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Abstract

Topology optimization is a valuable tool in engineering, facilitating the design of optimized struc-
tures. However, topological changes often require a remeshing step, which can become challenging. In
this work, we propose an isogeometric approach to topology optimization driven by topological deriva-
tives. The combination of a level-set method together with an immersed isogeometric framework allows
seamless geometry updates without the necessity of remeshing. At the same time, topological derivatives
provide topological modifications without the need to define initial holes [7]. We investigate the influ-
ence of higher-degree basis functions in both the level-set representation and the approximation of the
solution. Two numerical examples demonstrate the proposed approach, showing that employing higher-
degree basis functions for approximating the solution improves accuracy, while linear basis functions

remain sufficient for the level-set function representation.

Keywords: topology optimization, isogeometric analysis, topological derivative, level-set method, im-

mersed methods, higher-degree basis function.

1 Introduction

Design optimization describes an iterative process to define the optimal geometry of a structure given some
constraints. This problem can be approached in several ways, including the optimization of geometric
parameters, such as radius, length, or width (Figure [Th), the boundaries of the shape (Figure [Ib) [46]], or

the material distribution of the structure (Figure [Tk) [26]. The last one is known as topology optimization,
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a) b) c)
Figure 1: Different types of optimization: a) Parameter Optimization; b) Shape Optimization; c¢) Topology
Optimization

and since it was first introduced in [9], several methods have been developed to approach the problem,
and in consequence, various challenges have been addressed [36]]. The most popular classes of topology
optimization methods are based on design representations by means of density or level set functions.

Density-based approaches, widely used in topology optimization [36]], represent the design through a
density variable equal to 1 as material and O as void. These methods can be used in a fixed background mesh
on which the density variable is defined element-wise, identifying if the element is solid or void, avoiding
the need for remeshing during the optimization process. However, a well-known challenge of density-based
topology optimization is the presence of unphysical intermediate materials, which is overcome through
penalization techniques, such as the Solid Isotropic Material with Penalization (SIMP), removing gray areas
and resulting in nearly black-and-white designs [13]].

In level-set based approaches [29]], the material distribution is represented by the sign of a continuous
level-set function which is evolving in the course of the optimization process. Level set methods have
been extensively applied to shape and topology optimization, either coupled with a remeshing strategy
[13] or on a fixed background mesh [2, 3, 44]. The evolution of the level set function is either guided
by shape derivatives via a Hamilton-Jacobi transport equation [2]] or by topological derivatives [[7]. In the
former case, the resulting design heavily depends on the initial topology. New holes cannot be directly
introduced, and it depends on the holes of the initial geometry, which can then be merged or cancelled in
the optimization process. In order to allow for nucleation of new holes, the method has been coupled with
topological derivatives in [[I,[10]. Another possible approach combining the level-set method and topological
derivatives without solving the Hamilton-Jacobi is proposed in [7], with many applications in the literature
27 47, 11}, 128], [16] and also extended to multi-material in [17]. In this algorithm, the optimization is
guided only by the topological derivative.

Isogeometric analysis (IGA), first introduced in [21], presents the concept of connecting design and
analysis using the same B-splines representing the geometry as basis functions. The straightforward control

over the degree and smoothness of a B-spline basis is quite valuable for numerical simulations. Several



research studies have been done using the isogeometric concept in variations of topology optimization ap-
proaches. On the one hand, applications of the density method in the context of IGA have been reported in
several studies in the literature [20], where a connection between the optimization and the CAD environ-
ments [34], and the benefits of refinement schemes straightforwardly connect with the approach [42, [3§]]
are observed. On the other hand, the conventional level-set method was used with different discretizations
for the level-set function, such as using radial basis functions [35} 4], B-splines [22], or piece-wise constant
functions [23]. To the best of our knowledge, the combination of IGA and topological derivative-based level
set optimization has only been considered in [30], where the conventional shape derivative-based level-set
method extended by a topological derivative term was used.

