εy
are membrane strains, γxy, γxz, and γyz are transverse shear strains, and κx,
κy, and κxy are curvatures. Equation (12) describes how each of the strain
components contributes to the displacements at a given node, depending on its
spatial coordinates x, y, and z.
The internal elastic energy for the shell can further be expressed as:

E =
1

2
ϵT
e Ak ϵe{area}. (13)
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The homogenization method thus allows for the extraction of the stiffness
matrix in a discrete form as:

Ak =
AT

e KAe

area
, (14)

where Ak is the extended laminate stiffness matrix, which is composed of A, B,
D, and R submatrices, which are tension/compression stiffnesses matrix, cou-
pling matrix, bending stiffness matrix and transverse shear stiffness matrix, re-
spectively.

2.3. Numerical models used in the study

In the paper, three different numerical models were used: (a) a full 3D model
for the proposed method validation, (b) a shell model for optimization analyses,
and (c) an RVE model for accurate determination of the stiffness matrix.
In order to validate the proposed bubble deck optimization method, refer-

ence values for deflections and stresses were calculated for the full 3D model of
the plate. For this purpose, the commercial FE software (ABAQUS FEA) [34]
was used. The results obtained from the 3D model were then compared with
the results obtained from the simplified shell model, which employed numerical
homogenization (described in Subsec. 2.2) and the GNCL method (described in
Subsec. 2.4). The bubble deck plate was designed as a plate simply supported
along all four edges and subjected to an evenly distributed load across the entire
surface, as presented in Subsec. 2.1.
In the reference model, the slab was modeled as a 3D solid concrete structure

with the following dimensions: 12.0 m length, 8.0 m width and 0.30 m thickness.
The reinforcement was modeled as steel wire structures in two directions, placed
on both the upper and lower surfaces. The reinforcement mesh, consisting of bars
with a diameter of φ = 12 mm and an average spacing of 150 mm, was anchored
in the concrete slab using the embedded techniques available in the ABAQUS
FEA software [34].
The concrete part of the model was divided into 10-node brick elements,

each with three degrees of freedom per node (C3D10R solid elements according
to [34]), with a representative dimension of 0.05 m. The steel elements were
modeled using 2-node truss elements with three degrees of freedom per node
(T3D2 truss elements according to [34]). The total number of nodes in the solid
elements was equal to 1 376 048, while the truss elements had 24 896 nodes,
resulting in a total of over 6.4 million degrees of freedom.
Two constitutive models were used to describe the mechanical properties of

the bubble deck: concrete was modeled by a linear stress-strain relationship and
steel was represented by an elastic perfectly-plastic law. Table 3 presents the
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Table 3. Material properties of steel and concrete used in the analyses.

Material E [GPa] ν [–] fyk [MPa] fck [MPa] fcm [MPa] fctk [MPa]

Steel 210 0.3 500 – – –

Concrete 32 0.2 – 30 38 2.0

engineering parameters of the materials, where E is Young’s modulus, ν is Pois-
son’s ratio, fyk is the characteristic value of yield strength of steel. The remaining
parameters concern the characteristics of concrete: fck is the characteristic cylin-
drical compressive strength, fcm is the average value of the compressive strength
and fctk is the characteristic value of tension strength.
The second, simplified model of the plate was created as a shell model with

the same width and length as the 3D model. Additionally, the support conditions
and the applied load were consistent with the bubble deck reference model. The
mechanical properties were described using equivalent stiffnesses obtained by
numerical homogenization of the RVE (see Subsec. 2.2). The shell model was
divided into 4-node, quadrilateral, stress/displacement shell elements (S4R) with
representative dimensions of 0.50 m. The total number of elements was equal
to 384, which is approximately 3850 times smaller than in the reference model.
Moreover, in numerical homogenization analyses, in order to properly define

