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This research primarily focuses on evaluating the effectiveness of various methodologies for
the topological and geometrical optimization of steel building structures through paramet-
ric descriptions. The study specifically addresses steel trusses, frames, and beams, empha-
sizing their integration within the broader structural system. Initial investigations have
highlighted the benefits of an innovative pattern-based approach that segments the struc-
ture into distinct patterns, namely groups of structural elements subjected to localized
optimization. This method effectively overcome the challenges of global parameter opti-
mization, by providing enhanced control over local criteria and enabling a more detailed
assessment of each pattern’s contribution to global optimization objectives. Building on
these insights, the research seeks to advance and refine the concept of patterns, aiming to
further enhance their applicability and efficiency in structural optimization.
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1. Introduction

1.1. Motivation

One of the fundamental challenges faced by structural designers is deter-
mining the optimal geometry and topology of steel structures, a task that be-
comes increasingly intricate as the number of structural elements grows. More-
over, identifying the geometric configuration that yields an optimal solution
is often far from straightforward.
Traditionally, designers rely on an initial structural topology based on prior

experience, followed by the design of cross-sections within this predefined con-
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figuration. While practical, this approach excludes topology optimization as
a fully integrated aspect of the design process. To overcome this limitation,
multi-parametric and multi-criteria optimization can be incorporated into the
workflow, enabling a more advanced and holistic design methodology.
Parametrizing the structural configuration facilitates global optimization,

aiding in the identification of optimal solutions. However, as the number of pa-
rameters and criteria increases and the diversity of potential topologies expands,
the computational complexity of the optimization problem grows significantly.
This escalating complexity often presents a significant barrier to developing ef-
ficient optimization strategies.
Given these challenges, there is a pressing need for innovative approaches

that combine efficiency with adaptability to meet the demands of designing
complex steel structures. Such approaches should aim to improve the opti-
mization process while maintaining the flexibility required to accommodate
a wide range of structural configurations and criteria.

1.2. State-of-the-art

In the field of structural optimization, recent advancements have introduced
a variety of classification systems, notably those proposed by Rozvany [1,2]. Roz-
vany’s framework identifies three primary categories in structural optimization:
layout optimization (LO), generalized shape optimization (GSO), and a hy-
brid approach combining both (LO+GSO) for composite structures. LO em-
phasizes optimizing grid-like bar structures in parallel, while GSO primarily
addresses plane stress problems. In addition, Sigmund [3] has provided a com-
prehensive review of these and other optimization techniques, contributing to
a broader understanding of their applicability and limitations.
Several commercial software tools support parametric design and structural

optimization, including Grasshopper 3D, CATIA, Dynamo, and Altair OptiStruct.
These tools are particularly efficient for global optimization and often implement
or support the GSO approach.
Topology optimization for steel structures has been extensively studied,

with various methodologies tailored to specific challenges [4, 5]. The optimiza-
tion of bar structures typically involves a multi-dimensional, single-objective
problem characterized by constraints and decision variables of mixed numeri-
cal types, such as Boolean, integer, and real values. To manage this complexity
both stochastic and deterministic strategies have been developed.
Stochastic approaches include:
– genetic algorithms [6] and other biologically inspired methods [7],
– Monte Carlo simulations [8, 9].
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Deterministic methods feature:
– non-gradient approaches such as joint penalty methods with material se-
lection [10],
– gradient-free proportional optimization techniques [11],
– techniques incorporating buckling constraints for spatial trusses [12].
Additionally, gradient-based approaches, such as non-smooth steepest de-

scent algorithms [13], have proven effective in tackling such problems.
For instance, a genetic algorithm has been proposed to optimize steel truss

roofs, integrating structural constraints and offering a framework applicable to
various structural forms [14]. Another study combined shape and cross-section
optimization for planar trusses, unifying stress and geometrical constraints within
a single framework. Using a full stress design and conjugate gradient optimiza-
tion, this approach demonstrated significant material savings, drawing compar-
isons to steel bridge designs of the early 20th century [15].
To address large-scale truss optimization, innovative methods have been in-

troduced:
– The cooperative coevolutionary marine predators algorithm (CCMPA-GS),
which optimizes shape and size separately in a multi-modal search space,
demonstrating superior scalability and performance compared to tradi-
tional methods [16].
– The dual-material truss bidirectional evolutionary structural optimization
(DMT-BESO) method integrates topology and size optimization while uti-
lizing materials with distinct tensile and compressive properties. By incor-
porating structural complexity control strategies, this method enhances
material utilization while ensuring compliance to industry standards [17].
Steel grillage structures were optimized using SAP-Rao algorithms to min-

imize weight while satisfying stress and displacement constraints. The method
was validated through FEM and MATLAB, proving its effectiveness for struc-
tural design [18]. The Jaya algorithm was applied to optimize truss structures,
focusing on weight reduction by adjusting shape and size variables. Its simplic-
ity and efficiency were demonstrated through MATLAB-based FEM analysis
and benchmark case studies [19]. Novel techniques, such as the numerical in-
verse hanging method, which have been introduced to optimize spatial trusses
by improving load-bearing capacity and stability under varying boundary con-
ditions. This approach provides a robust framework to address form-finding
challenges in spatial truss design, expanding topology optimization to complex
geometries [20].
The contributions of Kaveh to structural optimization are particularly no-

table, especially in developing innovative algorithms for design. Key examples
include:
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– The imperialist competitive algorithm (ICA) models optimization as a socio-
political competition among empires, yielding effective solutions for trusses
and frames [21].
– The hybrid Big Bang–Big Crunch (HBB–BC) algorithm has been applied
to truss size optimization, outperforming other heuristic methods such as
genetic algorithms, ant colony optimization, and particle swarm optimiza-
tion [22].
– More recently, the sequential optimization and reliability assessment-double
meta-heuristic (SORA-DM) approach has been utilized for reliability-based
design optimization (RBDO) of frame structures, incorporating enhanced al-
gorithms such as the shuffled shepherd optimization algorithm (SSOA) for
improved performance [23].
While these methodologies effectively address individual challenges through

global parameters, they often lack the granularity required for precise optimiza-
tion of specific components within a structural system. A versatile approach that
can be seamlessly applied to various structural systems is essential to enhance
design efficiency. Without such an approach, defining a comprehensive opti-
mization problem for an entire structure can become inefficient and overly time-
consuming. Although truss topology optimization has been extensively studied,
mixed systems involving frames and trusses – commonly encountered in real-
world design tasks – remain underexplored.