In this work, we apply the approach of [7] within the isogeometric framework, using B-splines for
both the level-set function discretization and as basis functions to approximate the solution. Compared to
standard level-set methods, this approach has the following advantages: Since it uses a fixed background
mesh, it eliminates the need for remeshing, and, by using the topological derivative to guide the evolution
of the level-set function, it also removes the necessity of defining initial holes and does not require solving
the Hamilton-Jacobi equation, relying only on the topological derivative to guide the evolution of the level-
set function. In addition, compared to standard density-based methods, this approach does not introduce
artificial intermediate materials, since it uses a level-set function to describe the design.

Our contribution focuses on the combination of the level-set method, topological derivatives, and isoge-
ometric analysis, providing initial configurations free from geometric approximation errors and a simplified
fixed high-degree background mesh defined by the knot vector and control points, which also allows straight-
forward higher-degree simulations. A challenge of this approach is the handling of the material interface,
since we use a fixed mesh that does not adapt to the level-set function. We study the sensitivity of the
level-set representation in the optimized topology due to different polynomial degrees for approximating
the level-set function and the solution. To accomplish this, we investigate two different settings: One with
the same polynomial degree for both, and the other one with a linear level-set function discretization and a
higher-degree approximation of the solution.

Therefore, in Section[2] we present the linear elasticity problem investigated in the topology optimization
approach and the main considerations for applying isogeometric analysis to it. Then, the definition of the
level-set function and the derived topological derivative are provided, respectively, in Sections [3] and @]
In addition, Section [5] approaches the procedures to deal with the cut elements, and two numerical results
applied to linear elasticity problems are shown in Section [ Finally, in the conclusion, we summarize the

main findings from the numerical examples.
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Figure 2: Representation of the domain problem: a) Domain €2 defined by the level-set; b) Domain 2 as a
subset of domain D; ¢) Domain {2 inside of a B-spline background mesh defined from the knot vector of the
geometry D

2 Problem Description

In this section, we present an overview of the problem to which our approach is applied. The problem studied
is the compliance minimization in two-dimensional linear elasticity, and here we present the governing
equation, the formulation of the minimization problem, and the key considerations for applying isogeometric

analysis using an immersed approach based on the level-set method.

2.1 Linear Elasticity Problem

In this work, we consider linear elasticity problems defined on a domain €2, where the boundary 02 is
divided into three disjoint parts, suchthat ' p NIy =0, TpNTy =0, TyNTy=0and T'pNTxyNTy = 0,
as shown in Figure 2. In these three parts of the boundary, Dirichlet boundary conditions are applied in I'p,
Neumann boundary conditions in I' 57, and zero Neumann boundary conditions are applied in I'g. Therefore,

the governing equations for the problem are given by

§
—V . (o(u))=0 inQ
u=0 onI'p
)
ou)-n=r1 onl'y
o(u)-n=0 on I'y.

Here, 7 is the load applied on the boundaries and n is the normal vector on it. While u represents the

displacement field and o is the stress tensor, which for linear elasticity and isotropic materials is defined as

o(u) =2pe(u) + Ar(e(u))I,



where

1
e(u) = 5 (Vu+ (Vu)h)
is the strain tensor and, for 2d plane strain,
FE Ev
/_L = — )\ =
2(1+v) (14+v)(1-2v)

are the Lamé parameters, written with respect to the Young modulus F' and Poisson ratio v.
In this scenario, the domain ) represents the material distribution of the geometry and is a subset of a

larger domain D. This situation is graphically represented by Figure [2b.

2.2 Immersed Isogeometric Approach

The goal of the topology optimization is to find an optimal material distribution {2 under given constraints,
such as boundary conditions or area penalization. This can be formulated as a minimization problem. In
this scenario, the domain {2 changes during the optimization process, and solving the problem numerically
would require redefining the mesh at each iteration. To avoid the necessity of remeshing, we formulate the
problem in the fixed domain D, as shown in Figure Qa, instead of €2, shown in Figure , and we introduce
a material property alpha, which is equal to oy, if it is inside of 2 and a small value «,; for outside. This
approach is based on immersed methods, which are extensively applied to fluid mechanics, solid mechanics,
interface problems, and several other areas. An extensive explanation of immersed methods and their aspects
can be found in [45] [12] 41]]. In this way, this approach allows us to define which part of D represents €2, in

such a way that the governing equation for the linear elasticity problem can be rewritten as

