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This study investigates a self-referencing method for damage detection and localization
using guided waves (GW) sensed by fiber Bragg grating (FBG) sensors. The research
integrates advanced numerical simulations with an innovative configuration of sensors to
enhance structural health monitoring (SHM). A self-referencing setup, employing FBG
sensors with edge filtering method and remote bonding, enables a baseline-free dam-
age detection approach. The methodology is validated as a proof-of-concept numeri-
cal model. The simulation framework incorporates a three-dimensional spectral element
method for precise and efficient modelling of GW propagation and interactions with struc-
tural anomalies. Three different machine learning (ML) techniques are employed to detect
and localize damages, demonstrating effectiveness of ML methods compared to traditional
methods.
The three techniques employed are decision tree, logistic model tree and random for-

est. Key findings highlight the effectiveness of random forest models in classifying damage
states with a 98.67% accuracy. Different feature selection methods, are used to identify
critical features. The proposed methodology reduces sensor requirements, lowers system
complexity and cost, and enables efficient SHM solutions in extreme or large-scale envi-
ronments. This work underscores the potential of ML techniques to perform detection and
localization where traditional techniques fail.
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1. Introduction

Structural health monitoring (SHM) has garnered significant research inter-
est over the past few decades due to its substantial economic benefits. Beyond
cost savings, SHM techniques enhance structural safety and reliability, and in
some cases, can extend the structure lifespan. Numerous techniques have been
developed to monitor a variety of damage-sensitive features, including vibra-
tion [1], strain [2], wave propagation [3], and electromagnetic impedance [4]
signatures. Each technique presents distinct advantages and limitations, neces-
sitating careful selection of the most suitable approach based on application-
specific requirements, such as damage tolerance and degradation mechanisms.
Among SHM methods, guided wave (GW)-based techniques are particularly
effective for monitoring thin-walled structures. GW can propagate over large
distances with minimal attenuation, enabling the inspection of large areas with
a limited number of sensors. Additionally, their short wavelengths associated
with GW enhance their sensitivity to minor damage, which is especially valu-
able in structures with low damage tolerance. GW-based techniques have been
developed for damage detection and localization in structures. Most commonly
used damage sensitive features include amplitude changes along the wave prop-
agation path [5], time of arrival (ToA) of reflected/scattered signals followed by
triangulation [6], and non-linear signatures due to damage [7]. More recently, the
artificial intelligence (AI)-based technique have also emerged [8,9]. An excellent
overview of different damage detection and localization techniques can be found
in [3, 10–12].
Several sensor systems have been developed for GW detection, including

piezoelectric (PZT) sensors, macro fiber composites (MFC), optical fiber sensors,
and non-contact methods such as laser Doppler vibrometers [13]. The use of op-
tical fiber sensors for GW sensing is attracting renewed interest within the SHM
community. Optical fiber sensors utilizing fiber Bragg gratings (FBG) present
several distinct advantages, such as compact size, low weight, embeddability, and
multiplexing capabilities. These attributes make FBG sensors highly suitable for
a wide array of applications, including civil engineering [14], wind energy [15],
marine structures [16], and aerospace engineering [17]. Traditionally, FBG sen-
sors are employed in a wavelength division multiplexing (WDM) configuration,
where changes in wavelength are detected and calibrated to measure strain or
temperature. However, this approach is limited to static or quasi-static condi-
tions and lacks the sensitivity required for high sampling rate applications, such
as GW sensing. To address this limitation, edge filtering technique has been uti-
lized. This approach enhances the sensitivity and effectiveness of FBG sensors
in dynamic GW monitoring context. In the edge filtering approach, a tunable
laser is aligned on either the upward or downward slope of the FBG spectrum.
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Spectral shifts in the FBG induce changes in reflectivity, which can be detected
as amplitude variations through a photodetector. The high slope of the FBG
enhances sensitivity by amplifying spectral changes, and commercially available
high-speed photodetectors (with sampling rates in GHz) make this approach
feasible for dynamic applications [18].
Beyond the exceeding inherent benefits, FBG sensors offer additional unique

advantages for GW sensing. One such feature is remote configuration, where
the optical fiber serves as a mechanical waveguide, capable of transmitting me-
chanical waves over several meters with minimal attenuation [19]. This property
can be strategically utilized for sensor deployment in extreme environments [20],
while simultaneously reducing equipment costs by enabling multi-point measure-
ments with a single sensor system [21]. Another innovative arrangement is the
self-referencing configuration that further expands the versatility of FBG-based
GW sensing for SHM applications [22].
FBG sensors in the remote configuration with the edge filtering approach of-

