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Abstract

This paper presents a novel framework for goal-oriented optimal static sensor placement and
dynamic sensor steering in PDE-constrained inverse problems, utilizing a Bayesian approach
accelerated by low-rank approximations. The framework is applied to airborne contaminant
tracking, extending recent dynamic sensor steering methods to complex geometries for compu-
tational efficiency. A C-optimal design criterion is employed to strategically place sensors, min-
imizing uncertainty in predictions. Numerical experiments validate the approach’s effectiveness
for source identification and monitoring, highlighting its potential for real-time decision-making

in crisis management scenarios.

Keywords— Airborne contaminant transport, Advection-diffusion equation, Large-scale inverse prob-

lems, Optimal experimental design, Dynamic sensor steering

1 Introduction

The growing capabilities of unmanned systems (UxS), such as unmanned aerial vehicles (UAVs, drones), au-
tonomous underwater vehicles (AUVs), and unmanned ground vehicles, e.g., mobile robots, have made these
systems indispensable tools in crisis management situations (see for examples). Such autonomous
sensor platforms facilitate the collection of valuable information in regions where manned missions would be
too dangerous or simply impossible due to inaccessibility for humans. However, during the routing of a sensor
platform in the complex environment of a crisis situation, the question arises as to at which locations (addi-

tional) measurements provide an information gain and thereby constitute added value for decision makers.
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Figure 1: Unmanned systems operated as autonomous sensor platforms at German Aerospace

Center (DLR). Images: DLR, CC BY-NC-ND 3.0

This very question leads to the need for a goal-oriented optimal sensor placement and in the dynamic case to
a sensor steering problem. The task of selecting optimal measurement locations to infer system knowledge
falls within the classical field of optimal experimental design (OED). Goal-oriented optimal experimental
design generalizes this concept by determining the optimal design not for the parameters themselves, but
for a derived quantity of interest (Qol). This approach offers two major advantages. First, it enables a
more application-specific formulation, as the optimal design targets the Qol directly rather than the entire
parameter space of the inverse problem. Second, it substantially reduces computational cost, since the Qol
typically has far fewer degrees of freedom in its discretized representation.

This contribution addresses the problem in the mathematical setting of inverse problems constrained by
partial differential equations (PDEs). A selected sensor steering strategy is developed and applied to the
specific challenge of mapping airborne contaminant dispersion in the region of interest using discrete sensor
measurements. By specifying the region of interest in both space and time, the problem naturally falls within
the framework of goal-oriented optimal sensor placement.

Current methods for contaminant source identification and spread prediction rely heavily on an infor-
mative sensor placement. The selection of measuring points (sensor positions) is crucial, yet many existing
studies focus solely on stationary sensors. This work bridges this gap by incorporating recent advances in
sensor selection and experimental design to derive an algorithm for optimal sensor steering. Our research
focuses on developing a systematic approach to select sensor positions that maximize the accuracy of con-
taminant source identification and prediction. By integrating current methodological advancements, our aim

is to provide a practical solution for rescue workers and first responders, allowing informed decisions in high-



stakes situations. Whereas the numerical examples presented in this work focus on the specific application
of airborne contaminant transport, the goal-oriented optimal sensor placement strategy is independent of
the considered physical model and, hence, can be easily transferred to other crisis management applications.

Starting point for this work is the recent publication by Wogrin et al. [23] that pioneers a dynamic sensor
steering method in the context of airborne contaminant transport. In this work, we extend this approach
to a significantly more complex geometry. Moreover, the inverse problem solution follows a more advanced
approach that uses a Laplacian-like operator of trace class as prior information within a Bayesian inverse
problem framework [20] [I6]. To achieve approximate real-time capability, low-rank approximations of the
Hessian matrix are precomputed in an offline phase [I3] [I5], enabling efficient problem solving in the online
phase using a preconditioned inexact Newton-CG solver [19].