~V . (ago(u)) =0 inD,
u=0 onI'p, Qp  in €2,
with aq = ()
ou)-n=r1 on Iy, Qout on D\ §,
o(u)-n=0 on Iy,

where ay; < 1 is a penalization parameter on the void, small enough to neglect the basis located outside
the domain 2, but not too small to result in an ill-conditioned stiffness matrix [33]].

Therefore, to finally solve the problem numerically, we discretize the domain D using a background
mesh, as shown in Figure 2k, where the basis functions used to approximate the solution field are B-splines

of degree p, refined from the geometry D. These basis functions are constructed from a non-decreasing set



of coordinates called knot vector

== {617 527 ey Enera €n+p+1} (3)

defined in a parameter space P = [£1, &,4p+1] of B-splines, where 7 is the number of basis functions and p is
the polynomial degree. This construction is defined recursively starting from piece-wise constant functions
forp =10

1 if§ <& <&

By = ; “4)
0 otherwise

and extended for higher degrees p > 0 by applying the Cox-de Boor formula [21]

(S P R N 5} ®

Bi, =
T Gip — & Sitpt1 — &it1

In sequence, having the basis functions in each parametric direction, the geometry mapping from the para-

metric domain P? = [£1, &4 p11] X [71, Mmtpt1) to the physical domains R? is then defined as

x(&m) =Y Bin(&)Bjp(n)Ciy, 6)

i=1 j=1

where C; ; are the control points that build the geometry.

Note that the basis functions used to approximate the solution field may have a different polynomial
degree p than those used to construct the geometry D. However, the geometric mapping remains based on
the B-splines defined from the geometry D. Finally, the implementation of the problem is made within an

open-source isogeometric analysis code [43], which provides the necessary features.

2.3 Minimization Problem

The minimization problem mentioned in the previous subsection, and which defines the topology optimiza-
tion process, has the goal of searching for the optimal domain 2 C D that minimizes a cost function J.
This expression can be written as

in J(Q 7
min J(§2, u), (7)

where £ is a set of admissible subsets of D and

J(Q,u) = /Daga(u) : €(u) dD—i—l/Q ds. (8)
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Figure 3: Distribution of the Greville abscissae on the elements for different polynomial degrees and basis
functions defined by a) =={0000.5111}.b)=={0000051111}.¢)=E={000000511111}

a) b) c)
Figure 4: Type identification of the elements for assembling of the material property a: a) Domain D
divided into two regions by a level-set function. b) Domains D discretized as the background mesh. c)
Identification of the elements. In yellow, the elements are located outside of €2. In blue, inside of 2 and in
pink, the cut elements

Note that the area constraint, to avoid the solution to be €2 = D, is addressed by the second term of the

objective function and controlled by the parameter [ [24]].

3 Discretized Level-set Representation

The domain €2 is represented by a continuous level-set function. This means that the interface that divides the
material region 2 from the void region D \ 2 is defined by the zero set of the level-set function. Specifically,
all points where the level-set function is smaller than 0 belong to 2, points where it is higher than zero belong
to the void D \ €2, and points where the level-set function is equal to zero lie on the interface between the
two regions

p(x) <0 <= xe,

p(x) =0 <<= x€09Q, )

p(x) >0 <+ xeD\Q.

As the background mesh D is discretized, we also discretize the domain 2. Therefore, the level-set



discretization is made using B-spline basis functions of degree d, which might be the same or different from

the degree p of the basis functions used for approximating the solution,
n m
$(&m) =Y Bia(€)Bja(n)ci,. (10)
i=1 j=1

In sequence, the coefficients c; ; are obtained by solving a collocation problem, which enforces that
the discretized level-set function (10) is equal to the initial level-set function at the Greville abscissas. The
position of the Greville abscissas, shown in Figure [3| works as anchors for the B-splines and is computed as

s Gt &irot o+ Givd

& = y i=1,..,n. (11)

During the optimization process, the evaluations of the level-set function at the Greville abscissas are up-
dated, and the coefficients c; ; for the new level-set function discretization are obtained in the same process.