1.3. The concept of patterns

This study builds upon and further refines the concept of structural pat-
terns introduced in the authors’ previous research [24]. The methodology is
based on the principle that a structure can be divided into distinct patterns –
sets of structural elements, which significantly reduces the number of decision
variables. By focusing on localized optimization tasks within these patterns, the
complexity of global-level analysis is minimized, enabling a more efficient and
reliable optimization process.
Structural patterns are designed to facilitate the formulation of separate

optimization problems with fewer variables, making the process computation-
ally manageable. Design parameters associated with these patterns are sub-
sequently optimized using deterministic or stochastic algorithms. The choice
of algorithm depends on factors such as solution accuracy, computational effi-
ciency, the availability of gradients, and problem complexity. Once optimized,
these localized patterns are integrated into a global framework, ensuring that
interactions between patterns are appropriately addressed.
This approach is highly versatile, enabling the simultaneous optimization

of structural and architectural parameters while also considering economic fac-
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tors, such as material usage, and engineering criteria, such as compliance with
limit states. This provides a robust framework for tackling single- or multi-
criteria nonlinear optimization problems, offering both computational efficiency
and practical applicability in structural design.
The results presented in this study were obtained using proprietary proto-

type software developed by the authors, primarily implemented in C++ and
MATLAB. Visualization and plotting were facilitated using the Python Mat-
plotlib library. The genetic algorithm implementations were supported by the
MATLAB Global Optimization Toolbox and the esa-pagmo2 C++ library [25].
The paper is structured as follows:
– Section 2 provides an overview of the formulation for multidimensional
and multi-objective optimization problems,
– Section 3 discusses the foundational principles of the computational ap-
proaches used, with a particular focus on integrating structural patterns
into optimization algorithms,
– Section 4 presents the results of selected engineering optimization case stud-
ies involving parametrically described structures,
– Section 5 concludes the paper with a summary of findings and recommen-
dations for future research directions.

2. Formulation of the optimization problem

The optimization problem is defined using a vector of decision variables
d = [b, z, r], where b represents nb Boolean variables, z represents nz integer
variables, and r represents nr real variables. In the case of steel bar struc-
tures, these variable types are used to comprehensively describe both topology
and geometry parameters. For instance, integer variables may define the num-
ber of bars, nodes, supports, levels, or naves, Boolean variables may indicate
the existence of specific bars or supports, and real variables may describe bar
lengths or parameters of their cross-sections. Thus, the total number of deci-
sion variables is nd = nb + nz + nr. The multidimensional objective function,
F(d) = [F1(d), ..., Fnf

(d)], is based on multiple criteria, such as maximum dis-
placement, bending moments, reaction forces, critical forces, eigenfrequencies, or
material usage. Computing the components of F(d) requires solving the bound-
ary value problem for the bar structure with a temporarily fixed set of deci-
sion variables. Moreover, some objectives may involve solving local optimization
problems or performing simplified evaluations at predefined structural points to
ensure accuracy and efficiency in the analysis.
The admissible domain Ωadm is defined by the bounds applied to the decision

variables:

Ωadm =
{
bi ∈ {0, 1}, zj ∈ [zminj , zmaxj ], rk ∈ [rmink , rmaxk ]

}
, (1)
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where i = 1, ..., nb, j = 1, ..., nz, and k = 1, ..., nr. Here, zmin
j , z

max
j , rmin

k , and
rmax
k represent the prescribed limits imposed on the integer and real variables,
respectively.
Additional constraints, both equality and inequality, are expressed as:

Req(d) = 0, Rineq(d) < 0, (2)

which help define the optimization problem. In this research, the focus is on lin-
ear equality constraints, which can be incorporated into the optimization prob-
lem using either the elimination technique – thereby reducing the number of
decision variables – or Lagrange multipliers, which increase the number of un-
knowns.
In contrast, inequality constraints, which typically require specialized nu-

merical treatment (e.g., using the feasible directions method), are omitted in
favor of a multi-objective optimization framework. This approach allows addi-
tional limitations to be imposed in an alternative manner, thus avoiding the
complexity associated with traditional inequality constraints.

2.1. Single-objective optimization

In single-objective optimization, the multidimensional objective function sim-
plifies to a scalar function (nf = 1), which depends on at least one real decision
variable (nd ≥ nr ≥ 1). The optimization problem is formulated as:

min
(d)

F (d) for d ∈ Ωadm. (3)

The optimal solution to this problem is expressed as:

d(opt) = argmin
(d)

F (d), (4)

where the existence of a solution is ensured by the Kuhn–Tucker conditions. For
unconstrained problems, these conditions require:
1. The gradient of the objective function to vanish:

∇dF (d) = 0. (5)

2. The Hessian matrix:

H(d) = ∇d ⊗∇dF (d) (6)

to be positive definite.
The positive definiteness of the Hessian ensures the convexity of the func-

tion. This convexity is essential for compatibility with deterministic optimization
methods and guarantees the existence of a unique local minimum.
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2.2. Multi-objective optimization

In multi-objective optimization (nf > 1), conflicting criteria make it impos-
sible to achieve simultaneous minimization of all objectives. A solution dj is
said to dominate dk, namely the following symbolic relationship is valid:

Fl(dj) ≤ Fl(dk) ∀l and ∃l such that Fl(dj) < Fl(dk), (7)

providing the following conditions are satisfied:
1. Fl(dj) ≤ Fl(dk) for all l = 1, ..., nf , and
2. Fl(dj) < Fl(dk) for at least one l.