fer enhanced sensitivity and can also be implemented in a self-referencing setup
(Fig. 1). In this configuration, a wave is generated at a PZT and travels along
the structure until it reaches Bond 1, where it couples with the optical fiber and
is transmitted to the FBG for sensing. This initial wave packet contains infor-
mation about the undamaged structure. The wave then continues propagating
through the structure, interacting with any damage, before reaching Bond 2.
At this point, the wave – now influenced by structural damage – couples to the
optical fiber and is sensed by the FBG.
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Fig. 1. Schematic explaining self-referencing configuration (based on [22]).

The difference in information encoded within the two wave packets, captured
at Bond 1 and Bond 2, can be utilized for damage detection and localization,
even in the absence of baseline measurement from the undamaged structure.
This capability for reference-free damage detection is particularly advantageous
for SHM applications in aging infrastructure, as it simplifies implementation and
broadens the applicability of SHM techniques [23]. The novel integration of self-
referencing configuration with edge-filtered FBG sensors introduces a new level
of sensitivity and reliability for GW sensing in SHM. By eliminating the need for
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baseline measurement, this approach offers a streamlined and adaptable solution
for monitoring aging infrastructure, particularly in extreme and large-scale en-
vironments. Furthermore, this configuration enables multi-point measurements
with fewer sensors, substantially reducing system complexity and cost. These
contributions mark a significant advancement in SHM technology, demonstrat-
ing both practical and theoretical advancements that open new possibilities for
structural health management across various engineering fields. The effective-
ness of the configuration for detecting damage was studied by Wee et al. [22].
But their implementation still relied on measurement of a baseline. The present
work aims to utilize the self-referencing configuration of FBG sensors to develop
a reference-free damage detection and localization technique, representing the
main novelty of this research. The methodology is investigated through a vali-
dated numerical model as a proof-of-concept.
The rest of the paper is organized as follows: Sec. 2 explains the numerical

setup. Section 3 shows the limitations of the traditional technique based on time
of arrival (ToA). As a result a data-driven ML-based technique is utilized for
damage detection and localization. Section 4 outlines the methodology applied,
including the methods used for feature selection. The training and testing results
along with discussions are presented in Sec. 5. Finally, based on the presented
results, conclusions are drawn in Sec. 6. Section 6 also identifies areas of further
research.

2. Numerical setup

Simulating GW propagation in structures is inherently challenging due to
varying temporal and spatial scales involved. For example, the time increment
needed for accurate GW simulation is in the order of nanoseconds, while the
total simulation duration spans hundreds of microseconds, requiring thousands
of time steps. In the spatial domain, the optical fiber under consideration with
a diameter of 125 µm demands numerous nodes across each cross-section for
accurate modeling. Additionally, both plate and fiber lengths are of the order
of meters. As a result, the number of elements and associated computational
load is quite large. Traditional finite element (FE) methods prove insufficient for
handling these diverse scales efficiently. To address this, we implemented a time-
domain spectral analysis method (SEM) with non-matching interface elements
that establish connections between the adhesive layer and host plate. The SEM
uses high-order Lagrange polynomial interpolation to define shape functions
within spectral elements. Furthermore, a Gauss–Lobatto–Legendre integration
scheme was employed for the necessary numerical integration. This approach
is essential for analyzing GW propagation characteristics and their interactions
with potential structural anomalies. The strategy for the non-matching grids



Damage localization using fiber Bragg grating sensors. . . 217

has been explained by Fiborek et al. [24]. This approach significantly reduces
computational costs by lowering the number of elements while maintaining the
accuracy needed for analyzing GW propagation. The numerical modeling has
been explained in detail and experimentally validated in [24].
An aluminum plate (Fig. 2a) with dimensions 1000 mm× 500 mm× 1 mm

was modeled. The self-referencing configuration was implemented as shown in
Fig. 2a. The modeling strategy for the optical fiber and adhesive bond is shown
in Fig. 2b. Damage was simulated at different locations along the line connecting
the two bonds as a through-thickness hole of 8 mm diameter. The authors ac-
knowledge that an 8 mm diameter represent significant damage, this obvious
damage scenario was selected to serve as a clear proof-of-concept demonstration
for the self-referencing approach. The simulation utilized a three-dimensional
spectral element method, comprising a total of 2 106 428 nodes.
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Fig. 2. Structural model (a) top view of the sample, (b) cross-section of the optical fiber
and adhesive bond.

