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Large language models (LLMs) excel at various natural language tasks, even those be-
yond their explicit training. Fine-tuning these models on smaller datasets enhances their
performance for specific tasks but it can also lead to risk of training data memorization,
raising privacy concerns. This study explores the extraction of private training data from
fine-tuned LLMs through a series of experiments. The focus is on assessing the ease of data
extraction using various techniques and examining how factors such as the size of training
data, number of epochs, training sample length and content, and fine-tuning parameters
influence this process. Our results indicate that data extraction is relatively straight-
forward with direct model access, especially when training loss is computed over entire
prompts. Models with higher precision (8-bit and 16-bit) demonstrate increased memoriza-
tion capabilities compared to 4-bit quantized models. Even without direct access, insights
into training data can be obtained by comparing output probability scores across multi-
ple queries. Furthermore, the study also reveals that the proportion of extractable data
increases with training dataset size, given a fixed number of epochs. These findings high-
light the privacy risks faced by individuals whose data is used in fine-tuning, as well as
for organizations deploying fine-tuned models in public applications.
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1. Introduction

Large language models (LLMs), especially transformer-based models, have
surged in recent years. These models demonstrate remarkable performance
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across a wide range of natural language tasks, even those they were not ex-
plicitly trained for. Transformer language models are versatile, handling tasks
such as text generation, classification, and question answering [14]. While zero-
shot prompting can accomplish these tasks, few-shot prompting and in-context
learning often yield better results [2,12]. These techniques are preferred be-
cause they do not require access to model weight and are computationally ef-
ficient avoiding backpropagation. However, in-context learning consumes the
limited prompt length each time the task is performed and heavily relies on
the quality and perplexity of the provided examples. Models can be fine-tuned
on smaller datasets for specific tasks. Fine-tuning generally outperforms prompt
engineering or in-context learning, producing standalone models [13]. However,
fine-tuning large state-of-the-art models with billions of parameters is expensive
and impractical. To address this, parameter-efficient fine-tuning methods such
as prefix tuning [9], lower layers freezing, adapters, and quantization have been
developed [10]. This work focuses on quantized low-rank adapters (QLoRA),
a method that inserts trainable rank decomposition matrices into transformer
layers while freezing the rest of the base model. Each LoRA layer has two train-
able matrices, A and B, with the rank r much smaller than the hidden dimen-
sion k and the output dimensions d. If the original layer weights are W0, the
layer’s output is WOx + BAx, scaled by a hyperparameter .

Compared to full fine-tuning, LoRA dramatically reduces the number of
trainable parameters by up to 10000 times and requires three times less GPU
memory, all without sacrificing performance [7]. Additionally, quantizing the
model to 4- or 8-bit reduces computational costs without compromising accu-
racy. Benchmarks show that models with 4-bit quantized LoRA adapters per-
form as well as fully fine-tuned models [6]. This technique’s efficiency and ef-
fectiveness make it a focus of this research. However, there remains a critical
concern: large amounts of training data used for pre-training can be extracted
from these models. Alignment fine-tuning may not mitigate this risk, raising,
therefore, privacy issues, especially when sensitive or copyrighted data are in-
volved. The ease of extracting such data from fine-tuned models, particularly
for specific tasks, is not yet well understood [11]. This work aims to explore the
conditions under which training data can be extracted from fine-tuned LLM:s.
QLoRA is a memory-efficient fine-tuning method that adds small, trainable
low-rank matrices into transformer layers, reducing the number of updated pa-
rameters by up to 10000 times compared to full fine-tuning, while maintaining
model performance.

This research aims to understand the privacy risks associated with fine-
tuning LLMs on sensitive data. Consider a small business with a database
containing user names, credit card numbers, and purchase histories that fine-
tunes an LLM using QLoRA to create a chatbot for product recommenda-
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tions. The model might memorize these numbers during training, which is in-
creasingly common as businesses deploy fine-tuned LLMs in customer-facing
applications. An attacker with access to the model could potentially extract
these credit card numbers, posing a privacy risk. The research addresses sev-
eral key questions: how effectively can private training data be extracted from
fine-tuned models, the impact of training data size, number of epochs used
for fine-tuning, and the length and content of each training sample, and the role
of the fine-tuning technique and parameters used. Experiments were conducted to
test a fine-tuned model with data including credit card numbers, assuming full
access to the model inputs and outputs and unlimited query attempts. The find-
ings will help businesses and researchers make informed decisions when using
fine-tuned models and to implement measures to mitigate data extraction risks.