In Figure 4] we observe the identification process of the region where the element is located. This is
achieved by evaluating the level-set function at a group of points in each element. Then, based on the sign of
the evaluations, we can identify the region of the element and attribute the corresponding material property
or, in the cut element, compute the average of it based on the cut ratio of the element, which is given as

follows
|7 N Q|

|T‘ (ain - aout)- (12)

Oé’T = Qout +

4 Topological Derivatives

In the previous sections, we defined the representation of a fixed domain D and a level-set function ¢, used
to represent the domain €2, both by B-spline discretization. In the following, we discuss how the topological
derivative is computed and how the level-set function is updated, focusing on minimizing the cost function.

Considering xg € D \ 952, and defining w.(x,) = {x € R? : ||[xo — x|| < €} as a circular perturbation
with radius ¢ centered at x¢. The introduction of the perturbation w.(X,) in the domain D results in a
perturbed domain

O\ we(x0) ifxp €9,
Q. = (13)

QUuw:(xo) ifxoe€ D\Q.

Let 7(2) := J(Q,u(f)) denote the reduced cost function where u({2) denotes the unique solution to (I)

for a given subdomain €. In this scenario, to measure the change in the cost function .J when a new hole



around the point xg is introduced, the topological derivative is defined as

dj@ﬂmwzmnl@igﬁﬁﬁ

e—0 |(,<}E | e—0 |OJE |

where u. is the solution of (1)) replacing €2 by €2..

To evaluate this expression, we adopt the approach proposed in [18]], which introduces the Lagrangian

L(2,u,A) =J(Q,u)+ AE(Q,u),

where E(€2,u) = 0 represents the weak form of the governing equation. This implies that L(Q2,u, A) =

J (€2, u) at the solution for all A. Consequently, the topological derivative can be rewritten as

47 ()(x0) = lim L(Q:,us,A) — L(Q, u, )\).

14
e—0 \w5| ( )

Plugging in the adjoint state A defined as the solution of 9,,L(2,u, A) = 0, and noting that A\ = —%u,
after solving this limit for the linear elasticity problem, as shown in [6], an analytical expression is obtained,

which depends only on the solution u and the material coefficient o

Qout — Qin

dTin(Q)(x0) = —3aun <2aom n Oém) o(u):e(u)—1 ifxgeQ,
dJ(2)(xg) = (15)

ATt () (X0) = —3rout (O‘”_‘”t) o(u):e(u)+1 ifxge D\

204, + Qout

From this, the generalized topological derivative is then defined as

—dJ(Q)(x) ifx e,
ga(x) = (16)
d7(Q)(x) ifxeD\Q,

and used to update the level-set, guiding the evolution of the domain 2. Algorithm 1 shows the update
process. The update of the level-set is guided under a spherical linear interpolation, which uses the angle
0;, in L?-sense, between the current level-set ¢; and the topological derivative g;, as a parameter to define
the next domain §2; 1. Note that the stopping criterion is controlled by the same angle 6;, and this quantity
works as a comparison between the current topological derivative g; and the level-set function ¢;. Then, if
0; = 0, the domain 2,4 is optimal and the topological derivative g; can be used as the level-set function

¢ [7]. During this process, we apply a line search to define the parameter x used to update the level-set



Algorithm 1: Level-set update

1 Initialize the level-set function ¢q;
2 for ¢ < 1to nyu: do

3 | Compute go, (x) = {‘dj (@o)lx) ifxesh,
dJ(QZ)(X) ifx € D\Qz
$i,99;

4 Compute 0; = arccos(Hgﬂi||L<2(D)|\é>iHL2(D) );

5 if 0, < €y then

6 ‘ break;

