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This study focuses on a numerical analysis of heat transfer in biological tissue. The pro-
posed model is formulated using the Pennes equation under transient conditions within
a two-dimensional (2D) cylindrical domain. The tissue undergoes laser irradiation, with in-
ternal heat sources determined based on the Beer—Lambert law. Moreover, key para-
meters, including the perfusion rate and effective scattering coefficient, are modeled as
functions dependent on tissue damage. Numerical computations are performed using the
finite pointset method (FPM). The findings, discussed in the final section, indicate that
the FPM approach is a viable and effective tool for analyzing thermal processes in biolog-
ical tissues.
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1. Introduction

This research investigates the use of the finite pointset method (FPM) to
analyze heat transfer in biological tissues, building upon previous developments
of a one-dimensional model [1]. The approach is based on the transient, two-
dimensional (2D) Pennes equation formulated in a cylindrical coordinate sys-
tem. A central focus of the study is the impact of laser irradiation, which is
modeled using the Beer—Lambert law to characterize the attenuation of laser
energy as it penetrates tissue. Understanding this process is essential for deter-
mining how laser energy is absorbed and transformed into heat. This knowledge
is particularly relevant in medical applications, including laser-based therapies,
oncology treatments, and surgical procedures. With the growing role of laser
technology in healthcare, a deeper understanding of these mechanisms is neces-
sary to enhance its precision and efficiency. The proposed model also considers
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how tissue damage affects physiological parameters such as perfusion rate and
effective scattering coefficient, acknowledging the dynamic changes in blood flow
and tissue properties resulting from thermal exposure.

The FPM method is a truly meshfree technique, as it does not require the
construction of structured or background meshes, unlike conventional methods
such as the finite element method or finite difference method, to approximate
the solution to an elliptic partial differential equation or to interpolate field vari-
ables [1]. In contrast, FPM employs a set of nodes scattered over the problem
domain and its boundaries, combined with a weighted least-squares technique
to construct local approximations [2]. Its Lagrangian formulation makes it es-
pecially well-suited for problems with highly complex geometries and irregular
boundaries, while its strong form makes the imposition of boundary conditions
very easy compared to other numerical techniques. For all these reasons, the
FPM has been successfully developed and applied to problems involving fluid
mechanics [3, 4], heat transfer [5], linear elasticity [6], piezoelectricity [7], and
biharmonic equations governing thin plate bending or viscous fluid flow [8],
among others. However, in all these previous developments, the FPM was pro-
posed and formulated using Cartesian coordinates. Therefore, this manuscript
presents, for the first time in the scientific literature to the best of the authors’
knowledge, the pioneering development of the FPM in cylindrical coordinates
and its application to modeling tissue subjected to laser irradiation.

The Pennes bioheat partial differential equation, along with its suitable
boundary conditions, serves as a mathematical framework employed for describ-
ing the temperature distribution within biological tissues subjected to diverse
heat sources, such as laser irradiation.

The Pennes equation in 2D Cartesian coordinates is given as follows [10]:

2 2
G @) = Aoz ) + 53 00t) + Qo) )

where A [W-m~!.K~!] is the thermal conductivity, ¢ [J- m~3-K~!] is the vol-
umetric specific heat, Q [W-m™3] is the heat source, T [°C] is the temperature,
t [s] is time, and x,y [m] denote spatial coordinates.

The domain sample considered in this study is defined in cylindrical coor-
dinate system (Fig. 1); therefore, the heat transfer equation takes the following
form:
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where r, z are the geometric coordinates of the cylindrical coordinate system.
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Fi1c. 1. Modeled sample with the considered domain and boundary.