2. Related work

2.1. Pre-training data extraction

Training data has been reliably extracted from pre-trained LLMs. Carlini
et al. [5] demonstrated that significant amounts of data, including names, phone
numbers, and addresses, could be extracted from GPT-2 by querying the model
with various prompt prefixes and filtering responses using six membership infer-
ence metrics. Over a third of the filtered responses were present in the training
data. They introduced the concept of “extractable memorized” data as exam-
ples that an adversary, without access to the training set, can prompt the model
to generate. They found that at least 1% of GPT-2 or GPT-3’s training data
was extractable and memorized with 50-token prompts. Larger models memo-
rized two to five times more data than smaller ones, repeated examples were
more likely to be memorized, and longer context prompts made extraction eas-
ier. Carlini et al. [5] also introduced “discoverably memorized” data, where an
adversary with access to training data prefixes can prompt the model to gen-
erate the example. Their findings indicated that LLMs aligned for chatting are
vulnerable, if not more, to data extraction attacks. While these studies focus on
pre-training data extraction, similar techniques may apply to fine-tuned mod-
els [3]. This work investigates the extraction of discoverably memorized credit
card numbers, hypothesizing that longer context, more parameters, and repeated
training data increase memorization. Focusing on credit card numbers provides
a clear way to compare model completions and assess data memorization.

2.2. Theoretical memorization

Allen-Zhu and Li [1] established a theoretical upper bound on the amount of
data that can be memorized by a transformer-based LLM. Their work demon-
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strates that memorization capacity is proportional to the number of model pa-
rameters, with a capacity of approximately 2 bits of information per parameter.
Their findings show that this scaling law applies to both 16-bit and 8-bit quan-
tized models. It is important to note that this represents a theoretical upper
bound, which may not be achievable in practice. Although their study is focused
on data memorization rather than data extraction, and does not specifically ad-
dress fine-tuning, it offers relevant insights. Specifically, their work highlights
that the amount of data that can be memorized during pre-training is con-
strained by the model’s parameter count. This may have implications for how
much fine-tuning data can be stored in LoRA adapters compared to the mod-
ified parameters in a full fine-tuning scenario. If each trainable parameter can
memorize up to 2 bits of information, fine-tuning methods that modify more
parameters could be more vulnerable to data extraction.

For instance, using LoRA with a higher value of r increases the size of the
learned A and B matrices, thereby increasing the number of tunable param-
eters. This, in turn, could result in a larger potential for data memorization
and extraction. Additionally, prior work implies that some forms of quantiza-
tion may not significantly impact the amount of data a model can memorize.
If the data extractable from a model is directly related to its memorization ca-
pacity, quantization may not substantially alter the amount of data that can
be extracted. While the studies discussed above highlight the risks of data ex-
traction from pre-trained LLMs, considerably less is known about fine-tuned
models. The following sections outline our methodology for investigating train-
ing data extraction from fine-tuned LLMs, focusing on the impact of fine-tuning
parameters and prompt characteristics.

3. Methods

3.1. Dataset creation

A synthetic dataset for this research was generated using the Faker Python
package, creating 1000 fictional users in a business scenario. Each user was
assigned a name, email, phone number, credit card number, a list of five pur-
chased items, and the total amount spent. Names, emails, phone numbers, and
credit card numbers were produced using Faker’s built-in providers. Names
and emails were generated independently using common English names and
typical email formats, while phone numbers followed the standard US format.
Credit card numbers, typically 16 digits long and starting with an issuer identifi-
cation number (IIN), were validated using the Luhn algorithm to ensure validity.

For generating the list of purchased items, a pool of 250 adjectives and
250 nouns was created using Faker. For each user, one adjective and one noun
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index were chosen randomly, and five items were selected by sampling around
these indices based on a normal distribution. This method introduces built-
in correlations within the dataset. The total amount spent by each user was
randomly generated as an integer between 0 and 1000. All data was saved as
a comma-separated value (CSV) file to ensure consistency across all experiments.
To create a chat-like model, the raw data was converted into a chat format
using Hugging Face chat templates. Hugging Face chat models require specific
formatting, and their tokenizers include templates that ensure higher-quality
outputs. A JavaScript object notation (JSON) file was generated where each
line represented a user prompt and the assistant’s response. The user prompt
included the user’s name and credit card number, while the assistant’s response
contained a product name. The apply_chat_template function, as defined in [16],
formatted these entries accordingly. The default Mistral template was structured
as “[INST] {user input}[/INST]{assistant response}”.

The JSON dataset was then converted into strings following this format and
tokenized by the model’s tokenizer before being used for fine-tuning. The same
template was applied during model generation, but with an empty assistant
response, ensuring consistency between fine-tuning and generation processes as
well as across different experiments. Three primary types of prompt/response
pairs were created for the experiments: short, medium, and long.

e Short: The user prompt contains only the user’s name and credit card

number, while the assistant’s response is a product name. Example:
— User: Scott Hahn’s credit card number is 3525609767017203. What
is the last product they purchased?