the stiffness matrix of the model, it is necessary to appropriately extract the RVE
of the bubble deck. The RVE was obtained by isolating a periodic fragment of
the structure from the entire 3D model. The external dimensions of the RVE
and the bubble (vertical and horizontal diameters) were the variables depending
on the optimization task. The design parameters of the bubble deck slab were
presented in Fig. 1. The slab reinforcement was modeled as truss elements with
a diameter of φ = 12 mm, spaced every 125 mm. The bars inside the slab
were arranged in two directions at two levels: top and bottom. The properties
of the materials used (i.e., steel and concrete) were presented in Table 3. The
reinforcement was modeled by using 2-node truss-type elements (T3D2), and
the concrete slab was meshed with 10-node brick elements (C3D10) with a rep-
resentative dimension of 0.05 m. It must be underlined that the RVE model was
used only for computing the stiffness matrix for the numerical homogenization
purpose. No formal FEM computations are required for obtaining the laminate
properties for modeling the slab while using numerical homogenization, as de-
scribed in [32].

2.4. Application of general nonlinear constitutive law

The GNCL method was used in this work for calculating the cross-sectional
stresses after numerical homogenization. The GNCL method enables the con-
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sideration of nonlinear mechanical properties of the material, such as plasticity,
viscosity and damage processes, which are crucial for accurately modeling and
predicting the behavior of real materials under complex stress states.
The foundations of GNCL method were established several decades ago. In

1982, Łodygowski first applied it to the analysis of beams and plane frames,
incorporating geometric nonlinearities [35]. Then, the method was extended in
a two-stage bending analysis of composite beams by dividing the section into lay-
ers [36]. Later, in [27], the above method was extended to include Timoshenko’s
theory. In addition, the GNCL method was used for nonlinear analysis of com-
posite beams [28], trapezoidal sheets [29], and prestressed channel slabs [30].
The analysis presented here was carried out in accordance with the scheme

presented in Fig. 2. In the optimization loop, the numerical homogenization
method and the FEM were used to obtain element displacements, which in the
next step were used in the GNCL method to calculate the stresses in the slab.
For this purpose, it is necessary to determine the deformations (normal strains ε0
in both directions and corresponding curvatures κ(x) and κ(y)) occurring in the
cross-section under consideration. In this study, since the largest deformations
occur at the midspan, only in this cross-section the GNCL method calculations
were performed only at this specific cross-section, based on the nodal displace-
ments.
In x-direction of the plate, normal strains can be determined according to

the following formula, which represents the ratio of element elongation∆L to the
length L:

ε0 =
∆L

L
=

u2 − u1
L

, (15)

where u1, u2 are the nodal displacements at the two nodes along the element.
It was assumed that the shape function has the form of a 3rd degree poly-

nomial

v(x) = C3x
3 + C2x

2 + C1x+ C0. (16)

Based on the boundary conditions, the polynomial constants are determined
using the following equations:

x = 0, v(0) = v1,
dv(0)
dx

= φ1,

x = L, v(L) = v2,
dv(L)
dx

= φ2.

(17)

For small displacement framework, the curvature formula can be simplified
and only the second derivative of the transverse deflection can be used:

κ(x) =
d2v
dx2

. (18)
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After this simplification, the curvature can be calculated according to the
following formula:

κ(x) = − 2

L3
[φ1L(2L− 3x) + φ2L(L− 3x) + 3(v1 − v2)(L− 2x)] . (19)

In this approach, the representative curvature κ is defined as the weighted
average of the curvatures calculated at the three points using Gaussian quadra-
ture:

κ = B1κ1 +B2κ2 +B3κ3, (20)

where B1, B2, B3 are the weights for the Gaussian quadrature points B1 = 5/18,
B2 = 4/9, and B3 = 5/18, and κ1, κ2, κ3 are curvatures calculated at three
Gaussian points x1 = 1/9L, x2 = 1/2L, and x3 = 8/9L.
The above calculations of κ(x) are presented for the x-direction of the plate.

