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A systematic approach to the macroscopic damage analysis of bone-like cellular materials
is presented in which damage conditions are expressed as tabularized functions of mi-
crostructure geometry parameters. Based on three different strain-based microscopic dam-
age criteria, a large number of cellular microstructures, characterized by different values of
geometric parameters, are analysed by the finite element method to determine damage fac-
tor values for a number of macroscopic strain states. As a result, an exhaustive database is
prepared in which macroscopic damage conditions for a variety of microstructures are pre-
sented as tabularized parametric functions of both geometric parameters and strain states.
A numerical procedure of data interpolation is proposed as a tool to predict parameterized
damage surfaces for any bone-like microstructure. The results are made publicly available
in an open data repository to enable further research on their characterization and ana-
lytical approximation.
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1. Introduction

A challenging branch of biomechanical research regarding bone is the analy-
sis of its damage. In particular, this refers to damage properties of cancellous
bone — a porous bone microstructure made up of trabeculae. This subject has
attracted much attention of researchers over at least the past three decades.
Both experimental and numerical methods have been utilized to predict bone
damage conditions at a number of scales: micro (tissue level), meso (trabecular
level) and macro (whole bone level). The two main challenges in this research
area are: (i) determination of the damage criterion for trabecular bone tissue,
and (ii) formulation of the macroscopic damage criterion for cancellous bone
considered as macroscopic continuum.

The fundamental obstacle regarding the first issue is the lack of experimental
data which is due to the fact that reliable strength tests are extremely difficult
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to be performed on objects of such small size. Only few experiments have been
reported in literature, e.g., [4] (tensile tests only). On the other hand, success-
ful attempts have been reported to predict micro-level properties by comparing
macroscopic experimental measurements against the results of numerical sim-
ulations of experiments on models that reproduce the trabecular geometry of the
specimens. This approach was originally developed to evaluate bone elastic prop-
erties [16], but has since been successfully utilized in predicting damage proper-
ties at the microscopic level, see e.g. [13] (for bovine), and [2] (for human bone).
Mechanical experiments are performed on cancellous bone specimens to measure
macroscopic (apparent) damage stresses/strains and then micro-FE analyses are
performed on the CT-scanned geometric models of these specimens in which load
and boundary conditions reproduce those from the experiments. By presuming
certain (strain or stress-based) local damage criteria, one can determine the
damage limit values at which the macroscopic damage in the analysed model
best fits the experimentally measured damage.

There is a common agreement about the hypothesis that damage in cortical
bone is strain-driven [12] and that the mechanical properties of cortical bone
tissue can be extrapolated to describe trabecular tissue as well [2]. Besides, it is
commonly assumed that trabecular tissue is isotropic (in fact, it is not, but there
is evidence that neglecting anisotropy does not significantly affect the results
of macroscopic analysis of cancellous structures [6]). Thus, microscopic damage
criteria for trabecular tissue are usually formulated in terms of strain invariants,
i.e., limit values of certain strain-defined scalar quantities (damage factors) are
proposed as damage criteria. Among a number of damage factors proposed in
the literature, one can list, e.g., maximum principal strain (separately for tension
and compression) [2,5,13] or dimensionless strain energy [14]. It is noteworthy
that stress-defined damage factors, which are also proposed in the literature,
such as Huber—von Mises stress [7,8], may as well be expressed in terms of strain
invariants — in isotropic elastic material models this only requires appropriate
scaling by elastic constants. Several other damage factors were also mentioned
and discussed in the literature, such as, e.g., maximum shear strain or stress-
defined quantities according to the Tresca, Coulomb—Mohr or Hoffman theories.
However, they were reported to be less appropriate to modelling bone damage
than the strain-defined ones mentioned above [7].