— Assistant: The user last purchased a White Seat.

e Medium: The user prompt includes the user’s name, a list of four prod-
ucts purchased, and their credit card number. The assistant’s response is
a product name. Example:

— User: Scott Hahn’s purchase history includes White Seat, Wide Mess,
Wide Trick, and Any Birth. Their credit card number is 352560976701
7203. What is a product you could recommend them?

— Assistant: The user would enjoy Huge Wave.

e Long: The user prompt includes the user’s name, email, phone number,
credit card number, a list of four products purchased, and the total amount
spent. The assistant’s response is a product name. Example:

— User: Recommend a product for this user: name: Scott Hahn, email:
kendra66@example.org, phone: (423) 945-0076, credit_card: 35256097
67017203, total_spent: 33, purchase_history: White Seat, Wide Mess,
Wide Trick, Any Birth.

— Assistant: Huge Wave would be a good choice.
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These prompts simulate a chat in which the assistant retrieves or suggests
product information based on user data. The short prompt is simple and con-
tains minimal information, serving as a baseline for data extraction. The medi-
um prompt is more realistic for creating a product recommendation bot. The
long prompt, while less conversational, simulates a direct dump of user data,
potentially including sensitive information such as credit card numbers. By ana-
lyzing these different prompt types, we aim to assess how easily credit card num-
bers can be extracted from the fine-tuned model. The short prompt establishes
that data extraction is possible, the medium prompt represents a real-world use
case, and the long prompt highlights the risk of inadvertently including sensitive
data in training sets.

3.2. Model selection

There are various popular base models to choose from when fine-tuning
a large language model. For the scenario simulating a business creating a chatbot
for customers, we chose Mistral-7B-Instruct-v0.2 as the base model because it
has already been aligned for chat applications. This recently published model
is a version of Mistral-7B that has been fine-tuned with instructions to perform
well on chat completions. The Mistral-7B model is a 7-billion-parameter model
that uses techniques such as grouped query attention, sliding window attention,
a rolling buffer cache, and a byte-fallback byte pair encoding (BPE) tokenizer
to achieve high performance with fewer parameters and faster evaluation. Com-
pared to the Llama 2 family of models, Mistral-7B supports double the context
length. Several benchmarks have shown that Mistral-7B outperforms other sim-
ilar 7-billion-parameter open source/open weight models, as well as the Llama-2
13-billion-parameter model [8].

3.3. Fine-tuning

To leverage the existing instruction fine-tuning, user prompts provided to the
model should be enclosed within [INST] and [/INST] tokens. Most of the code
used for fine-tuning across various experiments was adapted from [16], which
made it straightforward to fine-tune the model on different datasets and with
varying parameters. The code is designed to automatically apply the appropriate
chat template to the training data, eliminating the need for manual insertion of
instruction tokens. We used the same fine-tuning process across all experiments
to maintain consistency. The default implementation of the apply_chat_template
function, located in [location/codebase], appends a closing [/INST] token at the
end of any user prompt. The base model was fine-tuned individually for each
experiment, based on the specific experimental parameters. One crucial aspect of
the training process was how the training loss was calculated. The training code
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aims to minimize the loss of the model’s generated responses, so the method used
to calculate loss has a significant impact on the model’s behavior. By default,
loss is computed for every token generated, including both the user’s message
or the assistant’s response.

In certain experiments, we focused on calculating loss solely for the assis-
tant’s messages, as these are the only messages generated by the model. This
approach may more effectively minimize the loss of assistant-generated content.
However, a downside of this method is that it disables packing, a technique
that increases the number of examples processed in a single batch, which can
slow down training. Additionally, packing may lead to reduced performance if
the examples being packed are highly correlated. To ensure consistency, packing
was not used in any of the fine-tuning experiments.

3.3.1. Full fine-tuning. Full fine-tuning is the most straightforward fine-
tuning approach, where the entire model is fine-tuned on the training data.
While it is the most computationally expensive fine-tuning technique, it is also
the most flexible. In total, the Mistral-7TB-Instruct-v0.2 model has 7241732096
trainable parameters, requiring a large amount of memory and computational
power to fully fine-tune. When using a graphics processor unit (GPU) for this
purpose, even if the model weights fit into the GPU memory (around 15 GB
in this case), full fine-tuning requires backpropagation, which needs at least
around three times more memory and computation time compared to the for-
ward pass. This is because the model needs to store the gradients for each param-
eter in memory. To successfully fine-tune the Mistral 7B model, we used a clus-
ter of NVIDIA A100 GPUs with 80 GB memory each, along with DeepSpeed
ZeRO-3 to parallelize the full fine-tuning across multiple GPUs. DeepSpeed ZeRO
uses data parallelism to reduce the memory requirements for training large mod-
els by partitioning the model across multiple GPUs and storing only the gradi-
ents per each partition. This allows for training models larger than the memory
of a single GPU. Specifically, ZeRO stage 3 shards the optimizer states, gradi-
ents, and model parameters [15]. Without this sharding, individual GPUs ran
out of memory after just a few optimization steps.