This concept of dominance leads to the definition of a Pareto front, which
consists of all non-dominated solutions. Each point on the Pareto front rep-
resents a trade-off between competing objectives, offering decision-makers a set
of equally optimal solutions from which to choose based on specific priorities or
preferences.
Methods to address multi-objective problems include:
– weighted average method: this approach solves nf single-objective prob-
lems and then combines their results:

d(opt)≈
nf∑
l=1

ωld
(opt)
l , with non-negative weights such that

nf∑
l=1

ωl=1; (8)

– ε-constrained method: here one objective is optimized while the constrained
others are prescribed with εl tolerances:

min
(d)

Fi(d), Fl(d) ≤ εl; (9)

– weighted sum method: this method scalarizes multiple objectives into
a single objective function:

F (d)=

nf∑
l=1

ωlFl(d), with non-negative weights such that
nf∑
l=1

ωl=1; (10)

– weighted metric method: it minimizes the distance from the ideal solution
using the p-norm:

min
(d)

Lp(d), Lp(d) =

( nf∑
l=1

ωl

∣∣∣Fl(d)− F
(opt)
l

∣∣∣p)1/p. (11)

Each optimization method has its unique advantages and limitations. Techniques
such as weighted metrics, for example, are particularly effective for identifying
Pareto-optimal fronts, even in non-convex spaces. Other approaches offer flex-
ibility by allowing to emphasize specific objectives through weight assignment,
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making them robust tools for navigating the trade-offs inherent in multi-objective
optimization problems.
In this study, two approaches were employed based on the problem for-

mulation. For multi-objective problems, a Pareto-based optimization strategy
was used to generate a set of non-dominated solutions. In contrast, for single-
objective problems derived from multiple objectives, the weighted sum method
was applied to aggregate the objectives into a single scalar function.

3. Computational approaches

The absence of an explicit analytical form for the objective function necessi-
tates the use of numerical methods to compute its values and derivatives. Both
the optimization problems and the auxiliary boundary value problems associ-
ated with these numerical approaches require the application of diverse com-
putational techniques. In this context, numerical frameworks such as the finite
element method (FEM), specifically in its displacement formulation play a cru-
cial role. FEM enables the analysis of deformation states based on the design
variables d generated during the optimization process, thereby providing accu-
rate and reliable insights into the structural behavior under various conditions.

3.1. Finite element model

The structural optimization conducted in this study employed FEM. The
analysis utilized a combination of various element types to accurately model
the structural components. These included frame elements, truss bar elements,
and spring interface units, each tailored to effectively represent the correspond-
ing structural behavior and interactions. The following types of local stiffness
matrices are incorporated within the numerical framework:
– 2D frame bars were modeled using the Timoshenko beam theory, which
accounts for shear deformations [26]. The stiffness matrix for a 2D frame
element is expressed as:

Kframe(d)=



12I(d)E
L3(d)

0 0 −12I(d)E
L3(d)

0 0

0 A(d)E
L(d)

6I(d)E
L2(d)

0 −A(d)E
L(d)

6I(d)E
L2(d)

0 6I(d)E
L2(d)

4I(d)E
L(d) 0 −6I(d)E

L2(d)
2I(d)E
L(d)

−12I(d)E
L3(d)

0 0 12I(d)E
L3(d)

0 0

0 −A(d)E
L(d) −6I(d)E

L2(d)
0 A(d)E

L(d) −6I(d)E
L2(d)

0 6I(d)E
L2(d)

2I(d)E
L(d) 0 −6I(d)E

L2(d)
4I(d)E
L(d)


, (12)
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where I(d) denotes the moment of inertia, L(d) is the element length,
E represents the modulus of elasticity, and A(d) is the cross-sectional area.
This formulation provides the foundation for analyzing frame behavior
under deformation while considering both bending and shear effects.
– 2D truss elements are designed to carry axial forces exclusively and are
represented using the following stiffness matrix:

Ktruss(d) =
A(d)E

L(d)

[
1 −1
−1 1

]
. (13)

This matrix formulation accounts for the axial stiffness of truss elements
and ensures that these elements only resist forces along their longitudinal
axes. It forms a critical component of the overall FEM, particularly when
combined with frame and spring elements to analyze complex structural
systems.
– To model interaction between patterns, spring elements are utilized at the
interfaces. These elements were characterized by their own stiffness matrix,
which accounts for both translational and rotational stiffness properties.
The stiffness values in the matrix are derived based on the displacements
and rotations at the nodes, as well as the corresponding forces and mo-
ments. The stiffness matrix for the spring elements is expressed as:

Kspring(d) =



kx(d) 0 0 −kx(d) 0 0

0 ky(d) 0 0 −ky(d) 0

0 0 kθ(d) 0 0 −kθ(d)

−kx(d) 0 0 kx(d) 0 0

0 −ky(d) 0 0 ky(d) 0

0 0 −kθ(d) 0 0 kθ(d)


, (14)

where kx(d), ky(d), and kθ(d) are the translational stiffness in the x-di-
rection, the translational stiffness in the y-direction, and the rotational
stiffness, respectively. These spring elements facilitate the interaction be-
tween structural patterns by transmitting forces and moments across their
connections. Their inclusion ensures that the global system behavior accu-
rately reflects the interactions between locally optimized patterns, thereby
enhancing their robustness and accuracy of the overall structural model.
The global stiffness matrix for the structure, K(d), was assembled follow-

ing the standard FEM formulation. The equilibrium equation governing the
structural response is given as:

K(d)Q = P(d), (15)
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where K(d) represents the stiffness matrix, which is a function of the decision
variables d. The vector Q denotes the generalized nodal displacements, while
P(d) is the load vector. Although the external load acting on the structure re-
mains constant, the resulting discrete load vector P depends on the decision
variables d. Changes in geometry and topology affect the finite element dis-
cretization and the corresponding equivalent nodal loads, thus requiring updates
to P during optimization.
The integration of frame, truss, and spring elements allowed for the detailed

modeling of both individual components and their interactions within the overall
structure. By utilizing the FEM framework, the study ensured that both the lo-
cal and global structural responses were accurately captured, thereby facilitating
an efficient and precise optimization of individual patterns and their contribu-
tions to the global system.

3.2. Optimization methods

Two optimization methods were utilized in this study: a direct search method
and a genetic algorithm. These methods were applied to solve both single- and
multi-objective optimization problems, with the aim of identifying optimal struc-
tural configurations and approximating the Pareto front. The direct search
method, commonly referred to as brute force, was primarily employed for ob-
taining preliminary results. This method involved evaluating the objective func-
tion for all feasible combinations of decision variables within predefined bounds.
Although computationally expensive, it served as a valuable reference for val-
idating the optimization process and exploring the solution space, particularly
for smaller-scale problems [24]. The primary optimization tool was a genetic
algorithm, implemented using the MATLAB Global Optimization Toolbox and
the pagmo2 library [25]. This approach was central to the study, enabling the
efficient exploration of complex solution spaces and the identification of optimal
designs. This research primarily focuses on the implementation and validation
of the patterns-based approach for structural optimization. The integration of
more sophisticated and advanced algorithms is planned as part of future research
endeavors, further enhancing the potential of this methodology.