The excitation of the GW was achieved through the application of a 5.5-cycle
Hann-windowed sine wave, characterized by a frequency of 300 kHz. The excita-
tion signal was chosen similar to the approach of Wee et al. [22] who proposed the
self-referencing configuration. The time period of this signal was set at 200 µs,
with a time increment of 3.8× 10−10 s. Strain and displacements at the core
of the optical fiber locations where the FBG was located were then extracted
and converted to the FBG response using the transformation matrix from Wee
et al. [25]. The time signal for one of the cases is shown in Fig. 3. The first packet
(n1) that arrived at the FBG sensor is the packet of L01 mode converted from
the S0 mode at Bond B1, while the second one (n2) is a superposition of the
mode L0 converted from the S0 mode at Bond B2 and the packet n1 reflected
from B2. Due to the similar group velocity of the S0 mode in the host plate and
packet n1 in the optical fiber, n2 results in an amplification of the two packets.
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Fig. 3. Simulated time signal for healthy condition.

Then, packet n3 is the reflection of n2 from B1, and finally, packet n4 is the
reflection of n3 from B2.
The FBG response was then contaminated with 10% white noise, and 50

such repetitions were generated to simulate 50 different measurements. These
datasets were used for both traditional method and the ML algorithm. It should
be noted that this data augmentation approach using white noise is a commonly
used strategy for improving classifier performance [26].

3. Analytical methodology

The traditional damage localization method relies on baseline subtraction
and identifying the ToA of the wave packet generated due to damage. In or-
der to effectively identify the effect of damage, baseline subtraction needs to be
performed. As the aim of this paper is to develop a reference-free technique,
the baseline signal was constructed analytically. For this construction of ana-
lytical baseline signal, the physics of the system was considered: the wave coupled
at Bond 1 is detected as the first wave packet. The second wave packet is a com-
bination of the reflection of the first wave in the fiber and the wave coupled at
Bond 2. In the absence of material damping and assuming perfect coupling of the
fiber at the bond location, the amplitude of the second wave packet would be
twice that of the first packet. But, in reality, due to material damping in both the
plate and the fiber, as well as imperfect coupling at the bonds, the magnitude of
the second peak is lower than twice that of the first. Empirically (from a simu-
lated healthy structure) this ratio was determined as 1.38 times that of the first
wave packet. Based on the first wave packet amplitude and ToA (Fig. 4a), the
analytical healthy signal was constructed by shifting the envelope by a number
of time steps corresponding to the distance between the two bonds and the ve-
locity of the L01 wave in the fiber, the multiplying by the factor 1.38 (determined
empirically). This analytical signal (Fig. 4b) was then used for baseline subtrac-
tion. The envelope of the measured signal (Fig. 4c) was then subtracted from
the analytical signal to obtain the residual (Fig. 4d), which was used to identify
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Fig. 4. Methodology for ToA-based damage localization: a) first package, b) analytical baseline
signal (amped up & duplicated), c) measured signal, d) residual signal (subtraction).

peaks associated with wave packet due to the scattering effect of damage. In
order to determine this, a threshold value of 15% was chosen. This value was
chosen to account for 10% noise in the time signals. To summarize, the following
steps were necessary for damage localization:
1. Obtain the analytical baseline signal using first package arrival information
and subsequent wave packets.

2. Obtain the residual by subtracting the measured signal from the analytical
baseline.

3. Identify peaks in the residual signal above the threshold.
4. Locate damage based on the propagation velocity and ToA.
Once the peak exceeding the determined threshold was identified, the loca-

tion of the damage could be detected based on Eq. (3.1). The ToA is a well-
known metric used for damage detection and localization [6, 27],

d = cg
∆t

2
, (1)

where cg is the group velocity of the S0 wave, and ∆t is the time difference
between signals.
Baseline subtraction was applied to different simulated damage scenarios. For

brevity, the residuals (after baseline subtraction) are shown for four cases in
Fig. 5. In the pristine case, where no damage is present, none of the peaks exceed
the threshold, serving as confirmation of correct level 1 damage detection. In case
damage 5, the threshold is not exceeded, resulting in a false positive result, i.e.,
the structure is falsely identified as healthy when indeed there is damage. For the
other damage cases, the damage was successfully detected and localized.
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Fig. 5. Residual signal after baseline subtraction: a) healthy, b) case D5, c) case D3, d) case D4.