The internal heat source is the sum of three components: heat generated by
blood perfusion, metabolic heat production, and the absorption of heat from
external sources:

Q(ru Z, t) - Qperf(ﬂ Z, t) + Qmet + Qlas (T) Z, t)u (3)

where Qpert, Qmet, Qlas [W - m~3] are the heat sources due to perfusion, metab-
olism, and laser irradiation, respectively.
The laser heat source under analysis is described using Beer’s law [11]:
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where Iy [W-m~2] is the surface irradiance of the laser, 75 [m] is the radius of
a laser beam, and s(t) is a function equal to 1 when the laser is on and 0 when
the laser is off, whereas p} [m~!] denotes the attenuation coefficient defined
as [12]:

Wy = fa + [y, (5)

where 11, [m~'] is the absorption coefficient and s, [m~'] is the effective scat-
tering coefficient, which may can be considered either as a fixed value or as
a function dependent on the Arrhenius damage integral:

M;((g) = :u; nat €XP (_9) + :u/sden (1 — €Xp (_9)) (6)

The Arrhenius integral is defined as follows [10]:
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where A [s7!] is the pre-exponential factor, AE [J-mol~!] is the activation en-
ergy of the reaction R [J-mol~!-K~!] that is the universal gas constant (the
values of parameters can be seen in Table 1).

TABLE 1. Arrhenius injury integral parameters [18, 19].

Symbol Parameter Value Unit
A Pre-exponential factor 3.1-10% st
AFE Activation energy 6.27-10° J-mol™!
R Universal gas constant 8.314 J-mol™! . K~!

The perfusion heat source function is considered as follows:
Qpert(r, 2,t) = cgGR(r, 2,t) (T —T(r, 2,1)), (8)

where G [m},  4-s™'-mg> ] is the blood perfusion rate, cp [J-m™3-K~1] is
the volumetric specific heat of blood, and Tz [°C] denotes the arterial blood tem-
perature. Additionally, the blood perfusion coefficient is a function of the tissue’s
necrotic alterations [10]:

Gp(0(r,z,t)) = Gpow (0(r, z,t)), 9)

where G gg represents the initial perfusion rate, and we assume that function w
follows a polynomial form [10]:

3
w (0(r, z,t)) Z O(r, z,t)’ (10)

where m; are fixed coefficients (Table 2).

TABLE 2. Coeflicients of the perfusion coefficient function [10, 19].

0 mi ma ma
0=0 1 0 0
0<60<0.1 1 25 —260
01<6<1| 1 | -1 0
0>1 0 0 0

Moreover, Eq. (2) should be supplemented by boundary and initial condi-
tions. The analyzed model, in the first numerical example, is complemented by
the following boundary conditions:

T
(ryz) € I —Aa—(r,z,t) =0, 1=1,2,3, (11)
8710
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where T}, and g are the boundary temperature and heat flux, respectively. In the
second numerical example, the third type of boundary condition applied on
the irradiated surface is considered:

T
—)\gno =a(T(r,z,t) — Tamb), (13)
where ng [m] is the outward normal vector (ng = [ng,ny]) and Tanp is the

ambient temperature. The initial temperature distribution is considered to be
constant Ty [°C].

The Pennes equation presented must be solved numerically to estimate the
temperature distribution. This article proposes using the FPM, which is ex-
plained in detail in Sec. 2.

2. Finite pointset method

The FPM is a meshfree Lagrangian approach that employs a weighted least-
squares interpolation technique to estimate spatial derivatives and solve partial
differential equations [13]. The FPM uses Taylor series to calculate function
values and their derivatives, where the unknown coefficients in the series nat-
urally correspond to the function derivatives. A more comprehensive guide on
applying the classical version of the FPM can be found in various literature
sources [2, 13-16]. In this section, we will outline the fundamental concept of the
FPM as specifically applied to the Pennes equation in cylindrical coordinates.

First, the main idea of the FPM needs to be explained. For this purpose
let us consider a domain X with a defined boundary. Within this domain X,
we have a collection of n points x1,z2, ...,z (z; = [x},x?], j =1,..,n), each
associated with respective function values T'(x1),T(x2), ..., T'(xy). The objective
is to approximate the value of 7' at an arbitrary location x (z = [z1,2?]). To
achieve this, we define the approximation of f(z;) using a Taylor series expansion

(daajj‘-J = ac;“ —2F, k =1,2) centered around z:
T(x;) =T(x) + ;Tk(x)dxf +3 lg_:l Ty (x)dakdat. (14)

The values T'(z), Tx(x), Tk(x), (k = 1,2, 1 = 1,2) are the unknowns to be
determined using a weighted least-squares method. This method minimizes the
following quadratic expression over all neighboring points (np):