3.3. Implementation of patterns

The proposed methodology is based on dividing a selected building struc-
ture into characteristic patterns, each made up of specific sets of elements. This
study focuses on several types of patterns, such as trusses and frames, which
interact within the overall structure. These patterns can be assembled using
various element types, offering a flexible and versatile approach to structural
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modeling and optimization. Collectively, these patterns form the complete struc-
ture subjected to the optimization process. To facilitate efficient data exchange
and seamless interaction between patterns, an object-oriented programming ap-
proach is employed. This design ensures modularity and adaptability in man-
aging the relationships and dependencies among patterns. A general optimiza-
tion algorithm, illustrated in Fig. 1, was developed based on this pattern-based
methodology, providing a structured framework for solving complex structural
optimization problems.

main()
BeamClassTest

PatternBeam
[objects creation]

Start

NodalSupport
[objects creation]

NodalLoads
[objects creation]

InterfaceNodes
[objects creation]

General optimization algorithm 
for a single pattern

Results 
representation

PatternOptimization
[start]

Is optimal
solution found?

Y
es

GlobalFrameCalculation

InterfaceNodes
[stiffness update]

Optimization method
implementation

Are interfaces
stiffness changes

significant?

GlobalFrameCalculation 
[stiffness check]

Yes

Continue

N
o

IsolatedPatternCalculation

No

Fig. 1. General flowchart of pattern-based optimization algorithm.

The algorithm aggregates objective function values from individual patterns,
to construct global objective functions. Patterns can also be optimized in isola-
tion to facilitate local optimization. The process begins by creating of objects for
all components of the structure, including patterns, supports, loads, and inter-
faces between patterns. These objects encapsulate all relevant information, such
as stiffness matrices, loads, and connectivity details. The optimization process
uses this information to perform both local optimization of individual patterns
and global optimization of the entire structure. Additionally, the algorithm in-
corporates a mechanism to determine whether a pattern can be optimized in iso-
lation without requiring a global solution update. This is decided by evaluating
whether changes in the stiffness of the interfaces between patterns significantly
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affects the forces in the global system. If the stiffness changes are negligible, local
optimization can proceed without recalculating the global solution, which sig-
nificantly improves computational efficiency. However, if each iteration requires
stiffness updates, local optimization becomes ineffective, and global optimization
remains the only viable approach.
The optimization process can evaluate objective function values (such as

mass of elements) independently for each pattern. These values are then aggre-
gated to define the global objective function. Specifically, the global objective
vector Ftot is defined as:

Ftot =

np∑
i=1

Fi, (16)

where np is the number of patterns, and Fi denotes the vector of objective
function values associated with i-th pattern. This formulation supports localized
evaluation while preserving global control over the optimization objectives.
For scalar objective functions, this summation reduces to a component-wise

operation across all patterns. In multi-objective settings, the vector structure of
Ftot is retained, allowing it to be directly applied in Pareto-based optimization
or scalarization techniques such as the weighted sum method.
The following admissibility criteria were implemented to determine whether

such decoupling is permissible:
– Relative change in global internal force response must remain within ac-
ceptable limits, as it directly influences the local verification of elements:

∆f =

∥∥N(i+1) −N(i)
∥∥∥∥N(i)

∥∥ < εf , and similarly for V, M; (17)

– Relative change in interface stiffness is monitored but is not treated as
a strict condition in this study:

∆k =
|k(i+1)

x − k
(i)
x |

k
(i)
x

< εk, and similarly for ky, kθ; (18)

– The global stiffness sensitivity may also be evaluated using the Frobenius
norm, although it is not the primary admissibility criterion:

∆K =
∥K(i+1) −K(i)∥F

∥K(i)∥F
< εK . (19)

In practice, local optimization is allowed to proceed as long as the change in
internal forces remains within acceptable limits. While interface stiffness varia-
tions are monitored, the internal force response is treated as primary admissibil-
ity criterion, as it directly impacts the local verification of structural elements.
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This focus reflects typical engineering procedures, where internal forces form the
basis for design and safety checks. As a result, local optimization can be carried
out without requiring full stiffness updates, enabling a computationally efficient
decoupling of the local and global optimization stages.
Computational examples illustrating the application of this methodology are

presented in the subsequent section.

4. Numerical examples

This study explores the application of pattern-based, object-oriented tech-
niques in structural optimization, with a particular focus on their integration
into finite element modeling workflows. Rather than relying on traditional mono-
lithic modeling, the proposed approach leverages modular components–referred
to as patterns–connected through interface elements. Implemented in C++, this
framework enables flexible handling of design variables and structural config-
urations while offering potential computational benefits. The methodology is
tested on several case studies, each addressing different aspects of structural op-
timization, including topology, parameter type, and structural decomposition.
Example 4.1 presents a classical optimization case involving two topologi-

cal variants and integer parameters with practical engineering implementation.
Example 4.2 introduces preliminary testing of frame decomposition using the
object-oriented interface approach. Example 4.3 extends classical optimization
to a larger topology space-featuring up to 36 integer-type parameters for the
vertical bracings layout of the structure. Example 4.4 outlines a general concept
for connecting multiple structural patterns.
In all presented examples, the optimization problems are formulated as min-

imization problems. Buckling effects and geometric nonlinearity were not con-
sidered in this study, as the focus was on evaluating the proposed optimiza-
tion approach under simplified small-deformation conditions. This enabled the
assessment of internal force- and moment-based objectives within a controlled
framework. These aspects are intended to be addressed in future research, which
will extend the methodology to include large-deformation analysis and buckling-
related criteria.
The benchmarks were performed on a single thread of the Apple M3 Pro

chip.