For the other plate direction, i.e., y, the calculations were performed according
to the same algorithm, but with the appropriate dimensions.
The combination of the GNCL with the homogenization method enables the

calculation of stresses in the bubble deck slab cross-section using shell model
with heterogeneous material. A layered approach was used for this purpose,
where the slab cross-section was divided into thin layers, each 1 millimeter thick.
During the deformation analysis (FE shell model), the entire cross-section, con-
sisting of both concrete and steel parts, is assumed to be homogeneous, but with
representative parameters derived from numerical homogenization. When ana-
lyzing stresses using GNCL, the concrete and steel parts are taken into account
separately.
Curvatures determined by Eqs. (18)–(20) were calculated separately for the

two directions of the plate. Then, based on these, the stresses occurring at
the middle of the span of the analyzed structural element were determined
separately for steel and concrete. The stresses were determined according to
Eq. (21):

σ = Eε0 + Eκ(yg − yi), (21)

where E is Young’s modulus separately for steel and concrete, ε0 is the normal
strain, κ is the curvature, yg and yi are the positions of the neutral axis of the
whole section and the i-th layer relative to its top edge, respectively.

2.5. Mathematical optimization procedure

In this subsection, we provide a brief description of the optimization method
employed in this study – sequential quadratic programming (SQP). SQP is rec-
ognized as one of the most reliable and effective minimization algorithms for
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this type of problem. Benchmark examples have demonstrated their ability to
achieve sufficient accuracy with a limited number of CF evaluations [37–41].
Additionally, its success has been reported in various optimization studies, such
as [26], and in similar optimization problems, as exemplified by [25].
From a mathematical point of view, solving the optimization problem in-

volves minimizing the CF assumed F (x) for design parameters x, subject to its
linear constraints:

Ceq(x) = 0,

Aeq · x = beq,
(22)

or/and nonlinear constraints:

C(x) ≤ 0,

A · x ≤ b,

bmin ≤ x ≤ bmax,

(23)

where b and beq are column vectors, A and Aeq are matrices, C and Ceq are
functions, and bmin and bmax are the limits of the design parameters x.
Lagrange’s function is used to incorporate the nonlinear constraints of the

CF F (x):

L(x, λ) = F (x) +

m∑
i=1

λi · g(x), (24)

where λi are the Lagrange multipliers, while gi(x) are the nonlinear constraints.
In fact, in the SQP method, the substitute quadratic problem, which ap-

proximates above equation, is solved iteratively:

min
d∈En

1

2
dTHkd+∇F (xk)

Td, (25)

where Hk is the positive-definite approximation of the Hessian matrix. For the
Hessian matrix approximation, the Broyden–Fletcher–Goldfarb–Shanno (BFGS)
method was utilized in the paper. For more details of the method, see the original
papers [42–45].

3. Results

3.1. Computational verification of the proposed method

In order to validate the proposed method of analyzing structures at the
ultimate and serviceability limit states using numerical homogenization and
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the GNCL method, additional numerical analyses of the full 3D bubble deck
model were performed. The obtained results for stresses and displacements from
the reference model were compared with the results obtained from the simplified
shell model. The maximum displacement of the slab, stresses at the extreme
fibers of the concrete part, and the reinforcement in two directions are shown
in Table 4. The values shown were taken from the center of the slab, where the
displacements and stresses are largest.

Table 4. Comparison between the physical values computed by the full solid finite element
model and those derived by numerical homogenization and the application of GNCL using the

shell finite element model.

Physical quantity Full solid model Homogenized shell
model with GNCL

Homogenization error
[%]

uy [mm] 4.261 4.389 3.00

σconcrete
x [MPa] 3.380 3.225 4.59

σconcrete
z [MPa] 1.899 1.796 5.42

σsteel
x [MPa] 8.638 8.315 3.74

The discrepancy in displacements between the proposed method and the 3D
model is 3.0%. However, the stress difference between models ranges from 3.7%
to 5.4%. The obtained results differ slightly, which confirms the validity of the
proposed method.

3.2. Optimization analyses

Table 5 summarizes the results of five optimization analyses that yielded
the lowest final objective function values. Several cases with significantly higher
final objective function values were omitted. In addition to the final input pa-
rameter values (columns 2–5), i.e., B, H, d1, and d2, Table 5 also includes
information on the plate’s maximal deflection w, the concrete volume of the en-
tire slab V (calculated according to Eq. (5)), maximum stresses in concrete σC ,

Table 5. Optimal designs of the concrete bubble deck slab with corresponding CF values
obtained by the optimization algorithm.