Given a local damage criterion and the geometry of the trabecular mi-
crostructure, one can easily predict the overall strength of cancellous bone at
the macro scale using numerical analysis employing, e.g., the finite element (FE)
method. Many examples of such analyses have been reported, both for isolated
cancellous bone specimens and for entire bones, let us mention, e.g., [1,5,13-15].
By digitizing a typical cancellous bone specimen and subjecting its FE model
to a number of prescribed load cases that correspond to certain averaged macro-
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scopic stress/strain states, one can examine local strain conditions in view of the
prescribed damage criterion and define points in the strain component space that
correspond to the damage limit for the macroscopic strain states under consid-
eration. When the set of analysed macroscopic strains is sufficiently large and
diverse, the results form a cloud of points that define the macroscopic damage
limit surface in the strain component space.

A disadvantage of this approach is that the results are valid only for the
very specimen analysed, characterized by the particular trabecular microstruc-
ture, and cannot be generalized towards other microstructure types whose vari-
ety seems unlimited. The question of defining a universal approach to determine
damage surfaces for various cancellous bone types remains open.

In this paper, a step towards resolving this problem is made. A concept
of a parametrized family of bone-like microstructures was proposed in [9] and
then enhanced in [10]. The mechanical properties of these microstructures have
been proven to correspond well to real cancellous bone properties, see discussion
in [3,10]. Besides, it was shown in [10] that the geometric parameters defining
different instances of equivalent trabecular microstructures are indirectly related
to standard morphometric parameters, which can be measured in the micro-CT
scans of real cancellous bones.

These equivalent bone microstructures have now been analysed by FE tech-
niques for a number of assumed local damage criteria. As a result, a large data
base of tabularized strain functions has been created, which allows to predict
macroscopic damage limit strain states for a predefined set of microscopic geo-
metric parameter values. This data base, made publicly accessible, constitutes
an exhaustive source to formulate parameterized damage surfaces for different
cancellous bone types.

2. Methods

2.1. Microstructure geometry

The family of parameterized trabecular microstructures [10] is defined by
a repeatable cell presented in Fig. 1. It is parameterized by three geometric
parameters: t., tp, t, € (0,1), defining the cross-section proportions of trabecu-
lae.!) These parameters are dimensionless and intended to be scaled by the pre-
scribed cell unit size. The latter can be adjusted to match the actual trabecular
spacing; however, as the homogenization results appear to be size-independent,

D1n the original publication, a fourth parameter was also introduced — a scale factor for the
entire cell in the z; direction — to introduce more diversity in the material’s orthotropy. Here
we limit ourselves to setting this factor equal to 1 which corresponds to transversal isotropy
of the macroscopic cellular material.
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F1c. 1. Geometry of a repeatable structural cell [10]. Striped areas denote the common inter-
faces with neighboring cells. The cell size is assumed a unitary value, to be scaled by the actual
average trabecular spacing.

this issue is not crucial. Clustered cells fill the 3D space and form a cellular
material mimicking cancellous bone of the given microstructure type. As shown
in [10], various combinations of these parameter values result in a variety of
microstructure types, such as bar network, parallel plates with spacer bars,
honeycomb tube or cluster of fenestrated boxes. Figure 2 presents an example
of a microstructure generated by the repeatable cell.

Fic. 2. Example of a microstructure generated by the repeatable cell with geometric parameters
te=0.1,t, =t, = 0.4.

Given the local (microscopic) material properties of the trabecular tissue
and the values of the geometric parameters, one can build a FE model of the
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repeatable cell and — for appropriate load and boundary conditions — perform
an analysis whose result is a set of desired macroscopic mechanical properties of
the resultant cellular material. This approach was successfully employed in [10],
where an extensive database of the elastic properties of such equivalent mi-
crostructures was created for a large number of geometric parameters’ values
sets. This database constitutes the basis to formulate the parametric functions
of the elastic properties with respect to the microstructure geometric parameters.

In this paper, this approach is applied to evaluate the damage properties
of the parameterized family of microstructures. A set of 2470 microstructure
instances, characterized by t., t5, t, independently running over the set of values:
0.05, 0.10, 0.15, ..., 0.95 (for obvious reasons t;, > t. and t, > t.) were meshed
and subjected to an FE analysis whose details are described further below.
It must be noted that only some of these instances correspond to real trabecular
microstructures (mainly those with low values of ¢.); however, all were analysed
to make the results complete, also bearing in mind possible non-biomechanical
applications of these results.