J = iwj(Ma—b)Q, (15)
j=1
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where w; = w(x;,x) and
2 /12
— - h )7 —z| < h,
wia ) = { @ (Pl =l 12, ey = 2] < 16)
0, otherwise,

where [ is a positive constant. The value h is the radius that defines a set of
neighboring points around x.
Equation (15) can be expressed in the following form:

J = (Ma —b)"W(Ma — b), (17)
where
w(x1, ) 0 e 0
0 w(zg,z) 0 0
W = (18)
0 0 cw (Tpp, T)

Formally, the minimization of the function J results in:
a=M'WM) }(MTW)b. (19)

At this stage, we assume that x lies in the interior part of X. Moreover, the ma-
trix M, constructed taking into account the Pennes equation (2) (At is the time
step), which must be satisfied at these interior points, is defined as follows:

1

1
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Then, a and b take the following forms (7 is the time index):

a=[T(x),T1(z), Ta(z), Ti1(x), Tha(), Toa(x)] ", (21)

b= [T (21), T7 " (22), ... T (), 2ALQ7
+2eT7 () + AAV2TT(2)] T (22)
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Additionally, the FPM operates iteratively where the vector a is updated for
each particle using Eq. (19). The algorithm applied includes a stopping criterion
based on the relative error, defined as follows:

np
21 |Tl+177—(xj7 t) - Tlﬂ—(xja t)‘
— <e, (23)
> T (24, 1)
j=1

where [ is the iteration counter, and ¢ is the maximum relative error.

It is worth mentioning that if point x belongs to the boundary of X and
satisfies the second type of boundary condition, one additional row must be
added to matrix (20): [0, ng, ny, 0,0, 0] and an additional element must be added
to vector (22): =, because we have one more equation to consider. For the third
boundary condition, we have [a/X, ng,ny, 0,0,0] and aTymb/A, respectively.

3. Results and discussion

The study concludes by presenting the results obtained from numerical cal-
culations. Two numerical examples, each with two different sets of input data,
are proposed. To assess the feasibility of the proposed computational technique,
the first benchmark example is considered, which is independent of the injury
integral parameters shown in Table 1. The relevant thermo-optical parameters
for this example are presented in Table 3. The numerical results of this example
are compared with reference numerical results published in the literature.

TABLE 3. Thermo-optical parameters [17].

Symbol Parameter Value Unit
A Thermal conductivity of tissue 0.445 W-m™!.K?
c Volumetric specific heat of tissue 3.96 MJ-m~3 . K~!
GB Blood perfusion coefficient 0.00125 st
Qmet Metabolic heat source 245 W-m™3
cB Volumetric specific heat of blood | 3.9962 | MJ - m 3. K!
Ts Arterial blood temperature 37 °C

In this first example, the simulation involving irradiation modeled by apply-
ing a heat flux as a boundary condition is analyzed. The external heat flux is
assumed to have the form of a Gauss-type function [17]:

r

2
(7, 0,1) = go exp [—Q(R/?))Q] (24)
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In the dermis tissue region with dimensions: 12 mm depth (d) and 20 mm
radius (R), the location of points is considered as a regular structure and is
generated with a spatial step Ar = Az = 1 mm. The time step At is set to
0.01 sec. In the FPM, the sampling density is usually controlled with the defi-

n

nition of the mean minimum distance between points hg = 1 > min {Ar, Az},
i=1

which in turn is linked to h through the formula h = Cphg. The value of Cj
providing the lowest numerical error was studied previously and it was found to
be around 3 [7]. Therefore, the radius used to determine neighboring points in
the FPM for this study was fixed as h = 3hg, as this ensured that the system of
equations (19) is solvable, has a sufficient number of neighboring points without
being overdetermined, and results in minimal numerical error, as reported in [7].
The parameter 3 (8 = 6) in Eq. (16) can be freely chosen in FPM (already
investigated in [7]). The value qo is assumed to be 2 kW -m~2, as in [17], and
the time of irradiation is 5.211 seconds.