As shown the conventional method may lead to false detection; furthermore,
accurate localization requires knowledge of the exact velocity of propagation in
the structure, which in complex anisotropic structures is a challenge. Lastly, the
extraction of the exact ToA of the waves continues to remain a challenge due
to the multi-modal nature of the excited GWs and their complex interactions
with structural components. In order to overcome these challenges, ML-based
algorithms were investigated. Applications of ML algorithms in SHM are be-
coming increasingly common. ML models can extract relevant features from
noisy data, model complex non-linear relationships between signals and dam-
age, and adapt to variations in material properties or environmental conditions.
Unlike the rigid traditional approach, ML can generalize across diverse scenarios,
significantly reducing localization errors and improving accuracy. Furthermore,
ML systems can process large datasets in real time, making them scalable and
suitable for complex structures [28]. By overcoming the shortcomings of the tra-
ditional method, ML provides a powerful and reliable tool for precise damage
localization [29].

4. Methodology

There are several different ML techniques that might be employed, including
supervised learning, unsupervised learning approaches as well as deep learn-
ing techniques. Each of these techniques has its pros and cons. In the current
application, we have a relatively small amount of labeled training data. Also,
the physics of wave propagation is not completely understood. So, a supervised
learning approach was employed. Three different classifiers were implemented to
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evaluate their effectiveness in classify different damage cases: decision tree, lo-
gistic model tree, and random forest classifier.
A key task in supervised learning algorithms is the selection of appropriate

features for training and classification. In order to determine the most suitable
set, different feature selection strategies were compared. The input data con-
sisted of time signals for the same case from the two piezoelectric excitations.
For each damage class, 50 repetitions were used. Both k -fold classification as
well as blind testing with 25% of the data randomly selected was carried out.

4.1. Feature selection

In ML processes, particularly in SHM, it comes in handy to eliminate high-
dimensional data points from the dataset, thereby necessitating for feature se-
lection. The use of appropriate feature selection techniques not only improves
computation time, and reduces the chances of over-fitting, it also brings forth
the most important features that relate to a particular classification. A total
of 32 features were investigated. These features are quite standard in ML, and
are listed in Fig. 8. In this study, the following methods were used for feature
selection:
1. Variance thresholding: Features having minimal variance were classified as
having no information and excluded from the analysis. This approach enabled
to find and remove any features with a variance below 0.01. Figure 6 shows
the reduction in features achieved using this method.

� Pros: Simple and computationally efficient; removes low-variance, non-
informative features.

� Cons: Ignores feature-target relationships, may potentially discard pre-
dictive features.
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Fig. 6. Number of features before and after variance thresholding.



222 A. Patange et al.

2. Univariate selection (ANOVA F -test): The importance of specific fea-
tures in relation to the target feature was estimated using statistical tests.
Among F -score variables, Fig. 7 shows these as the 10 best performing vari-
ables.

� Pros: Identifies statistically relevant features; easy to interpret and im-
plement.

� Cons: Assumes linear relationships and ignores feature interactions.

ANOVA  F-score

Fig. 7. Top 10 features selected using univariate selection.

3. Recursive feature elimination (RFE): This iterative technique enables
a random forest classifier to make predictions, and features are ranked accord-
ing to their level of importance in further predictions. RFE gave the following
ranks, as shown in Fig. 8. The lower rank signifies higher importance of the
feature for classification.

� Pros: Considers feature interactions and iteratively selects the most
relevant features.

� Cons: Computationally expensive and heavily dependent on the base
model’s assumptions.

4. Dimensionality reduction: To tackle issues of class separability and to
visualize the high-dimensional feature space, two notable techniques of di-
mensionality reduction were employed:
(a) Principal component analysis (PCA): PCA reduces the dimension-
ality of the dataset by projecting it into subspaces of lower dimensions
while preserving the greatest variance along orthogonal directions in the
subspace. The 2D projection obtained from PCA is shown in Fig. 9.
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Fig. 9. 2D projection of data using PCA.

(b) A t-distributed stochastic neighbor embedding (t-SNE) ap-
proach: t-SNE maps the entire dataset into a two-dimensional space
while attempting to preserve the topology of the dataset so as to focus
on local space. The results of t-SNE are highlighted in Fig. 10.