3.3.2. QLoRA fine-tuning. Using LoRA with rank r = 32 reduces the
number of trainable parameters to 83886 080 and LoRA with rank r = 16
this number further decreases to 41 943 040. This is only 0.5% of the parameters
trained in full fine-tuning. This reduction in parameters allows fine-tuning to
be performed on a single GPU without the need for ZeRO-3. For consistency
across experiments, the QLoRA was standardized using rank r = 16, o = 16,
4-bit quantization, and 20 training epochs, serving as a baseline for comparison.



300 R. Vavekanand et al.

3.4. Data extraction

Each fine-tuned model was then used for data extraction in one of two pos-
sible attacks. Training data was reliably extracted from pre-trained LLMs, as
described in Subsec. 2.1.

3.4.1. Partial prompt completion. The partial prompt completion at-
tack uses the model itself to generate data inside the user portion of a prompt.
An attacker must have access to the prompt string being sent to the tokenizer.
By default, implementation of apply_chat_template adds a closing [/INST] to-
ken to the end of every user prompt. The attacker must account for any mod-
ifications to their input prompt imposed by the chat templates. Assuming the
attacker can remove the closing [INST] token, the model does not recognize
that the user prompt has ended. The attacker can then submit a partial user
prompt. If the model is trained to minimize loss over the entire output (not
just the assistant’s response), it will attempt to first complete the user prompt.
In our experiments, we assumed that the attacker knew the exact prompt for-
mat as well as all user information except credit card numbers. For example,
a model trained with the short prompt can be extracted by inputting “[INST]
Scott Hahn’s credit card number is” and the model’s response is completed.

Since the [INST] token is not closed, the model may attempt to complete
the user prompt with a credit card number. This attack corresponds to “discov-
erable memorization” as defined by Nasr et al. [13] and Carlini et al. [3]. The
experiments related to testing this attack are detailed in Sec. 4.

3.4.2. Loss comparison. In the case of completion-only loss calculation,
an attack based on the model generating parts of the user prompt may not
work. However, looking at how transformer-based language models work, we
know that each new token is generated based on attention to all previous tokens.
That means that the probability scores used to generate each successive assistant
token can still be influenced by preceding tokens in the user prompt, including
a credit card number. An attacker with access to these scores could, in theory,
learn some information about the training data used to fine-tune the model by
comparing scores across many different generations. In our case, we assumed
the attacker had full access to the token probability scores during generation,
knew all user data except the credit card numbers, and knew the exact prompt
format. The attacker could generate many different completions of a particular
user prompt with different prospective credit card numbers filled in and retrieve
the probability scores for generating a part of the assistant’s response. The
attacker could then calculate the cross-entropy loss of these scores relative to
the known model response from the training data to try and figure out which
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credit card number was likely present in the training data. The pseudocode for
this attack is shown in Algorithm.

Algorithm. Loss comparison algorithm pseudocode.

loss fn < nn.CrossEntropyLoss

random cc numbers + {“3525609767017203”, “6553751007408996”,
“371511505520350” }

rankings < {}

for guess in random cc numbers do prompt < “Scott Hahn’s purchase...
credit card number is {guess}. What is a product you could rec-

ommend them?”
prompt < tokenizer.encode(prompt)
response <— tokenizer.encode(“The user would enjoy Huge Wave”)
scores, tokens < model.generate(prompt, ...)
loss < loss fn(scores, response)
rankings[guess| < loss
end for

return rankings.sort()

In this way, the model can act as an oracle to confirm whether a randomly
generated credit card number is correct and belongs to a particular person.
This is a much more complex attack than partial prompt completion, and was
therefore not expected to be as effective. The experiments related to testing this
attack are detailed in Subsec. 4.3. We initially hypothesized that the correct
credit card number would have the lowest loss compared to other random credit
card numbers; however, experiments showed that this was not always the case.

3.5. Evaluation

Each of these extraction methods needs to be evaluated separately. Since
partial prompt completion attempts to directly generate credit card numbers,
the first step is to extract the number. This is done by looking at the generated
response and matching the first numeric string using regex. Even if a full credit
card number is not memorized, reliably guessing parts of one is still danger-
ous. Thus, we decided to compare the actual numbers with the generated ones
with the help of Levenshtein edit distance. Levenshtein distance is the number
of single character edits — insertions, deletions, or substitutions — required to
change one string into another. It is a good metric for quantifying how close the
generated number is to the actual number since it is sensitive to the order of
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the characters in the string. For two strings of lengths L; and Ls, the Leven-
shtein ratio is calculated as 1 — (Levenshtein distance/(L; + L2)). For example,
a ratio of 1 indicates that the credit card numbers are identical, while a ratio
of 0 means they share no digits. This is useful for comparing similarities even
across different lengths of numbers.