7 else

8 Git1 = smg; (sIn((1 — £:)0) ¢ + sin(kib;)ga,)

9 where  k =max{1,1,1 ...} such that 7(Qi1) < T(%);
10 end

11 | Update c;; in the discretization ¢(&,n) = > 1Ly > 7%, Bia(§)Bja(n)eij
12 end
13 return ¢;

’_\Xo

\J

nq® Ne
lenQf =3 1-wj Kles, ¢j] = acK.[i, ] ga(xo0) = o= Zlgnlei(Xo)
Jj=1 1=
a) Cutratio computation b) Integration for assembly c) Average filtering

Figure 5: Approaches to treat the cut elements

in the spherical linear interpolation. It is also applied some filtering processes, described in the section [5
to smooth the generalized topological derivative g, working similarly to a sensitivity filtering in density-
based optimization [19]. In the discretized setting, when the element e of the background mesh D is cut
by the interface of the level-set function ¢, the generalized topological derivative is computed using a linear

interpolation between the values computed inside and outside the domain 2, given by

le N Q|

le]

gole(x) = dTout () (x)]e + (=dTin () (X)]e — dTout (2)(X)]e)- (17

5 Cut Elements

The correct integration of the elements intersected by the level-set function and the precision on defining the
proper material parameter in these elements play an important role in the quality of the results. Therefore,

in this section, we present the procedures used to deal with the cut elements.

10



In the computation of the cut ratio |eN$2|/|e], necessary to obtain the «v property for the cut elements, we
apply a quadrature library for implicitly defined geometries [31} 32], which precisely follows the level-set
function and provides quadrature points conforming with its zero isoline, as we can see in Figure [Sh. This
quadrature allows the integration of the regions defined by the zero level-set with high precision, also for
complex geometries with high-degree representations of the interfaces. Therefore, with this quadrature, we
can capture with precision the transition between the material property « in the inner part and the outer part
of the domain 2. Some examples for area computation, moving geometries, and linear elasticity can be seen
in [39} 40].

However, when applying this precise quadrature rule for the assembly, we obtained some instabilities in
the shape due to the integration of small parts of basis functions, located in the regions defined by the level-
set function, and due to the jump between the material and the void regions, which results in a discontinuous
field u and is approximated with higher-degree basis functions. To smooth these results, in the assembly
process, we use the standard Gauss quadrature in the whole cut element and scale the local contribution
by the corresponding material property c, computed using the previous procedure, shown in Figure [5p.
Therefore, this approach smooths out the discontinuity in the transition between the elements and results in
a shape with less noise.

Another smoothing step may be applied for the generalized topological derivative. In particular, since
we define an « property at each element, it occurs that, when evaluating the derivative at a Greville point,
shared by multiple elements, as we can see in Figure[Sc, we have more than one « at the point. And to solve
this, we consider the average of the derivative around that point. This procedure effectively creates a smooth
transition where the material property changes and works well as a sensitivity filter [[17]].

A second filtering to smooth the generalized topological derivative g is performed by replacing g in the
spherical linear interpolation, as described in Algorithm 1, by the solution g of the PDE

—YAjga+3go=g9o inD
(18)

Vigo-n=0 on 0D
6 Numerical Results

In this section, two numerical results for different geometries are presented. In both examples, the level-set
is initialized as ¢(x) = —1, which results in a full material background mesh, and the background mesh
is discretized with 128 x 128 elements. The material coefficients used are «;,, = 1 for the material region

Q and apy; = 107 for the void region D \ Q. Additionally, the parameter for area control is [ = 5, the

11



size control coefficient for the filtering is ¥ = 10~%, and the Young modulus and the Poisson ratio are 1 and
1/3, respectively. In these examples, we investigate the sensitivity of the level-set function representation
by applying different polynomial degrees d for the level-set function discretization and p for approximating
the solution. This is done considering two settings. One with the level-set function and the solution, both
approximated with the same polynomial degree, and another with a linear level-set function representation
and a higher-degree approximation of the solution. For the optimization algorithm, we consider a tolerance

of eg = 1 and a maximum number of iterations of 200.