2.2. Analysis methods

The cell geometry and FE meshes were generated by the author’s custom
software while all analyses were performed with Simulia® ABAQUS® Standard
code. In each analysis, loads were imposed by prescribing displacements at the
central points of common interfaces (the striped areas in Fig. 1) and assuming
appropriate boundary conditions ensuring the repeatability of the displacement
field in neighboring cells (including appropriate symmetries), see [10] for details.
The prescribed displacements define a unique macroscopic averaged strain state
in the cell.

Each microstructure instance was subjected to a number of different loads
corresponding to macroscopic (averaged over the cell volume) strain states,
given by:

[Ev1, E92, Es3, Eas, Es1, E12] = 0.001 x [a1, a2, a3, a4, as, ag), (1)

where a, k = 1, ..., 6, independently run over the set of values: {—1, —0.5, 0, 0.5, 1},
i.e., they form a 5° regular mesh of points within a double-unit hypercube in the
6D space of strain components. To avoid redundancy of results, the strain cases
corresponding to points located inside the hypercube were excluded from this
set, i.e., the analysed load cases included only “surface” strain states in which
at least one strain component equals £0.001. The total number of all load cases
analysed was thus 5% — 3% = 14896 for each microstructure instance.

In this work, the damage is understood as the loss of material integrity man-
ifested by a sudden drop in stiffness and the appearance of inelastic phenomena.
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In the analysis, we stopped at this moment and did not attempt to investigate
what happens further, when the local strains increase beyond the damage limit
(which may ultimately lead to fracture). Hence, all FE analyses were limited to
the linear elastic regime. Since only strains, not stresses, were evaluated in the
analysis, the Young modulus E of the trabecular tissue was not a crucial quan-
tity and was simply assumed to be one. The Poisson ratio of the material was
set to the commonly accepted value v = 0.3. Strains at the Gauss integration
points in all the finite elements of the model were reported as results and were
examined against a number of assumed damage criteria.

2.3. Local damage criteria

The local (microscopic) damage criteria considered in this work for the tra-
becular tissue have the common form

€ < €4, (2)

where € is a damage factor specific to the particular criterion, expressed as
a function of strain components ¢;;, and ¢4 is the damage limit value. All strain
states at which € = ¢4 form a hyper-surface in the 6D space of strain components,
further called the damage surface, which limits the domain of safe (undamaged)
states. Varying the limit value of €4 scales the surface without changing its shape.

Among a number of damage factors proposed in the literature, the following
are considered in this work:

e Maximum principal strain [2,5,13]
g=g""=¢, (tension), =" = —¢ey (compression), (3)

(with two different damage limits, €, and €, respectively),
e Energy-based effective strain [14]

_ 1 VEi€qs

e Huber—von Mises strain (scaled Huber—von Mises stress) [7, 8]

EHN[ 3
g=g"™ = o= 55353, (5)

where ¢, > e > e are the principal strains, E]z-jj represents the deviatoric
strain components, and E, GG, v are the tissue’s elastic constants. In the case of
the first, double criterion, the damage surface consists of two patches — parts
of two surfaces that limit the domain of safe states with respect to both criteria.
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In Fig. 3, the damage surfaces corresponding to the three above-mentioned
damage criteria are depicted in three 3D subspaces of the 6D strain compo-
nents space. Their shapes are regular, and they can all be described by quadric
equations.

longitudinal strains plane strains axial strains
(€11, €22, €33) (€11, €22, €12) (€13, €23, €33)

Tension = Compression

E -0.01 ,
0.02 0.02 570, O

€22

Fi1G. 3. Damage surfaces corresponding to the local damage criteria: a) max. principal strain

(e = 0.0073, e = 0.0080), b) energy-based effective strain (e = 0.007), c¢) Huber—von Mises

strain (¢4 = 0.0138), depicted in three strain component subspaces: longitudinal strains, plane
strains, and axial longitudinal/shear strains.