To establish a good baseline for comparison to see what the Levenshtein ra-
tio for random guessing would be, we generated 1000 random 16-digit numbers
and compared each of them to 1000 newly generated random 16-digit num-
bers. The average Levenshtein ratio across 1 million comparisons was 0.375.
Next, we considered how a smarter adversary would perform. If an attacker
knew the vendor and the last four digits of a credit card number (which can
often be found on discarded receipts), they would know five digits total. To sim-
ulate this, we again generated 1000 random 16-digit numbers, but compared each
one to 1000 new random numbers where the first and last four digits matched.
The average Levenshtein ratio in this attack scenario across 1 million compar-
isons was 0.553. These two averages form a baseline for random guessing and
smart guessing, respectively. Any model where the average Levenshtein ratio
of extractions is higher than 0.375 performs better than random guessing, and
if the average Levenshtein ratio is higher than 0.553 the model performs better
than a smart attacker, which is very dangerous. The loss comparison method
does not directly generate credit card numbers for one-to-one comparison, so the
evaluation is more indirect. During the evaluation, we generate many different
completions of a user prompt, each with different prospective credit card num-
bers (including the actual one). We then calculate the cross-entropy loss, and
next sort the generated losses and compare the index of the correct card number.

4. Experiments and results

4.1. Experiments with full fine-tuning

We began by evaluating the discoverable memorization of fully fine-tuned
models across different numbers of training epochs by evaluating partial prompt
completion. Evaluated fine-tuned models were trained on 32, 100, and 1000 train-
ing examples of short, medium, and long prompts. Figure 1 shows the results
for 100 short prompts. The red dotted line represents the average Levenshtein
ratio for random guessing (0.375), while the green dotted line represents the av-
erage Levenshtein ratio for smart guessing (0.553). The graph shows box plots of
the Levenshtein ratios of each of the 100 training examples passed through the
model, with outlier points defined as points more than 1.5 times the interquar-
tile range from the median. The results show that the model suddenly begins
to memorize exact credit card numbers at 16 epochs of training. At 16 epochs,
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Fic. 1. Full fine-tune memorization across epochs: at 15 epochs or fewer, the median Lev-

enshtein ratio approximates random guessing (0.375 £0.078, red dotted line). By 16 epochs,

98% of examples show complete memorization, exceeding smart guessing (0.553 +0.069, green
dotted line). Error bars represent 1-sigma intervals.

98 of the 100 credit card numbers are fully memorized, compared to 15 epochs
where none are fully memorized and the median Levenshtein ratio is 0.4, which is
just above random guessing. Below 15 epochs, the median Levenshtein ratios are
even lower. These trends are consistent across different numbers of training ex-
amples and prompt lengths tested. At 16 epochs, fully fine-tuned models showed
high proportions of full memorization, as shown in Fig. 2. Increasing the num-
ber of examples tended to increase the proportion of fully memorized numbers,
whereas prompt length yielded unclear effect. We also noticed that 16 epochs
corresponded to the point where the model began to converge on a stable train-
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F1G. 2. Full memorization ratios for full fine-tuning. The Y-axis represents the proportion
fully memorized, which indicates the proportion of credit card numbers fully memorized by
the model, consistent with the labeling used in Table 2.
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ing loss. Figure 3 shows that the evaluation loss had already started increasing
by 16 epochs. The random guessing baseline was computed by comparing 1000
random 16-digit numbers to 1000 new random 16-digit numbers, yielding an av-
erage Levenshtein ratio of 0.375 with a standard deviation of 0.078. The smart
guessing baseline, fixing the first digit and last four digits, yielded an average
Levenshtein ratio of 0.553 with a standard deviation of 0.069.

4

== Evaluation loss ===Train loss

Los

Step

16 epochs

F1G. 3. Loss vs. training step: evaluation loss (blue), train loss (red); training loss stabilizes at
16 epochs, but the evaluation loss increases, indicating overfitting and suggesting full memo-
rization.

4.2. Experiments with QLoRA fine-tuning

QLoRA fine-tuning experiments began by running only a few epochs of train-
ing. Most model generations, in the first five epochs of training, did not produce
credit card numbers in the format used in the training set. The following are
some examples of completions generated by the model:

e “.’s credit card number is 1348-2000-7982-9999”, where the number pro-
vided was not in the dataset and also had a different format (dashes be-
tween groups of four digits),

e “.s credit card number is *FF¥AAFF KA _HHAXD with asterisks replacing
the digits,

e “.’s credit card number is 352000000000000000...”, where the number
starts with a common IIN but continues with a single digit repeated many
times,

e “..s credit card number is Visa”, where the model generates a credit card
type instead of a number,

e “..’scredit card number is unknown”, where the model refuses to generate
a credit card number.
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When prompted more directly, the model would sometimes refuse to provide
sensitive information such as credit card numbers. When a credit card number
was included in the prompt, the model responded with “the question mistakenly
includes the user’s credit card”.