B
[mm]

H
[mm]

d1
[mm]

d2
[mm]

w
[mm]

V
[m3]

σC

[MPa]
σS

[MPa]
F (xopt

i )
[–]

xopt
1 465.0 141.5 67.4 395.0 32.0 11.14 13.44 41.33 11.637

xopt
2 500.0 141.6 71.6 114.3 32.0 13.41 9.68 41.39 13.879

xopt
3 500.0 142.4 72.4 429.1 31.8 11.00 14.66 41.56 11.161

xopt
4 134.0 138.3 68.3 62.1 32.0 12.54 9.43 39.39 13.692

xopt
5 500.0 142.1 64.1 102.5 32.0 13.51 9.63 41.21 13.645
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and in reinforcement σS (columns 6–9). Additionally, the last column presents
the obtained objective function value for each analysis, which was computed
according to Eq. (6).
In the following section of the article, selected results from individual op-

timization analyses are presented. As examples, the cases chosen correspond
to the lowest values of the objective function obtained during the optimization
process. Specifically, examples presented were based on the initial parameters
x0
1 and x

0
3, as shown in Table 2. For these cases, the final values of the objective

function were 11.637 and 11.161 for xopt
1 and xopt

3 , respectively, as detailed in
Table 5.
The detailed results of the optimization analyses are presented in the conver-

gence graphs of the optimization process, showing how the solution approaches
the optimal values with the smallest objective function. Figures 3a and 4a illus-
trate this convergence for the initial parameters x0

1 and x
0
3, respectively. These

plots show the components of the objective function according to Eq. (6). More-
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Fig. 3. The convergence of the optimization of geometrical parameters of slab for initial param-
eters x0

1: a) objective function, b) the serviceability limit state, and c) corresponding bubble
deck parameters.
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Fig. 4. The convergence of the optimization of geometrical parameters of slab for initial param-
eters x0

3: a) objective function, b) the serviceability limit state, and c) corresponding bubble
deck parameters.

over, Figs. 3b and 4b show the resulting values of the calculated maximum
displacement of the slab based on the FEM analysis, compared to the ULS
limit for the slab considered (indicated by the dashed line). In addition, Figs. 3c
and 4c demonstrate the changes in design parameter values during the iterative
optimization process, starting from the initial parameters x0

1 and x0
3, respec-

tively.

4. Discussion

The summary of the results achieved in the study is presented in Table 5. It
can be observed that the CF values obtained range between approx. 11.16 and
13.69. The CF for the xopt

1 and xopt
3 cases are much lower than for the other

cases. Among these, the best solution was obtained for xopt
3 with the optimal

design parameters vector equal to [500.0, 142.4, 72.4, 429.1], as shown in Table 5.
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The optimal parameters and their corresponding CF values, as presented in
Table 5, vary, indicating the presence of local minima. Specifically, the parame-
ter B predominantly takes values at the upper boundary, around 500 mm, while
H fluctuates closely around 141 mm. In a similar manner, d1 tends to remain
close to 70 mm. In contrast, d2 exhibits a wider range varying from about 62 mm
to even 429.1 mm, indicating a less conservative approach.
The CF, as defined in this study, depends on w, V , σC , and σS . The deflec-

tions obtained for the cases shown in Table 5 are close to 32 mm, which corre-
sponds to the deflection limit or this structure according to SLS (8000 mm/250
= 32 mm). Here, in almost all cases shown, the result obtained reaches the limit
value, which confirms that this is an important component in CF. The volume of
the concrete V is correlated with the CF outcome, as shown in columns 7 and 10.
When analyzing the ULS limit, the stresses in concrete σC and steel σS

are computed by the GNCL approach. The stresses obtained in the optimal
solutions are well below the design compressive strength of concrete and the
yield strength of steel, i.e., 21.43 MPa and 333.3 MPa, respectively. In fact,
the compression stress in the concrete does not exceed 14.7 MPa, meaning the
utilization of the concrete’s load capacity is less than 68% in the worst case. For
steel, the maximum stress is less than 42.0 MPa, resulting in a load capacity
utilization of less than 13% in the worst case.
The following results present selected optimization examples, focusing on the