2.4. Global damage criteria

Having defined the local damage criterion, we do also need to define global
damage of the cancellous structure at the macro scale. The most restrictive
assumption is to consider the entire microstructure damaged when at least one
material point (i.e., one Gauss point in the FE model of the microstructure cell)
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is damaged at the micro scale, i.e., the local strain-based damage criterion is
violated at that point. It seems, however, reasonable to assume that remarkable
damage to the structure can only be observed when a certain amount of the
material volume is subjected to strains exceeding the damage limit. It is not
easy to convincingly define this amount without performing nonlinear analysis
of the structure; let us however mention, e.g., [14] where arbitrary values between
1% and 7% of the total material volume were considered. In this work, results are
independently presented for the assumed values of 2%, 4% and 6% of the total
material volume in the model. This means that damage criterion is allowed to
be violated at Gauss points in elements whose total volume constitutes 2%, 4%
and 6% of the total FE cell model volume, respectively. Additionally, a set of
results denoted by 0% is given for the most restrictive “first blood” assumption
mentioned at the beginning of this paragraph.

Remark. Since the analysis was linear, changes in material properties in the
domain considered damaged (according to the local damage criterion) were ne-
glected. This simplification is obviously a source of errors as the material at
these locations becomes in fact significantly weaker. However, as long as the
total volume of damaged material remains small (as it is in this study), it seems
justified to consider these errors insignificant.

It is postulated that the macroscopic damage criterion has the form analo-
gous to (2), i.e.,

E < ¢, (6)

where €4 is the damage limit defined in the microscopic criterion and E is the
value of the macroscopic damage factor determined for a particular macroscopic
strain E;; in the above-described numerical experiment. The definition of F
depends on the choice of the microscopic damage criterion — hence, we conse-
quently distinguish between Ept, EPC, E" and E™ - and the assumed damaged
volume limit n% (n = 0,2,4,6) indicated in the subscript to this symbol. For
a particular damage criterion, we define

= max ¢&(FPg), 7
PreG\Gry (P) @)

n%

where G is the set of all Gauss integration points P, in the FE model, and
G, is the set of all these integration points at which the local damage fac-
tor € assumes its highest values, while the total FE volume corresponding to
those points does not exceed n% of the total FE model volume. In other words,
E,9 is the maximum cut-off value of Z in the entire cell model, excluding n%
of its volume where this value is exceeded. Obviously, the set Gy is empty and
thus Eqgy is the maximum value of £ in the entire cell.



Parametric analysis of damage in cancellous bone. .. 245

3. Results

The FE analyses described in the previous sections have been run and their
results have been saved in the result files available for download in [11]. For
each microstructure instance defined by the geometric parameters t., t3, t, and
for each averaged macroscopic strain state E;; from the considered set of their
values, the values of damage factors E have been independently computed and
saved for the four considered damage criteria and for the four considered dam-

aged volume limits, i.e.,
—=HM

— Pt — Pc —U —= HM — Pt — Pc —U
Eo, Eow Eows Eowr  Eows Eoys Eoy,s Eog

(8)

Eéf‘;o’ Eéf‘;o’ Eéf%v Ef%’ EGPO%;’ Eg:;o’ E(?%’ Eé{%
Whenever the damage factor appeared negative (which is possible in the case of
the max. principal strain double criterion), zero was written down.

For any of the damage criteria and damaged volume limits, one can compare
the resulting value of F against the local damage limit value for the correspond-
ing damage criterion to verify whether the assumed macroscopic strain state
is safe or not. Since the analysis was linear, one can define the damage load
multiplier as

ka = eq/E 9)

for the given macroscopic strain state E;; and for the given local damage crite-
rion, such that the scaled strain state kqE;; belongs to the macroscopic damage
surface. This scaled strain state will be further referred to as the experimental
damage point corresponding to the strain Fj;; in the 6D space of macroscopic
strain components. Obviously, the word “experimental” refers to the numerical
experiment here. In the case of E = 0 the load multiplier kg is infinite and
the experimental damage point does not exist, which means that there is no
damage limit in this “direction” of the macroscopic strain load.

All experimental damage points determined for a particular microstructure
instance, damage criterion and damaged volume limit, and for all the considered
strain states [;;, form a cloud of points in the strain component space. Those
points belong to the experimental damage surface for the considered case, thus
visualizing its shape. Figure 4 presents examples of such visualization for the mi-
crostructure shown in Fig. 2, for different damage criteria and different damaged
volume limits.