6.1 Cantilever

The first example is the cantilever problem, a benchmark example for topology optimization present in a
large number of research papers, see, e.g., [2, 13, [7, 35 30} 22, 23 [24] 4]. In our case, the domain D is
represented by the mapping from the parameter domain D = [0,1] x [0,1] to a rectangle of size 2 x 1
with homogeneous Dirichlet boundary conditions on the left and a concentrated load on the right, as seen
in Figure [6p. Figure [6b shows the final design for p = d = 2, and Figure [7] shows the evolution of the cost
function, angle, and the area for the two settings. Additionally, the final shapes for different configurations
of polynomial degree for the solution and the level-set function discretization are shown in Figure |8} A mesh
sensitivity study with 32 x 32, 64 x 64, 128 x 128 and 256 x 256 elements is presented in Figure [9]and [10]

These results show that higher polynomial degrees p provide a better convergence behavior compared
to p = 1, with a faster drop in the middle region of the graph in the Figure|/| However, since we use a fine
mesh (128 x 128) to accurately represent the topology of the shape, increasing the polynomial degree p does
not necessarily increase the accuracy of the solution. In addition, in all cases for this fine mesh, we converge
to the same final solution (shown in Figure[§)), with similar convergence paths for higher degrees p, and the
same number of steps is required for p = 2 and p = 4 in both level-set discretization settings, see Figure

However, when using p = 3, 29 steps are required for the higher-degree level-set discretization (d = p),

Lo
I'p é D 'y
=
I'y -1
\4
a) Initial problem b) Final shape

Figure 6: Cantilever problem

12
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Figure 7: Comparison of the evolution of the cost function, angle, and area for different polynomial
degrees of solution approximation, with a linear level-set function representation (dotted), and with a level-
set function representation with the same polynomial degree as the solution approximation (dashed).

compared to 24 for the linear level-set discretization (d = 1). We also observe a slight difference in the
final part of the area graph between different solution discretizations using odd and even B-spline degrees.
This difference happens because in the Greville abscissae for odd degrees, some points are shared between
elements. As a result, an averaging is performed around these positions when evaluating the solution,
effectively acting as a filtering process [[17]. While this helps to smooth the solution, it introduces a small
difference compared to cases where such averaging is not required.

Figure 9] and [T0] show the impact of the background mesh resolution on the final shape. As our opti-
mization problem is not convex, it is reasonable to expect different topologies for different mesh sizes (e.g.,
Figure [0 for p = d = 1, and Figure[I0p for p = d = 3). For p = d = 2, however, similar final topologies
are obtained for all different mesh sizes. In addition, since we can represent the design more accurately
with decreasing mesh size (i.e., the design space is growing), we are able to find better local minima with
decreasing function values from 8.58 (Figure 10, p = d = 2) to 6.97 (Figure[I0, p = d = 2). Comparing
the results using our standard mesh (128 x 128, FigurdIOk) to the finest one (256 x 256, FigurdI0d), we
observe the same designs with minor variations in the objective value for all polynomial degrees. In Figure
[9] the evolutions of the cost functional for p = d = 2 and p = d = 3 in the meshes 128 x 128 and 256 x 256
are identical. This demonstrates that our method is mesh-independent, i.e., stable with respect to further

mesh refinements, with the minimal feature size related to the filtering of the topological derivative (I8).

13
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Figure 8: Final shape for different basis functions degree for approximating the solution: a) Level-set
discretized with the same polynomial degree as the solution. b) Level-set discretized with linear basis
functions

Cost Function (p =d=1)  Cost Function (p =d = 2)

12

Iteration Iteration Iteration
——32x32 ----64x64 --- 128 x 128 - - 256 x 256

Figure 9: Comparison of the evolution of the cost function for different mesh resolutions, using the same
polynomial degrees for solution approximation and level-set function representation.
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Figure 10: Final shape for p = d and meshes using different numbers of elements per direction: a) 32 x 32,
b) 64 x 64, c) 128 x 128, d) 256 x 256