The base Mistral 7B Instruct model has been aligned to be a chat model
that does not output sensitive information such as credit card numbers. Many
other LLMs have safety features built-in to prevent them from being misused.
This alignment training still impacts generation when the model has not been
fine-tuned long enough to output explicit credit card details. This issue was also
present, to a lesser degree, when setting the LoRA « to a lower value. Continuing
training past five epochs showed that the model began to memorize credit card
numbers at a far more gradual rate compared to full fine-tuning. Experiments
using 100 examples of medium prompts are shown in Fig. 4. With increasing
epochs, the median and maximum Levenshtein ratios gradually increase. At
15 epochs, two examples are fully memorized, but over 75 examples performed
worse than smart guessing. At 20 epochs, 28 examples are fully memorized and
only 20 are worse than smart guessing. This shows that more epochs lead to
increased discoverable memorization in terms of both full and partial memo-
rization when using QLoRA fine-tuning. Compared to full fine-tuning, QLoRA
requires more epochs to reach a similar level of memorization, and the increase
in full and partial memorization occurs much more gradually. We observed that
training and evaluation loss curves were very similar to full fine-tuning, meaning
the model may still overfit in this setting. For the remainder of the experiments,
20 epochs were used as the baseline.
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F1G. 4. Memorization vs. epochs trained (100 medium examples): memorization patterns for

credit card numbers across varying prompt lengths and epochs. The graph shows the proportion

of memorized credit card numbers at different stages of fine-tuning with 100 short prompts.
1-sigma error bars indicate variability in the results.
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Next, we looked at how the QLoRA parameters impacted memorization.
To show different levels of partial memorization for a particular set of training
examples, cumulative distribution function (CDF) plots of Levenshtein ratios
were used. A point with a Levenshtein ratio of x on the graph indicates what
proportion of examples in the training data were memorized to a Levenshtein
ratio of at least x. All examples have ratios of at least 0, and only the fully
memorized examples achieve a ratio of 1.

The higher a curve rises toward Levenshtein ratios above the random or
smart guessing, the more credit card numbers have been partially or fully mem-
orized. As shown in Fig. 5a, higher « values led to increased memorization. This
is expected as higher « values indicate that the trained LoRA matrices are mul-
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F1G. 5. The impact of LoRA « and rank r on memorization: a) higher values of a result in

increased memorization; b) the effect of varying r on memorization is minimal at this scale.

The Y-axis represents the proportion of credit card numbers fully memorized, with error bars
indicating variability.
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tiplied by a larger scalar, so the fine-tuning affects the model’s output more.
Figure 5b shows that r had no clear effect on memorization at this scale. This
is likely because the effort of memorizing credit card numbers is not compli-
cated enough to warrant the use of higher-rank LoRA matrices (and thus more
parameters).

Comparing memorization performance across quantization levels, we found
that higher-precision models memorized more than heavily quantized ones, as
expected. Doubling the quantization level from 8-bit to 16-bit improved the
number of examples memorized by 2. On the other hand, doubling it from 4-bit
to 8-bit increased memorized samples by 4 (Table 1). This shows that higher-
precision models are more susceptible to memorization, although the effect is
not as pronounced at higher precision levels.

TABLE 1. Memorization vs. quantization level.

Quantization | Number memorized (of 32)
4-bit 13
8-bit 17
16-bit 19

Setting the QLoRA parameters and number of epochs constant, we exper-
imented with varying the number of training examples as well as the types of
prompts used. The graphs in Fig. 6 show the CDFs of Levenshtein ratios for
models fine-tuned with 32, 100, and 1000 examples. Across all three prompt
lengths, it is clear that increasing the number of training examples leads to
more memorization. Amongst the short prompt, the model trained on 1000 ex-
amples fully memorized 89% of its credit card numbers, whereas the one trained
on 32 examples fully memorized only 40%. This is counterintuitive since adding
more training examples requires the model to memorize more credit card num-
bers while using the same number of parameters, yet these models memorized
higher proportions of the larger credit card datasets.