4.1. Steel tower optimization

To implement the developed computational approaches, a steel tower struc-
ture was designed using an isolated vertical truss pattern optimized via a ge-
netic algorithm (Fig. 2). The tower acts as a supporting structure for a conveyor
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Option 1
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Option 2

7200

43
30

 ×
 7

 =
 3
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Load P1 

Load H1

Cross-section A1 [param]

Cross-section C1 [param]

Cross-section B2 [param] 

Cross-section C2 [param]

Load P2 Load P2

Cross-section A2 [param]

Cross-section A1 [param]

Cross-section B1 [param]

Cross-section B2 [param]

Cross-section C1 [param]

Cross-section C2 [param]

Load H2 Load H2

Fig. 2. Optimization scheme.

system. This example demonstrates how the proposed pattern-based approach
applies to basic truss structures, which are defined by standard engineering
parameters such as cross-sectional areas and truss widths, and have two possi-
ble topological configurations. Although the optimization procedure in this case
follows a classical, monolithic approach without decomposition or interface mod-
eling, the vertical truss structure serves as a representative pattern class within
the proposed framework. This example illustrates how the internal features of
a pattern – such as the configuration of its bracings – can be parametrized
and optimized. This enables to reuse parametrically defined structural units for
composing more complex systems, where interface conditions between patterns
become relevant.
The applied loads consist of concentrated vertical forces P1 = P2 = −100 kN

and horizontal forces H1 = H2 = 40 kN. The optimization problem considers
a total of eight decision variables: seven real-type variables and one integer-type
variable, represented as d = [A1, A2, B1, B2, C1, C2,W, T ]. The variables and
their bounds are defined as follows:
– cross-sectional areas of elements (real):

A1, A2, B1, B2, C1, C2 ∈ [0.001, 0.1] m2,
– width of the truss (real): W ∈ [5, 12] m,
– type of bracings (integer): T ∈ [1, 2].
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Two optimization criteria were considered:
1. Displacement limitation, defined as the difference between the displace-
ment at a control node and the admissible displacement:

F1 (d) = |h (d)− hadm|, hadm =
H
500

, (20)

where H represents the height of the vertical truss.
2. Steel usage, calculated as the total mass of the truss bars:

F2 (d) =
n∑

i=1

Ai (d) li (d) ρ, (21)

where Ai(d) and li(d) denote the cross-sectional area and length of ele-
ment i, respectively, and ρ is the material density. The total number of
elements n depends on the geometry/topology of the scheme.
In this example, a scalarized optimization approach was used based on

a mixed weighted criterion combining the two objectives: displacement control
and steel usage. Rather than generating a full Pareto front, a fixed weighting
was applied to balance these competing goals within a single objective function.
This approach reflects a practical engineering design scenario where priorities
between criteria are predefined.
Optimization results:
1. The algorithm consistently favored the upper limit of the admissible truss
width.

2. Truss topology type 2 resulted in a weight reduction of 17% compared to
topology type 1 in all scenarios.

3. In approximately 50% of optimization runs from different genetic algo-
rithm starting points, configuration 2 was selected.

4. Configuration 2 utilized smaller cross-sections than configuration 1, which,
in contrast, included a greater number of elements and nodes.

5. Horizontal bars had a negligible effect on the overall displacements.
To provide additional insight into the behavior of the objective function,

two illustrative brute-force plots are presented in Figs. 3a and 3b. These plots
show the shape of the objective function landscape for two selected parameters,
helping to visualize the trade-off structure and confirm the presence of multi-
ple optima. It should be emphasized that these graphs were generated solely
for visualization purposes and do not represent the main optimization process,
which was conducted using a genetic algorithm over a higher-dimensional design
space.
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Fig. 3. Graphs illustrating the objective function values for the vertical truss, based on a mixed
weighted criterion combining displacement limitation and material usage minimization into
a single objective function. Two scenarios are presented: a) variations in cross-sectional areas,

b) variations in both cross-sectional areas and overall truss width.

4.2. General pattern-based approach for frames

This example aims to validate the pattern-based approach for a statically
indeterminate frame structure. The implementation leverages an object-oriented
methodology, where the frame structure is decomposed into patterns following
the general algorithm (Fig. 1). Key structural components, including beams,
interfaces, and supports, are represented as objects (Fig. 4). Data exchange
between these objects enables to solve both statics and optimization problems.
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To demonstrate the core principles of the proposed methodology, a simplified
benchmark frame was selected to allow for controlled testing and detailed perfor-
mance evaluation. This setup facilitates a direct comparison between traditional
global optimization and the pattern-based decomposition strategy. In particular,
we compare the results of full-structure optimization using a genetic algorithm
against those obtained via iterative local optimization of individual patterns,
all while monitoring interface admissibility criteria and force consistency.
The purpose of this comparative setting is not to outperform classical meth-

ods at this stage, but rather to isolate and highlight the inner mechanisms
of the pattern-based strategy in a verifiable environment. While promising,
the method’s competitiveness with established large-scale techniques – such
as SIMP-based topology optimization, level-set approaches, or gradient-based
shape optimization – requires further research. These classical methods have
been validated for highly nonlinear, three-dimensional problems and offer strong
theoretical guarantees. Therefore, systematic comparisons in terms of accuracy,
robustness, and scalability are deferred to future studies.
To comprehensively evaluate the proposed methodology at the concept stage,

three separate benchmark cases were analyzed:
– A global Pareto-based optimization of the full frame structure was con-
ducted to verify the object-oriented framework used for assembling the
global stiffness matrix from individual patterns. This analysis investigates
how various objective criteria influence the structural configuration and
trade-offs between performance and material usage.
– A local iterative optimization of the beam was used to demonstrate the
selective recomputation logic. In this case, only the beam cross-section un-
dergoes optimization, while the columns remain fixed. The analysis vali-
dates whether the admissibility criteria (Eqs. (17)–(19)) are fulfilled during
local stiffness updates without full recalculation.
– A comparative benchmark of recomputation strategies using the genetic
algorithm was performed using a modified genetic algorithm. Several sce-
narios were tested where the global FEM system is recalculated at dif-
ferent intervals (e.g., every 2nd, 5th, or 10th iteration). This benchmark
quantifies the trade-off between computational cost and accuracy in a full-
structure optimization setting.
The applied loads consist of a vertical concentrated force Fz = −300 kN

and a horizontal force Fx = 100 kN. Two real decision variables are considered,
represented as d = [S1 S2], where S1 ∈ [200 1000] mm is the cross-sectional
height of the columns, and S2 ∈ [200 1000] mm is the cross-sectional height
of the beam. The cross-sectional properties are derived from S1 and S2 using
approximated values from a selected profile catalogue (HEA profiles).
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The optimization considers five criteria:
1. Displacement limitation:

F1 (d) = |h (d)− hadm|, (22)

where hadm = H/500 and H is the height of the frame.
2. Moment limitation:

F2 (d) = max
(ξ)

|M (d,ξ) |. (23)

3. Longitudinal force limitation:

F3 (d) = max
(ξ)

|N (d,ξ) |. (24)

4. Steel usage minimization: F4(d) is defined as the total mass of all struc-
tural elements, computed according to Eq. (21).