As it can be seen in Fig. 2, the comparison between the results obtained
using the interval finite difference method in [17] and those from FPM shows
that the computed single-valued temperatures are in a good agreement and fall
within the expected temperature intervals.
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Fia. 2. Profiles of skin surface temperature at r = 0.

The second numerical example examines the Pennes equation with param-
eters such as the perfusion rate and the effective scattering coefficient, which
are influenced by tissue damage outcomes. The model under consideration is
enhanced by applying a third-type boundary condition on the tissue surface
exposed to laser irradiation, while adiabatic conditions are assumed on the re-
maining boundaries [18]. For the third-type boundary condition, the following
input data are considered [18]: a = 10 W-m~2-K~! (convective heat transfer
coefficient) and Ty, = 20°C (ambient temperature).
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The initial temperature in all the points is assumed as a constant value
Ty = 37°C. The peak power laser intensity is considered as Iy = 30 kW -m™2.
The assumed thermo-optical parameters of the tissue are presented in Table 4,
while the Arrhenius injury integral parameters can be found in Table 1. The
coefficients used in the w function (7) are listed in Table 2. It is worth not-
ing that the optical parameters used here are typical for near-infrared radiation
on soft tissue, such as with a Nd:YAG laser operating at 1064 nm. During
coagulation in this type of laser-tissue interaction, the reduced scattering coef-
ficient may increase by 3—4 times its original value (i.e., the effective scatter-
ing coefficient of native tissue), while the absorption coefficient remains con-
stant [11].

TABLE 4. Thermo-optical parameters [18].

Symbol Parameter Value Unit
A Thermal conductivity of tissue 0.609 W-m™'.K™!
c Volumetric specific heat of tissue 4.18 MJ-m~—3.K!
Gpo Initial blood perfusion coefficient 0.00125 st
Lha Absorption coefficient of tissue 40 m~?!
s nat Effective scattering coefficient of native tissue 1000 m™?
e don Effective scattering coefficient of destructed tissue 4000 m~?
Qumet | Metabolic heat source 245 W-m™3
cB Volumetric specific heat of blood 3.9962 MJ-m™3 . K™t
Ts Arterial blood temperature 37 °C

The numerical computations were performed at three selected depths: 0, 1,
and 1.5 mm, located along the main optical path of the laser beam. The time
of irradiation was set to 10 seconds. The stopping criterion (23) was applied
with € = 1074, As in the previous numerical example, the results obtained by
the FPM match very well those obtained by Jasinski [18], who used the bound-
ary element method (BEM) for the central point on the skin surface. This is
shown in Fig. 3. Some acceptable differences (not exceeding 2°C at 0 mm depth,
corresponding to an error of 3.63%) between FPM and BEM can be observed,
which are due to the fact that in [18], the author constructed the solutions for
a classical 2D case using Cartesian coordinates.

Moreover, calculations were performed for other parameters including the
injury integral, laser heat source intensity, perfusion coefficient, and effective
scattering coefficient (Figs. 4a—d). In these figures, the influence of the injury
integral on these parameters is evident, especially at z = 0, where, after 6.8 s,
the injury integral reaches a maximum value of 1.
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4. Conclusion

A novel FPM approach formulated in cylindrical coordinates for the analysis
of transient bioheat transfer problems was presented for the first time in this
article. For the assessment of this numerical technique, the considered bioheat
transfer problems were modeled by Pennes’ equation in cylindrical coordinates.
Based on the reported numerical results and the excellent agreement with the
corresponding numerical solutions, available in the literature, used as bench-
mark examples, it can be concluded that this meshfree numerical formulation
is suitable for solving complex problems involving temperature- and necrosis-
dependent parameters. The straightforward and effective incorporation of the
corresponding boundary conditions enhances its computational implementation
in potential applications in multi-layered or 3D scenarios.

Due to all these features, its good numerical behavior and the efficient, sta-
ble manner in which the numerical examples were successfully solved, it can be
concluded that this novel approach is a promising numerical tool for modeling
nonlinear dynamic thermal processes in biological tissue exposed to laser irradi-
ation. Moreover, it can also be extended to other bioheat transfer formulations,
such as the Cattaneo—Vernotte equation [20] or the dual-phase lag equation [21],
which makes it of particular interest for future research.
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