One possible explanation is the fact that more data forces the model to train
for more steps per epoch. Additionally, it is likely that even with r = 16, the
number of parameters may be larger than necessary to memorize the data. To
test this hypothesis, an experiment where a model was trained with different
amounts of data but for approximately the same number of training steps was
conducted (see Table 2). Looking at the three models trained for approximately
2000 steps each, the model trained on 32 examples fully memorized far more
than the model trained on 100 examples, while the model trained on 1000 exam-
ples did not memorize any credit card numbers. This suggests that increasing
the number of training steps increases the amount of memorization, especially
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32, 100, and 1000 examples. The graphs show how the proportion of fully memorized credit
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the variability of results.
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TABLE 2. Full memorization across different numbers of examples, epochs and steps.

Number of examples | Number of epochs | Number of steps | Proportion fully memorized
32 63 2016 0.8125
100 20 2000 0.59
1000 2 2000 0

if the dataset is kept small. This result agrees with prior work that has shown
that more exposures to the data are needed to memorize more information [1].

Comparing the graphs in Fig. 6, one can see differences between partial
prompt completion across different prompt lengths. Figure 7 highlights the dif-
ference, in particular, for the case with 1000 training examples. The shorter the
prompt, the greater the degree of credit card number memorized.
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Fic. 7. Comparison of memorization densities across different prompt lengths
for models trained with 1000 examples.

In this graph, the model trained on short prompts fully memorized 89% of
the credit card numbers, while the model trained on long prompts only fully
memorized 18%. This relationship holds across the whole spectrum of partial
memorization, even below the random guessing ratio. The reason for this is not
very obvious. While it is true that more context leads to better data extrac-
tion [4], in this case, every name in the dataset is already uniquely assigned
to a credit card number, so the other user info in the longer prompts may
be less useful for memorization. The longer prompt’s extraneous information
may act as “junk data”, which significantly reduces memorization ability [1].
Similarly, reducing the length of the target data to memorize also improves
discoverable memorization of the model. For example, instead of training on
16-digit credit card numbers, fake 5-digit ZIP codes were created for each user
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and trained a model with this information. In Fig. 8, the model fine-tuned
on 5-digit ZIP codes memorizes consistently more of these codes compared to
16-digit credit cards. However, it is important to note that it is much easier
to randomly guess a 5-digit number than a 16-digit one.
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FiG. 8. Memorization across target data length (16 digits vs. 5 digits). The model trained on
5-digit ZIP codes memorizes more credit card numbers than when trained on 16-digit credit
card numbers, demonstrating the impact of data complexity on memorization patterns.

Going beyond basic partial prompt completion, it was decided to explore if
in-context learning and prompt engineering make a significant impact on credit
card extraction. First, the first three training examples verbatim as a prefix to
each prompt during evaluation were added. This prefix did not have an impact
on how much information the evaluation loop could extract. Then, we tried
appending “That is not correct, try again. [User|’s credit card number is” to
each incorrect generation, with the hope that the model would correct itself
over successive attempts. However, this approach did not improve performance
compared to the baseline QLoRA.

4.3. Experiments with completion-only loss

The prior sections showed that memorization is possible when the model is
trained to minimize loss over the entire output. Intuitively, it seems rather ob-
vious that the model would memorize parts of the user prompt if it is trained to
minimize loss over it. However, it was unclear if the model would still memorize
some aspects of the user prompt if it was only trained to minimize loss over
the assistant’s completion. To investigate this, we conducted a series of experi-
ments where the model was trained with completion-only loss. For comparison,
applying the partial prompt completion, used with full loss calculation, failed
to retrieve even a single credit card number, with the median similarity falling
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below that of random guessing. This comparison can be seen in Fig. 9 where
both models were trained on 100 short prompt examples, with one using full loss
and other using completion-only loss. The key takeaway from this experiment
is that partial prompt completion extraction technique is not effective in this
case, performing even worse than random guessing on average.
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Fic. 9. QLoRA memorization with and without completion-only loss. The model trained with
completion-only loss mostly memorizes worse than random guessing.

We hypothesized that using the loss comparison extraction technique could
still extract some information from the model, expecting that the loss for the
correct credit card number would be lower than the loss for incorrect credit
card numbers. This expectation was based on the fact that the model had seen
the correct credit card number during training, so it should be able to gener-
ate the known product recommendation with less error. However, the results of
this experiment were not as clear as anticipated. Through initial experiments,
it was found that the correct credit card numbers did have the lowest loss for
some proportion of generated completions, but they also had the highest loss
for a significant proportion of completions. As can be seen in Fig. 10, the distri-
bution of correct indices is bimodal. Around 25% of the correct generations have
the lowest or second-lowest loss compared to 100 random credit card numbers,
and around 10% of correct generations have the highest or second-highest losses.