224 A. Patange et al.

Class
Damage 1
Damage 2
Damage 3
Damage 4
Damage 5
Healthy

t-SNE dimension 1

t-S
N

E 
di

m
en

si
on

 2

–10 –5 0 5 10

–8

–6

–4

–2

0

2

4

6

Fig. 10. 2D projection of data using t-SNE.

5. Tree-based selection: The 10 most important features were identified using
a random forest model. They are displayed in Fig. 11.

� Pros: Captures feature interactions and non-linear relationships; inter-
pretable due to feature importance scores.

� Cons: May introduce bias toward features with high variability or more
levels.

Fig. 11. Top 10 features selected using tree-based feature importance.
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In this particular case, tree-based feature selection proved to be the most
useful because it models non-linear relationships and accounts to feature
interactions which is essential for distinguishing of damage states in SHM
datasets. Its interpretability in terms of feature importance scores facilitated
validation by relevant domain experts. This level of interpretability is absent in
other methods, for example in variance thresholding or ANOVA, which makes
tree-based selection as the most effective as tradeoff between performance and
complexity.

5. Results

The most informative features were identified. These features were then uti-
lized with three different techniques (namely, decision tree, logistic model tree
and random forest) for k -fold cross-validation as well as testing on unseen data.
It should be noted that the k -fold validation uses all the data for the cross-
validation (k = 10). The aim of cross-validation was to reliably estimate model
performance, and to reduce bias, if any, in the training data. For testing, the
models were retrained, separately with a 75/25 split, where 75% of the data was
randomly chosen and utilized for training, and the remaining 25% data was
unseen by the models and used for testing. The results of both cross-validation
and testing were compared using evaluation metrics such as true positive (TP)
rate, false positive (FP) rate, precision, recall, and the confusion matrix.

5.1. Decision tree

Using the decision tree on a dataset of 300 cases (50 repetitions each for
5 damage classes, and 50 repetitions for the class healthy), 256 (85.33%) were cor-
rectly classified, while 44 (14.67%) were incorrectly classified. The class-wise ac-
curacy table and confusion matrix are shown in Table 1 and Fig. 12, respectively.

Table 1. Class-wise accuracy table.

Class TP rate FP rate Precision Recall

Healthy 0.80 0.052 0.755 0.80

Damage 1 0.78 0.016 0.907 0.78

Damage 2 0.90 0.044 0.804 0.90

Damage 3 1.00 0.000 1.000 1.00

Damage 4 0.88 0.002 0.898 0.88

Damage 5 0.76 0.044 0.776 0.76

For testing, 75 random time signals were chosen; the confusion matrix and
accuracy table for this testing are given in Fig. 13 and Table 2, respectively.
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Corrected confusion matrix heatmap

Fig. 12. Cross-validation results for decision tree.

New confusion matrix heatmap

Fig. 13. Test results for decision tree.
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Table 2. Class-wise accuracy table.

Class TP rate FP rate Precision Recall

Healthy 0.750 0.048 0.750 0.750

Damage 1 0.923 0.016 0.923 0.923

Damage 2 0.900 0.015 0.900 0.900

Damage 3 1.000 0.000 1.000 1.000

Damage 4 0.800 0.000 1.000 0.800

Damage 5 0.833 0.079 0.667 0.833

It can be seen that the accuracy does not change appreciably between cross-
validation and testing scenarios.

5.2. Logistic model tree

The logistic model tree (LMT) showed a higher accuracy (94.33%) in cross-
validation compared to the decision tree. Figure 14 and Table 3 show the con-
fusion matrix and class-wise accuracy, respectively.

Confusion matrix heatmap

Fig. 14. Cross-validation results for LMT.

The performance of the logistic model tree on the testing dataset is shown
in Fig. 15 and Table 4. The model achieved an accuracy of 96% during testing.
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Table 3. Class-wise accuracy table.

Class TP rate FP rate Precision Recall

Healthy 0.920 0.036 0.836 0.920

Damage 1 1.000 0.000 1.000 1.000

Damage 2 1.000 0.004 0.980 1.000

Damage 3 0.980 0.012 0.942 0.980

Damage 4 0.820 0.016 0.911 0.820

Damage 5 0.940 0.000 1.000 0.940

Confusion matrix heatmap

Fig. 15. Test results for LMT.

Table 4. Class-wise accuracy table.