As mentioned at the end of Sec. 1, our objective is to formulate parameterized
equations for damage surfaces in the macroscopic strain space for different dam-
age criteria and damaged volume limits, i.e., equations whose coefficients could
be expressed as parametric functions of the microstructure geometric parame-
ters t., ty, t,. The so expressed damage surfaces should approximate the clouds
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longitudinal strains plane strains axial strains
(E11, E22, E33) (E11, E22, E12) (E13, Eas, E33)
a)
Tension 0% ® Tension 2% Tension 6%
C 0% © C 2% [ 6%

-0.02

En

Fic. 4. Experimental damage surfaces given by clouds of points for the microstructure instance

defined by t. = 0.1, t, = t, = 0.4, corresponding to the local damage criteria: a) max. principal

strain (e = 0.0073, €5 = 0.0104), b) energy-based effective strain (eq = 0.007), ¢) Huber—von

Mises strain (eq = 0.0138), for three levels of allowed damaged volume fraction (0%, 2%

and 6%), depicted in three strain component subspaces: longitudinal strains, plane strains,
and axial longitudinal/shear strains.

of experimental damage points, such as those shown in Fig. 4. This task appears
extremely difficult, as this becomes quite clear after a short glance at this fig-
ure. While the local damage surfaces depicted in Fig. 3 have regular shapes that
can be easily and accurately expressed by quadric surface equations, no such
features can be visible in the macroscopic experimental surfaces in Fig. 4. Espe-
cially for low values of damaged volume limit, the points in the corresponding
clouds form quite irregular surfaces, which seem rather unlikely to be success-
fully approximated by either quadric or other smooth analytic (hyper-)surface
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equations. Indeed, the author attempted to find the best-fitting quadric sur-
faces to the resulting experimental point clouds but the approximation errors
appeared unacceptably high.

In view of the mentioned difficulties, the parameterized function defining the
damage surface at the macro scale will be provided in the form of a numerical
procedure rather than a closed-form analytical formula. Let us note that the
damage points database, being the result of the computations described above,
is based on a regularly spaced mesh of points in the space of microstructure
geometric parameters and strain components. Given the values of any data of our
interest at the nodes of this mesh, one can quite easily approximate values of the
data at any other point in the space by interpolating the known nodal data with
the use of — in the simplest case — poly-linear functions defined separately within
each hypercube spanned on the mesh nodes. For example, let us consider one of
prescribed strains E;; given by Eq. (1). Knowing the computed values of E for
a particular damage criterion at all “nodal” microstructures considered in the
computations, i.e., at t., tp, t, assuming independently the values from the set:

t(l) — 005, t(g) — 010, t(3) — 015, ceey t(19) — 095,

one can determine the approximate value of F for the same strain F;; at a mi-
crostructure defined by any other triplet of values t., t, t, using the following
3D interpolation. If, e.g.,

te € [t), tav)ls th € [tG), ti+n)ls ty € [ty tsn)),

and the dimensionless coordinates within the mesh cube are defined as:
te —te; th — ts ty — Tk
Ne = e @) ) Nh = SR ). Ny = e (k)

g — e tiry — ) g —tr)

then E(t., ty,t,) is given as:

E(te,th,ty) = (1 =ne)(1 = nn) (1 = m0) E(ta), ty, twy)
(1= n0)m0 E(t), ) b))
(1 =n0) E(t)s t+1)s tw)
+ (1= ne)mmmw E(t)s tis1)s L)
+1e(1 = nn) (1 = 1) E(tq1), t()» tiwy)
+ (1 = 11)nw E(tis1), L) b))
+ e (1 = 10) E(tig1)s t+1) tr))

+ Nennto Bt 1), ti41)s L)) (10)
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Further, in order to find E(tc, th, tv, En, EQQ, E33, E23, E31, Elg) COI‘I‘GSpOndng
to an arbitrary strain E;; not included in the mesh defined by Eq. (1), the inter-
polation scheme (10) must be extended to the higher-dimensional space in which
the strain components defined in Eq. (1) constitute an additional hyper-cubic
mesh on whose nodes the extended poly-linear interpolation functions must also
be spanned (here the formula is slightly more complicated as the strain Ej;
must be first scaled so that the highest component value equals +0.001, after
which Eq. (10) is applied in its extended (3 + 5)D form, with the highest strain
component fixed).