For this analysis, credit card numbers, corresponding to the two lowest and
two highest loss scores as “low-loss” and “high-loss” credit card numbers, were
considered. If a credit card number has the lowest loss score amongst a user’s
100 completions, its loss index is 0. If it has the highest loss, its loss index
is 99. For each user in the dataset, along with the correct credit card number,
one completion for a very similar number (the correct number with digits 5-9
replaced with “0000”) was generated. Seventeen out of the 25 correct low-loss
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Fi1G. 10. Extraction results for a model trained on 100 medium examples. The correct credit
card number is more likely to have either the lowest or highest loss compared to random
credit card numbers.

examples had a loss index of 0, and 21 out of 25 had a lower loss than the nearly
correct number. This means that the majority of correct low-loss examples had
the lowest loss, and the correct number was more likely to have a loss index of
0 than a similar number. On the other hand, when checking correct high-loss
examples, only 2 of the 10 correct examples had the highest loss. In 12 examples,
the nearly correct number had a loss index of 99 (8 correct numbers had an index
of 98). In this case, the correct number is less likely to have the highest loss than
a similar number.

Running this experiment with different numbers of examples as well as with
QLoRA fine-tuning confirmed the existence of the bimodal pattern. In theory,
an attacker could use the model as an oracle to help confirm a credit card
number by generating completions for many different numbers and checking to
see if a particular number has a much lower or higher loss than the others. It is
important to calculate this probability to understand the risk of data extraction
using this technique. Let us assume the attacker is using the fully fine-tuned
model with 100 examples (the same one used in Fig. 10). Based on empirical
data from testing, P(low loss |correct CC) = 0.25. In the first attack, the attacker
keeps guessing random 16-digit credit card numbers, so P(correct CC) = 10716,
The probability of a number being index 0 or 1 in a list of length 100 is 1/50,
so P(low loss) = 0.02. Using Bayes’ theorem, the probability of a card number
being correct given that it has low loss can be calculated as:

P(low loss | correct CC)- P(correct CC)
P(low loss)

P(correct CC |low loss)= =1.25x10715,
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Similarly, P(high loss |correct CC) = 0.1, so
P(correct CC | high loss) = 5 x 1016,

Both of these probabilities are minuscule, indicating that an attacker is un-
likely to confirm a credit card number using this technique. The main issue is
that correctly picking a 16-digit credit card number by chance is already a very
low-probability event. However, we can change the attack strategy slightly if the
attacker has access to the list of credit card numbers in the database. In this
case, the attacker knows all 100 possible card numbers but does not know which
users in the database they belong to. We will assume, for simplicity, that the
credit card numbers in the database are uniformly distributed, so similar credit
card numbers do not negatively impact loss scores of each other. Now,

P(correct CC) = 0.01,s0
P(correct CC|low loss) = 0.125 and P(correct CC|high loss) = 0.05.

Looking at just the lowest-loss credit card number for each user gives a slightly
higher probability of 0.17. This means that, for any given user, if the attacker
sees that one of the 100 possible credit card numbers has a low loss compared
to the others, there is a 12.5% probability that it is the correct number. If it is
the lowest-loss number, the probability raises to 17%. For high loss, the prob-
ability raises to 5%. This is a significant improvement over random guessing
(1% chance), but still not a very high probability. While the bimodal distribu-
tion did persist across different training parameters, training on more examples
caused the model to be slightly more uniform as seen in Fig. 11. The attack
seemed to work just as well as QLoRA fine-tuning.
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Fi1c. 11. In extraction results with a model trained on 1000 medium examples, the correct

credit card number is still more likely to have the lowest or highest loss compared to random

numbers. However, the probabilities are much more uniform compared to the model trained
on 100 examples.
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5. Conclusion

This work demonstrated the potential to extract sensitive information from
fine-tuned language models. We showed that partial prompt completion can re-
veal sensitive data and that models can act as oracles to confirm credit card
numbers by comparing loss scores. Credit card numbers are memorized even
when models are trained with completion-only loss, though extraction is less ef-
fective. Partial prompt completion can extract a high proportion of credit card
numbers when an attacker has full access to the model inputs, especially if the
model is trained extensively. The loss comparison should be further explored as
a method to glean information about training data, even when models are not
explicitly trained to imitate user input. Our results confirm that trends observed
in prior research apply to fine-tuning as well: more training steps, higher LoRA
«, and lower quantization lead to more discoverable memorization. Full fine-
tuning resulted in nearly complete memorization at 16 epochs, while QLoRA
memorization was more gradual and dependent on prompt length. Overall, this
study highlights how discoverable memorization can occur during the fine-tuning
of LLMs. It provides a starting point for understanding how to prevent data ex-
traction from such models. Further research is needed to explain the differences
in memorization patterns between full fine-tuning and QLoRA. Future work
could investigate the model’s ability to extract other types of sensitive infor-
mation or key-value pairs. Additionally, newer base models (such as Llama 3),
different model sizes, and alternative extraction techniques, such as in-context
learning with beam search or sampling, could be explored.
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