5. Normal stress check:

F5(d) = max
ξ

∣∣∣∣ 1fy
∣∣∣∣N(d, ξ)

A(ξ)
+

M(d, ξ)

Wpl(ξ)

∣∣∣∣− 0.95

∣∣∣∣, (25)

where A(ξ) is the cross-sectional area, Wpl(ξ) is the plastic section modu-
lus, and fy = 235 MPa is the yield stress.

Here, ξ ∈ R represents the scalar physical coordinate corresponding to the local
coordinate system attached to a particular bar.
While our optimization framework defines five criteria, each Pareto-optimal

analysis only considers a subset of three simultaneously. This approach simplifies
interpretation, and allows for meaningful comparison between different trade-off
scenarios. For the comparative benchmark of optimization strategies, the mixed
objective function combined steel usage (F4) and stress utilization accuracy (F5).
This allowed for a preliminary basis of comparison across all recomputation
strategies.
For benchmarking purposes and to compare local versus global optimiza-

tion strategies, a modified evolutionary algorithm was implemented. In this ap-
proach, global stiffness matrix recomputations are performed only periodically,
based on a user-defined interval. The frequency of full FEM recomputation di-
rectly influences both computational cost and accuracy. Several scenarios were
tested, ranging from a full recalculation at every iteration to more sparse updates
(e.g., every 2nd, 3rd, up to 50th iteration).
The object-oriented approach was implemented using C++. The analysis in-

volved 30 finite elements, and a total of 19 600 FEM solutions were performed,
corresponding to a 140× 140 parameter matrix. The computational time for the
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pattern-based approach in C++ was 60 seconds, while the procedural global cal-
culation approach in MATLAB required 1 minute and 22 seconds. These results
demonstrate the feasibility and effectiveness of the pattern-based approach for
optimizing a simple frame structure, providing a solid foundation for addressing
more complex tasks in future implementations.
The optimization results, including all non-dominated solutions and the

Pareto front, are depicted in Fig. 5. In these graphs, blue dots represent Pareto-
optimal solutions, while gray dots denote non-Pareto solutions. In Fig. 5b, the
influence of the axial force criterion on the optimization outcome is minimal,
resulting in a Pareto front that appears compressed along the horizontal axis.
This reflects the limited contribution of this objective in the given configuration.
It is also worth noting that due to the objective-like formulation of the displace-
ment limitation, some Pareto-optimal solutions exhibit F1 = 0.678 m, corre-
sponding to actual displacements significantly exceeding the admissible value.
While mathematically non-dominated, such solutions are not acceptable from an
engineering standpoint. This issue is illustrated in several entries in Tables 1
and 2, and it highlights a potential drawback of formulating performance targets
as objectives instead of enforcing them explicitly through inequality constraints.

a) b)

Fig. 5. Graphs illustrating the Pareto optimization results for two scenarios: a) moments
criterion with mass and displacement limitations, b) moments and forces criteria with mass

limitation.

Preliminary results indicate that, for the considered simple steel frame, it is
possible to isolate the beam as a local pattern and perform optimization with-
out the need for global stiffness matrix updates in every iteration. The inter-
nal force response, used as the primary admissibility criterion, remained within
acceptable bounds even when the surrounding global structure was not fully
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Table 1. Representative Pareto-optimal solutions for the three-objective optimization
using moments criterion with mass and displacement limitations.

No. S1 [mm] S2 [mm] F1 [m] F2 [Nm] F4 [kg]

1 100 100 0.678342 129 470 301

2 240 140 0.011220 170 021 729

3 240 450 0.000013 109 625 1882

4 340 200 0.000196 161 372 1263

Table 2. Representative Pareto-optimal solutions for the three-objective optimization
using moments and forces criteria with mass limitation.

No. S1 [mm] S2 [mm] F2 [Nm] F3 [N] F4 [kg]

1 100 100 129 470 285 876 301

2 100 300 100 424 280 079 1017

3 100 600 100 068 280 012 1914

4 100 1000 100 010 279 999 2854

Table 3. Iterative evaluation of admissibility criteria during beam cross-section optimization
in the global frame with global displacement limitation.

S2 F1 [m] ∥K∥ ∥N∥ [N] ∥V∥ [N] ∥M∥ [Nm] kx [N/m] ky [N/m] kθ [Nm/rad]

100 0.678342 1.26E+10 918 813 228 024 358 829 72 927 1.12E+08 439 937

160 0.387504 1.36E+10 902 841 232 026 360 943 129 149 1.12E+08 8.65E+06

220 0.374060 1.59E+10 902 145 232 232 362 305 133 743 1.12E+08 2.12E+07

280 0.369761 1.98E+10 901 926 232 299 362 758 135 273 1.12E+08 3.89E+07

340 0.367775 2.55E+10 901 826 232 329 362 969 135 988 1.12E+08 6.28E+07

400 0.366681 3.29E+10 901 771 232 346 363 086 136 385 1.12E+08 9.48E+07

600 0.365179 6.81E+10 901 697 232 369 363 247 136 931 1.12E+08 3.12E+08

1000 0.364443 1.84E+11 901 660 232 380 363 326 137 200 1.12E+08 2.73E+09

Table 4. Preliminary comparison of global and local optimization approaches for horizontal
displacement control in the example steel frame.

Aspect Global system Isolated pattern

Stiffness matrix update Every iteration Only if ∆f exceeds threshold
(Eq. (17))

Number of equations to solve in typical
iteration (assuming 10 finite elements per
column/beam)

93 39

Number of required global FEM solutions
(brute force) assuming possible profiles
(24 in total) from the HEA catalogue

24 3 (for 1% admissibility
threshold)

Optimality Optimal solution Sub-optimal solution with
deviation within engineering
tolerance
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recalculated. This is illustrated in the iterative evaluation presented in Table 3.
The comparative summary in Table 4 shows that this approach reduced the
number of required global finite element analyses, while maintaining a solution
within engineering accuracy limits. However, further investigation is needed to
confirm whether this strategy applies to more complex structures or different
loading and support configurations.
The results, summarized in Table 5, show that reduced recomputation fre-

quencies lead to savings in computational time and the number of global FEM
analyses. For instance, switching from full recomputation to recalculating every
5th evaluation reduced the number of global solves from 6060 to 1860, with
negligible changes in utilization ratios and weight. Even more intensive reduc-
tions (e.g., 1/30 or 1/50) still yielded feasible solutions, although some over-
or under-utilization of individual members was observed. The single-objective
optimization of the bracing system was performed using the simple genetic al-
gorithm (SGA) implemented in the pagmo2 library. A population size of 60
individuals was used, and the algorithm ran for 100 generations. The optimiza-
tion involved three real-valued decision variables corresponding to the heights
of selected cross-sections. Default tournament selection was applied, and fitness
values were evaluated based on a problem-specific weighted objective.