An easy-to-use Fortran subroutine implementing the above interpolation
scheme is provided along with the data available in [11]. Given the values of
the geometric parameters t., tj, t, and the macroscopic strain components Ej;;
as input, the subroutine returns a table of macroscopic damage factor values (8).
Substituting any of these values to Eq. (9), with the damage limit €4 specific to
the corresponding damage criterion, one obtains the scale factor that allows
to find the damage surface point k4E;;, which is related to the input strain
E;; and to the damage criterion considered. Hence, the above scheme and sub-
routine may be used as a numerical tool to determine the damage surfaces in
the strain component space, corresponding to the local damage criteria (2)—(5),
as functions of the microstructure geometric parameters.

longitudinal strains plane strains axial strains
(Er1, B2z, E33) (Er1, B2z, E12) (Ers, Eas, E33)

Compression, experimental Tension, experimental ~ ®
Compression, analytical Tension, analytical

0.008
0.006
0.004
0.002
Eip o
-0.002
-0.004
-0.006
-0.008

0.006
0.004
0.002

E33 0002
-0.004
-0.006
-0.008

0.006
0.004
0.002

E33 0002
-0.004
-0.006
-0.008

0.005 -0.005

E130
Fic. 5. Analytical interpolated damage surfaces for the microstructure instance defined by
te = 0.1, t, = t, = 0.4, corresponding to the max. principal strain local damage criterion
for a) 0% and b) 2% allowed damaged volume fraction, depicted in three strain component
subspaces: longitudinal strains, plane strains, and axial longitudinal/shear strains.
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longitudinal strains plane strains axial strains
(B11, E22, Es3) (E11, E22, E12) (E1s, E23, Es3)

a)

Experimental Analytical
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0.004
0.002
Ess 0
-0.002
-0.004
-0.006

0.006
0.004
0.002

-0.002
-0.004
-0.006

-0.005 5 005 FEi3
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0.004
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-0.002
-0.004
-0.006

-0.002
-0.004
-0.006

[
-0.005757005 Fis

0.005 OEH e -0.005 OEH

F1G. 6. Analytical interpolated damage surfaces for the microstructure instance defined by

te = 0.1, t, = t, = 0.4, corresponding to the strain energy-based local damage criterion

for a) 0% and b) 2% allowed damaged volume fraction, depicted in three strain component
subspaces: longitudinal strains, plane strains, and axial longitudinal/shear strains.

longitudinal strains plane strains axial strains
(E11, E22, E33) (E11, E22, E12) (Er3, B2z, Es3)

Experimental o Analytical

Flyy -0.005
2 o0

o1 -0.005

0
0,005
F1q Ey3

Fic. 7. Analytical interpolated damage surfaces for the microstructure instance defined by

te = 0.1, tp, = t, = 0.4, corresponding to the Huber—von Mises local damage criterion for a) 0%

and b) 2% allowed damaged volume fraction, depicted in three strain component subspaces:
longitudinal strains, plane strains, and axial longitudinal/shear strains.
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Figures 5-7 show examples of analytical damage surfaces in the macroscopic
strain component space, determined with the scheme described above. These
surfaces are all drawn for the microstructure presented in Fig. 2 and for se-
lected damage criteria, damaged volume limits and 3D subspaces of the strain
component space.

4. Discussion

The main output of the presented research is the complete database of macro-
scopic damage properties of parameterized cellular microstructures mimetizing
cancellous bone. The results of the numerical experiments consisting of FE ana-
lyses of microstructure cells are available for download from the open data repos-
itory, see [11]. This data allow to explicitly determine damage limit values for
prescribed microstructure geometries, damage criteria and macroscopic strain-
driven loads.