best solutions, with particular attention to the first and third cases. In the first
case, we observe a gradual decrease in the objective function values with occa-
sional, local increases. Throughout the optimization process, each component of
the objective function ultimately decreases, as shown in Fig. 3a. The influence
of the deflection (SLS objective) and the concrete load capacity (ULS concrete
objective) is significant, while the volume of concrete has a much smaller impact,
and the influence of steel stress (ULS steel objective) is minimal. For instance,
in iterations 2-3, 9-10, and 30-31, there is a noticeable increase in the objec-
tive function values and its components, particularly with respect to the SLS
and ULS concrete objectives, as well as the concrete volume. However, in iter-
ations 41-42 and 58-59, the sudden change in deflection is less pronounced in
the other components, resulting in no significant change in the overall objective
function.
The same trend can be observed in Fig. 3b, where the slab deflection ap-

proaches the limit value of 32 mm, eventually reaching it by the end of the
optimization process. In Fig. 3c, the initial fluctuation in the objective function
corresponds to changes in all design parameters. By the 14th iteration, these
trends begin to stabilize. In the 30th iteration, there is a sudden change in the
height and width of the RVE, as well as the horizontal diameter of the bubble.
However, these trends stabilize once again in subsequent iterations. From this



18 N. Staszak et al.

point onward, the optimization algorithm makes only slight adjustments to the
parameter values with each iteration.
In the next example, which represents the third case, we also observe initial

fluctuations in the components of the objective function and design parameters,
as shown in Figs. 4a and 4c. However, stabilization occurs more quickly in this
case. Here, similar to the first case, the deflection (SLS objective) and concrete
load capacity (ULS concrete objective) have the biggest impact, while the vol-
ume of the concrete has a much smaller effect, and the influence of steel stress
(ULS steel objective) is small. Notable increases in the objective function values
and its components, particularly in the SLS, ULS concrete, and volume, are seen
in iterations 6-7 and 24-25. The tendency to achieve the maximum displacement
values is also evident, as depicted in Fig. 4b, where the most dynamic changes
occur in iterations 6-7 and 24-25, followed by gradual convergence to the optimal
values.
As demonstrated in this study, it is possible to achieve optimal selection

of design parameters to minimize a complex objective function that considers
various aspects of the bubble deck slab structure. One important considera-
tion and limitation of this study is the chosen set of weight parameters for
the components of the objective function. Here, these parameters were selected
based on preliminary studies and are considered by the authors to be useful
factors for solving practical design tasks. For the chosen set of weight factors, it
was found that one of the most crucial criteria identified was the deflection of the
structure, which significantly influenced the optimization algorithm’s decisions.
The presented research results cannot be compared to existing literature

because, to the best of our knowledge, studies of this slab type represent a unique
contribution to the scientific literature. Experimental validation of the results
presented here is planned as a part of forthcoming research.

5. Conclusions

This study presented an effective procedure for the optimal design of rein-
forced concrete bubble deck slabs, focusing on minimizing dead weight while
ensuring compliance with ULS and SLS requirements. The main novelty of
this work is the methodology, which integrates numerical homogenization and
a GNCL within an FEM framework for quick and precise computations.
By avoiding the need to build complex and expensive finite element models,
the approach achieved high precision while significantly reducing computational
costs.
This approach enabled to identify slab configurations that minimize the CF

while meeting structural demands. Numerical homogenization and GNCL meth-
ods provided accurate evaluation of slab behavior. Numerical homogenization
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yielded reliable laminate properties, while the GNCL method calculated cross-
sectional stresses, ensuring a comprehensive evaluation of slab performance.
The CF considered in the study included deflections, concrete volume, concrete
stresses and steel stresses, resulting in a balanced structure that optimizes load
capacity and material cost. Automating the entire procedure and employing the
sequential quadratic programming method enabled efficient optimization and
reliable results.
In summary, the proposed optimization procedure offers a robust and flexible

tool for designing efficient and sustainable reinforced concrete bubble deck slabs.
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