Table 5. Comparison of Optimization Strategies (the best ones from 10 GenAlg runs).

Strategy σ/fy col. 1 σ/fy beam σ/fy col. 2 Total weight [kg] No. of recomp. Time [s]

Full 0.949 0.757 0.937 1831 6060 38

1/2 0.949 0.757 0.937 1831 3329 31

1/3 0.949 0.757 0.937 1831 2532 29

1/4 0.949 0.757 0.937 1831 2204 28

1/5 0.920 0.730 0.921 2055 1860 27

1/10 0.850 0.651 0.922 2104 1373 26

1/20 0.923 0.747 0.959 1911 1293 26

1/30 0.898 0.758 0.885 1991 1114 26

1/50 1.074 0.793 0.951 1407 1086 25

4.3. Vertical bracings configuration

An additional specific type of pattern was analyzed – a vertical bracing lay-
out optimization. The aim of this example is to test optimization approaches for
integer-type parameters, where the optimal location of bracings is not known
a priori. Although the optimization procedure used here follows a classical,
global approach without decomposition, it demonstrates how discrete topolog-
ical design variables can be incorporated within the pattern-based framework.
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The bracing layout is treated as a parameterized pattern that can later be
reused in the assembly of more complex structural systems. This example illus-
trates the framework’s capability to address discrete layout decisions, such as
selecting and positioning of bracing elements, while maintaining consistency
with the modular and extensible nature of the proposed method. For this pur-
pose, the optimization scheme includes limited fixed geometry parameters such
as span widths (6 m) and floor heights (3 m), as shown in Fig. 6. The pat-
tern allows for the implementation of restricted areas in where cannot be pro-
vided (Fig. 7). For the benchmarks all bracing zones were assumed as allowed,
and the test loads were applied to the top right node of the structure. The
applied loads consist of a concentrated vertical force P1 = −100 kN and a hor-
izontal force H1 = 100 kN. Four real-type decision variables for cross-sections
are taken into account, denoted as dsections = [B C1 C2 S]. The cross-section
heights are B, C1, C2, S ∈ [100 1000] mm, where B – is the beams cross-
section height, C1, C2 are columns’ cross-section heights, and S is bracings
cross-section height. The location and type of bracings are parametrized by us-
ing 6× 6 matrix of integers representing allowed zones for bracings (Fig. 8), as
shown below:

dbracings =


A1 A2 · · · A6

A7 A8 · · · A12
...
...
. . .

...
A31 A32 · · · A36.

. (26)

L [fixed]

W [fixed]

H
 [f

ix
ed

]

h 
[f

ix
ed

]

Cross-section
C1 [param]

Cross-section
C2 [param]

Main vertical scheme

Cross-section
B [param]

H = 100 kN
P = 100 kN

Fig. 6. General scheme.
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For benchmarking purposes, five criteria were evaluated:
1. Displacement limitation:

F1 (d) = |h (d)− hadm|, (27)

where hadm = H/500 (H is the height of the structure).
2. Steel usage minimization: F4(d) is defined as the total mass of all struc-
tural elements, computed according to Eq. (21).

3. Minimization of the number of compressed members:

F3(d) =

ntot∑
i=1

Icomp
(
Ni(d)

)
, (28)

where

Icomp
(
Ni(d)

)
=

{
1, if Ni(d) < 0,

0, otherwise.
(29)

In this notation, ntot is the total number of members, and Ni(d) is the
axial force in the i-th member. The condition Ni(d) < 0 corresponds to
compression.

4. Moment limitation F4(d), defined as in Eq. (23).
5. Longitudinal force limitation F5(d), defined as in Eq. (24).
The Pareto front optimization was performed on a frame structure without

bracings, while the weighted criteria optimization focused on a complete task

Table 6. Representative Pareto-optimal solutions for the three-objective optimization
using moments and forces criteria with mass limitation.

No. B [mm] C1 [mm] C2 [mm] F5 [N] F2 [kg] F4 [Nm]

1 100 100 100 56 040 14 991 24 893

2 200 200 280 34 581 61 675 14 817

3 300 300 450 35 466 137 925 14 161

4 500 700 700 34 643 332 306 14 745

Table 7. Representative Pareto-optimal solutions for the three-objective optimization
using moments criterion with mass and displacements limitation.

No. B [mm] C1 [mm] C2 [mm] F1 [m] F2 [kg] F4 [Nm]

1 100 100 100 0.04403 14 991 56 040

2 100 100 120 0.04440 15 785 34 782

3 120 120 160 0.04639 24 569 34 778

4 140 140 180 0.04674 27 286 34 220
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with bracing zones. Although the optimization problem involves five criteria,
each Pareto-optimal analysis is limited to three objectives at a time, similarly
to the approach used in Subsec. 4.2.
The optimization results, including all non-dominated solutions and the

Pareto front, are depicted in Fig. 9. The analysis involved up to 150 finite ele-
ments. For the Pareto optimization a total of 19 600 FEM solutions were per-
formed, corresponding to a 140 × 140 parameter matrix. The computational
time was 194 seconds. The single-objective weighted criterion optimization was
carried out using the SGA from the pagmo2 library. The optimization process in-
volved a population size of 60 individuals, with the number of generations typ-
ically set to 100 or 300, depending on the specific case, as shown in the conver-
gence plots (Figs. 11 and 12). The number of decision variables for this was 40.
For the selection process, default tournament selection was used. Fitness values
were computed based on a mixed set of criteria, tailored to the specific opti-
mization problem being addressed. The optimization results for the weighted
criteria are shown in Fig. 10. Convergence graphs for the genetic algorithm are
shown in Figs. 11 and 12. The blue line with circular markers represents the best
solution found at each generation, showing how the objective function value im-
proves over iterations. The red line with cross markers depicts the improvement
in the objective function between consecutive generations, emphasizing the rate
of progress. The first task ran for 100 generations, whereas the second task was
executed for 300 generations. The first task, involving 3000 evaluations (FEM
solutions), was completed in 26 seconds, whereas the second task, with 9000
evaluations, took 86 seconds. While Figs. 11 and 12 present the convergence

a) b)

Fig. 9. Graphs illustrating the Pareto optimization results. These graphs show two scenarios:
a) moments and forces criteria with mass limitation, b) moments criterion with mass and

displacements limitation.
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Fig. 10. Graphs illustrating the optimal solutions with deformed configurations for two single-
objective functions formulated using mixed criteria: a) a function combining displacement
limitation, weight, and the number of compressed members, b) a function combining displace-

ment limitation and weight.