6.2 Quarter Ring

This example is also considered in several research papers [14, 22, 4} |5], where the same geometry is
applied under different approaches and loading configurations. In our example, the domain D is defined by
a mapping from the parameter domain D = [0, 1] x [0, 1] to a quarter of a ring with inner radius Ry, = 1 and
outer radius R, = 2. Homogeneous Dirichlet boundary conditions are imposed on the bottom boundary,

and a concentrated load is applied at (0, 2), as illustrated in Figure . The final design forp = d = 3

T

g:[l O]

I'p
a) Initial problem b) Final shape

Figure 11: Curved cantilever problem
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Figure 12: Comparison of the evolution of the cost function, angle, and area for different polynomial
degrees of solution approximation, with a linear level-set function representation (dotted), and with a level-
set function representation with the same polynomial degree as the solution approximation (dashed).

is shown in Figure[TTp, while the evolution of the level-set function and the corresponding final shapes are
presented in Figure[I2]and[I3] respectively.

From these results, we observe that for p = 1(d = 1) and p = 2(d = 1) the optimization stops for 80
and 43 iterations, with angles 6 equal to 4.72 and 9.33, respectively, while in all of the remaining simulations
an angle 6 < 4 is reached, which is a reasonable value for a numerical solutions [7]. We also notice that,
although the cost function converges to a similar minimum value, all the shapes present different solutions
with different configurations of features. Regarding the minimization, the lowest cost function values are
obtained for p = 3(d = 1) with 4.12 and p = 3(d = 3) with 4.13, both with 200 iterations. While, for
p = 2(d = 2), a slightly higher value of 4.15 is obtained, but requires only 129 iterations.

In topology optimization, the presence of a local minimum is a well-known challenge and has a de-
pendence on the choice of initial parameters [37]]. Small variations in the definition of the initial setting of
parameters can lead to different solutions. As a result, even if the initialization is too far from the global
minimum, we still can achieve a solution that converges to a local minimum [3]]. Therefore, while strategies
like refining the mesh in a coarse-to-fine approach can partially cure this issue, they do not eliminate it [[1].
In this example, we notice that the possibility of setting different configurations of polynomial degrees, for
the level-set discretization and the solution approximation, does not overcome this phenomenon completely,
but depending on the choice of setting, we can obtain a solution that satisfies the condition of having a
small 6. Another parameter that can be changed and opens the possibility to find different solutions is the
parameter vy, which limits the size of features in the filtering process, overcoming some noise in the final

shape.

16



NN MW\

J =477 ( J =416 ( J =477 ( J =533 (
J=4.13 ( J =449 ( J =412 ( J =434 (p=4)
a)d—p b)dzl

Figure 13: Final shape for different basis functions degree for approximating the solution: a) Level-set
discretized with the same polynomial degree as the solution. b) Level-set discretized with linear basis
functions.

7 Conclusion

In this work, we develop an immersed isogeometric approach for a level-set based topology optimization
guided only by the topological derivative. The isogeometric approach within this framework provides a
seamless geometry update due to a simplified mesh process, defined by a knot vector and control points. It
also facilitates straightforward higher-order simulations, yielding results that are comparable to or slightly
better than those obtained by the standard approach. In addition, we also treat the elements cut by the level-
set function using a quadrature library for implicitly defined geometries to compute a material property used
to neglect the contributions from outside the domain §2, and using a filtering process to smooth the change
of material between elements.

This study investigates the impact of using higher-degree basis functions in both the approximation of the
solution and the discretization of the level-set function. In this investigation, we observe that being able to
perform higher-order simulations can be beneficial, in terms of iterations or the final cost function. However,
regarding the level-set discretization, we observe that using linear basis functions yields results comparable
to those obtained with higher-degree polynomials. Therefore, although the level-set is continuous, there is
a discontinuity in the material property between the material region and the void. Our results indicate that
using higher-degree basis functions does not directly imply a better representation of the jump across the
interface. We will further investigate this aspect in future research. In addition, the proposed approach is

currently limited to a single-patch background geometry, and the extension for multi-patch structures is also
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a subject for future research.
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