As it can be seen in Fig. 4, the damage surfaces, visualized in the strain com-
ponent space as clouds of damage points determined in the above-described way,
assume quite regular shapes. These surfaces constitute a basis to formulate an
extended approach to determine damage points for any possible microstruc-
ture geometry and for any macroscopic strain, other than those considered
in the analyses. In this study, a poly-linear interpolation scheme is proposed
for this purpose. Realizing that both the set of microstructure geometric pa-
rameters and the set of strain loads considered in the reported analyses form
a regular mesh in their value ranges, one can find the interpolation of the results
within the entire domains of the parameter values an easy and straightforward
task. As mentioned in the previous Sec. 3, among the data deposited in [11], one
can find the source of an easy-to-use Fortran subroutine that performs this inter-
polation. The proposed numerical procedure may serve as a numerical implemen-
tation of the parametric damage surface equation for the considered family of
bone-like microstructures. The so defined damage surface is exact at the mesh
points obtained from the numerical experiments and approximate elsewhere.

There are other possible ways to determine the damage surface equation in
the space of strain components and the microstructure geometric parameters.
One of them is to formulate an analytical hyper-surface equation in the space
of strain components, with the equation coefficients being functions of the geo-
metric parameters. As mentioned in the previous section, attempts to determine
such an equation in the most natural 6D quadric form did not appear satisfac-
tory, as the approximation errors with respect to the experimental data were
unacceptably high.

Another possible approach to this problem is to employ neural networks or
other machine learning methods. Having trained the network on the data base
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of numerical experiment results, one may prepare an Al-driven procedure for
predicting damage conditions in an arbitrary case of microstructure geometry
and macroscopic strain. The author believes that the results of this research
provide a good basis for investigating this promising research area.

Practical application of the presented methods and results in the dam-
age analysis of real bones may raise questions on: (i) which of the local damage
criteria (3)—(5) to choose and (ii) how to relate the equivalent microstructure
parameters t., tp, t, to the particular geometry of a given real bone microstruc-
ture. Regarding the first issue, it is presumed that mechanical properties of
the trabecular tissue constituting the analysed bone are known to the user. In
practice, this may pose a problem, as tissue damage data are usually not easily
available and one must frequently rely on literature reports and own estima-
tions of analogies between the bone for which the data are available and the
one under analysis. The damage models used in this study were reported and
tested for different types of bone obtained from various species and locations.
The maximum principal strain was reported as the damage factor in [2] (human
femoral neck), [5] (sheep vertebrae) and [13] (bovine tibia). The energy-based
effective strain was considered the damage factor in [14] (human radius) while
the Huber-von Mises theory was applied in [7,8] (human femur). In all the
above studies, values for the local damage limits were also reported. Besides,
the three damage criteria were employed and compared in the damage analysis
of human femur samples in [15], with the conclusion indicating the maximum
principal strain criterion to be the best estimation of reality. These reports,
although very selective, may serve as hints for selecting the appropriate local
damage model in a particular case analysed.

Regarding the second issue, let us recall a number of standard morphomet-
ric parameters (e.g., BV/TV, MIL, VO, SLD) that are usually determined for
micro-CT scans of real cancellous bones and are commonly used to quantita-
tively characterize their microstructure geometry. They may also be computed
for equivalent microstructures [10], and thus related to the geometric param-
eters defining the microstructures. The extensive, publicly available database
associated with [10] may be employed to select the equivalent microstructure
geometry that fits best (in terms of morphometric parameter values) the real
bone microstructure under consideration.

Resuming, this study is — to the author’s best knowledge — the first sys-
tematic approach to the macroscopic damage analysis of cancellous bone and
bone-like cellular materials. The extensive database of damage results provided
here constitutes the basis to predict damage conditions in a variety of cancel-
lous microstructures in a general, parametric manner. Additionally, it enables
search for efficient numerical methods that make this prediction as automated
and accurate as possible. It is noteworthy that these results may be not only
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applicable in numerical biomechanics but also in structural engineering, design
and optimization, where the use of biomimetic materials is gaining increasing
interest. The data provided in this study may be used in the numerical design,
analysis and optimization of such materials and of structures made from them.
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