Fig. 11. Convergence graph for the mixed 3 criteria case with 100 generations.
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Fig. 12. Convergence graph for the mixed 2 criteria case with 300 generations.

behavior of the optimization process, they do not provide a direct assessment
of individual bracing type performance. Due to the mixed-integer nature of the
problem, optimal solutions typically comprise combinations of different brac-
ing types. A detailed statistical evaluation of the role of each bracing type was
beyond the scope of this study but may be considered in future work.
Based on the obtained results, several conclusions can be drawn: the algo-

rithm effectively identifies optimal solutions within a reasonable time frame,
and it successfully combines various types of parameters within a single task.
However, some challenges remain: the optimal geometry may not be immedi-
ately intuitive for structural designers, complicating the verification process;
while the Pareto front provides greater flexibility for designers to select a pre-
ferred solution, interpreting results becomes more challenging when dealing with
more than three criteria. Additionally, the values on the Pareto front may ap-
pear scattered, as shown in Fig. 12b. Moreover, a supplementary algorithm to
optimize for multiple load cases is necessary and is planned as part of future
research. It should also be emphasized that, similar to the displacement limita-
tion discussed in Subsec. 4.2, certain Pareto-optimal solutions may not satisfy
essential engineering requirements despite being mathematically non-dominated.
This further supports the need to complement objective-based formulations with
explicit constraints to ensure practical applicability.

4.4. Complex frame structure optimization concept

The concept of complex frame decomposition was developed and is illus-
trated in Fig. 13. This structure integrates various types of patterns and incor-
porates the parametrization of spring support stiffness (Fig. 14). This example
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serves as an initial step toward a more generalized structural design process in
engineering.
The pattern-based approach enables to break down the structure into man-

ageable patterns, facilitating both its assembly and optimization to meet specific
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design requirements (Fig. 15). In this case, the decomposition resulted in five
truss-type patterns, four beam-type patterns, four spring supports, and 14 in-
terfaces.
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beam3
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Fig. 15. Decomposition using interfaces.

Additionally, a simplification method employing substitute bar-type ele-
ments in the global scheme was explored (Fig. 16). This approach aims to em-
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Fig. 16. Simplification of a global scheme by substitute bar-type elements.
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ploy a simplified system and reducing the number of finite elements in the global
analysis.
Preliminary benchmarks indicate that optimization using the simplified sys-

tem reduces computational time by 50–60%. This improvement is largely at-
tributed to the reduced number of equations to solve – 27 equations in the
simplified system compared to 177 in the full system. While this approach sig-
nificantly decreases computational demands, its applicability is limited in more
general cases. To overcome this limitation, the development of an additional al-
gorithm for detecting connectivity between patterns is necessary. Moreover, the
parametrization of spans may require an additional layer of abstraction. Despite
these challenges, the approach demonstrates considerable potential for practical
applications and merits further investigation.

5. Conclusions

This study – summarizing the second year of a doctoral thesis – advances
the pattern-based approach for geometry and topology optimization of steel
structures. Primarily, this research focused on developing an interaction-based
methodology for pattern-based optimization. It explored optimizing patterns
using an object-oriented approach implemented in C++ and investigated the
use of spring-type interfaces for connecting patterns. Moreover, results from
the global optimization of complex steel structures, combining decision variables
of various numerical types, were presented.
Three benchmark problems were analyzed to assess different aspects of the

proposed methodology. The first problem involved classical topology optimiza-
tion with discrete design variants, illustrating how the internal topology of a pat-
tern can be optimized. The second one tested local pattern-based optimization
with selective stiffness recomputation, which led to a notable reduction in global
FEM evaluations while maintaining acceptable accuracy. The third benchmark
addressed a mixed-variable problem, demonstrating the framework’s capability
to handle discrete layout decisions, such as selecting and positioning of bracing
elements. While these findings demonstrate the applicability of the proposed ap-
proach in the tested scenarios, they remain limited to a small set of benchmark
problems. Therefore, further testing is required to evaluate its performance in
more complex or spatial structures.
The proposed pattern-based approach offers several notable advantages. First,

it provides individual control over optimality by supporting both global and
local optimization. Each pattern can be treated independently, allowing for cus-
tomized solutions that contribute to greater efficiency and precision in the over-
all structural design. Second, patterns significantly streamline the decomposition
and assembly process. By abstracting structural components into higher-level
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entities, the need to manually define finite element models element by element
is eliminated, which considerably simplifies the parametrization process. Third,
the modular and systematic nature of the approach lays a solid foundation
for further development and scalability, enabling its application to increasingly
complex and sophisticated engineering problems.
Despite these advantages, several challenges and limitations remain. The ad-

ditional level of abstraction introduced by pattern-based modeling may not be
effective in cases where the structural parametrization is highly specific or inher-
ently complex. This underscores the need for further research and testing. More-
over, in the context of simple structural models, the overhead introduced by the
pattern-based framework may outweigh its benefits, resulting in reduced compu-
tational efficiency. Finally, for the method to be broadly applicable, a diverse and
comprehensive library of structural patterns must be developed, which requires
substantial resources and implementation effort.
Future work will focus on optimizing quasi-linear and non-linear problems,

especially those involving large deformations. The pattern-based approach will
be expanded to accommodate more complex structural designs, with the po-
tential development of a multi-threaded solver (e.g., one thread per pattern).
Additional optimization criteria will be explored to increase the approach’s ap-
plicability. Furthermore, the methodology will be extended to spatial structures,
supported by the development of a more sophisticated testing environment in
C++ for advanced research and validation.
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