Class TP rate FP rate Precision Recall

Healthy 0.917 0.016 0.917 0.917

Damage 1 0.923 0.000 1.000 0.923

Damage 2 1.000 0.015 0.909 1.000

Damage 3 1.000 0.000 1.000 1.000

Damage 4 0.933 0.017 0.933 0.933

Damage 5 1.000 0.000 1.000 1.000



Damage localization using fiber Bragg grating sensors. . . 229

5.3. Random forest

The random forest demonstrated even better classification accuracy both in
cross-validation and testing (98.67% in both). The cross-validation results are
presented in Table 5 and Fig. 16, while the testing results are shown in Table 6
and Fig. 17.

Table 5. Class-wise accuracy table.

Class TP rate FP rate Precision Recall

Healthy 0.980 0.012 0.942 0.980

Damage 1 1.000 0.000 1.000 1.000

Damage 2 1.000 0.000 1.000 1.000

Damage 3 1.000 0.000 1.000 1.000

Damage 4 0.960 0.004 0.980 0.960

Damage 5 0.980 0.000 1.000 0.980

Confusion matrix heatmap

Fig. 16. Cross-validation results for random forest.

Detailed insights are as follows:
� Correctly classified instances: 74/75 (98.67%).
� Kappa statistic: 0.984.
� Weighted average precision: 0.988, recall: 0.987, F -measure: 0.987, and
ROC area: 0.996.
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Table 6. Class-wise accuracy table.

Class TP rate FP rate Precision Recall

Healthy 1.000 0.016 0.923 1.000

Damage 1 1.000 0.000 1.000 1.000

Damage 2 1.000 0.000 1.000 1.000

Damage 3 1.000 0.000 1.000 1.000

Damage 4 0.933 0.000 1.000 0.933

Damage 5 1.000 0.000 1.000 1.000

Confusion matrix heatmap

Fig. 17. Test results for random forest.

The confusion matrices (Figs. 16 and 17) show excellent classification perfor-
mance, with minimal misclassifications occurring between the healthy and dam-
age 1 classes. The remaining damage classes were classified with near-perfect
precision and recall, highlighting the robustness of the random forest model.

5.3.1. Key observations
� The performance of the model was consistent between the cross-validation
and test datasets, which demonstrates a sufficient level of generaliza-
tion.



Damage localization using fiber Bragg grating sensors. . . 231

� Features such as kurtosis, zero crossing rate, and L2 energy norm
were identified as to be critical for classification process, indicated by the
analysis of feature importance scores.

� The reasons for the errors in classification were mostly related to the classes
of healthy and damage 5. This outcome is expected as both cases are sym-
metric with respect to the two actuators. As a result, features based on
the difference in time signals from the two actuators were not informative
enough, leading to misclassification. Adding more training data related
to such symmetric cases could further improve classification performance.

6. Conclusion

The study presents, for the first time, the use of a self-referencing configu-
ration for baseline-free damage localization and should be regarded as a proof-
of-concept for this specialized configuration of FBG sensors. The paper, first,
employs a traditional ToA technique with a synthesized baseline signal. The ToA
based method works in some cases, but gives false detection in others. Also, for
the detection more information regarding the velocity of propagation is needed,
which makes its application challenging. As a solution, ML-based algorithm was
applied to the same dataset. Based on the size of the data, and the availability
of labels, the supervised learning approach was used. Since the physics of the
coupling mechanism is not yet fully understood, statistical features were used
instead. The importance of the different features was identified using different
techniques available in the literature. The 10 most important features were then
identified and used for classification with three different models. It was noted
that random forest is the most appropriate classifier with highest accuracy and
generalizability. Feature selection methods highlighted the significance of ele-
ments such as kurtosis, zero crossing rate and L2 energy norm, which
were among the most important across multiple techniques. Reduction of di-
mensionality also provided a good understanding into the separability of data,
reinforcing the credibility of the chosen features. This study shows that there
is a potential for effective ML approach for SHM systems targeted towards
effective damage detection. A future work will deal with sophisticated neural
network designs as well as deep learning. Furthermore, the proposed methodol-
ogy will be extended to detect damage at different locations on the plate rather
than only on the direct path between the bonds. The authors acknowledge that
there is a need for experimental validation, where more uncertainties in the
measurements, such as ambient condition changes, deterioration of the sensor
bonds, etc., will be captured, and the robustness, sensitivity to damage size and
generalizability of the ML-techniques will be benchmarked. In order to show
the effectiveness of the method, the ML techniques should be able to identify
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damage at unseen locations, or should have in place mechanisms to identify data
that is significantly different than the training sets, as suggested in [30]. This
indeed is identified as a next step of our research.
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