In the calculation of an optimal (stationary) sensor layout, Alexanderian et al. [3] used a reduced model
for the contaminant transport to determine an A-optimal design that minimizes the average point-wise pos-
terior variance of the inferred parameter vector. Following extensions proposed in [I§] and [5], we focus on
a goal-oriented design, i.e., the uncertainty associated with the prediction of the contaminant concentration
in a specific region and time is minimized. To demonstrate the feasibility of sensor steering, a relaxed op-
timality criterion compared to the A-optimal criterion is chosen for this test case. Specifically, we use the
C-optimal criterion, which focuses on minimizing the posterior variance of a particular linear combination
of the inversion parameters. This approach eliminates the need to estimate the trace of the full covariance
matrix and allows us to directly assess the impact of the covariance matrix on the parameter of interest.
Alternatively, a D-optimal goal-oriented design in infinite dimensions maximizes the expected information
gain [24, [3]. For a broader perspective on optimal experimental design for infinite-dimensional Bayesian
inverse problems governed by PDEs, the interested reader is referred to [I]. The remainder of this paper is
organized as follows. provides background and mathematical formulations of the forward problem
of contaminant transport, the inverse problem of source identification, as well as sensor positioning strate-
gies and goal-oriented optimization. The combination of methodological developments into an algorithm for
goal-oriented optimal sensor placement and steering is described in Numerical results are pre-
sented in for three test cases of goal-oriented optimal sensor placement, namely (a) to identify an
instantaneous contaminant source in a user-defined area of interest, (b) to monitor an area of special interest
over a predefined time window, and (c) to steer a moving sensor. Finally, offers a conclusion and

an outlook.
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Figure 2: Forward simulation of airborne contaminant transport on a campus geometry. Computa-
tional domain  with highlighted inflow (I'_), outflow (I'y), and characteristic (I'g) boundaries as
well as the initial contaminant source u(0,-) = m(:) (above). Estimated wind vector field v (left),

initial condition (middle), and simulated concentration at ¢ = 10s (right).

2 Background

2.1 Forward problem: Contaminant distribution evolution

A mathematical description of the transport of a substance (contaminant) concentration v in a bounded

open domain Q C R™ for n € {2,3}, which is shown in [Figure 2| is given by the following equation:

ri(u) :=u — kAu+v-Vu =0 in (0,T) x Q,
kVu-n=0 in (0,7) x (T1+ UTy), .
u=0 in (0,7) x I'_, .
u(0,-) =m in .

The parameter-dependent forward problem shown in is formulated for realizations of the param-
eter m. A visualization of the contaminant dispersion is provided in

The underlying transport process is governed by a wind vector field v, which is assumed to be sufficiently
smooth, bounded — i.e., v € L>®(,R™) — and divergence-free — i.e., V- v = 0. The example wind vector
field used hereinafter is shown in [Figure 2| (left). Based on the orientation of the wind vector relative to the
outward-pointing boundary normal n, the domain boundary 0f2 is partitioned into three disjoint subsets:
the outflow boundary 'y C 92, where v-n > 0; the characteristic (or tangential) boundary I'y C 9f2, where

v -n = 0; and the inflow boundary I'_ C 99, where v - n < 0, following the convention in [10].



2.2 Inverse problem: Source identification
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Figure 3: Inverse Problem. Measurements at 96 equidistantly spaced sensor positions (left) and

reconstructed initial condition (solution of the inverse problem, right).

Whenever measurements of the concentration at discrete locations and times are available, an obvious
question is whether the initial condition can be reconstructed on the basis of the given measurements. The
respective inverse problem is illustrated in see also [20]. As function space for the initial condition,
we consider an admissible subset of square-integrable functions. For instance, we define D := H%’i Q) =
{me H"*(Q) | m|r_ =0}, where H"?(Q2) denotes the Sobolev space of square-integrable functions whose
weak derivatives 0;u exist and are square-integrable. The gradient is denoted as Vu = (01u, 2u), and the

norm on H'2(Q) is defined as

1/2
iy = ( [+ Ivulgax)

In this setting, the estimation of the initial value leads to an optimization problem, which will be addressed
in the following. The first step is to describe sensor measurements within this formulation.
To incorporate sensor measurements, let Ty > 0 be fixed and consider space-time points (£2°%, z9%%), i =
1,...,q, with t¢b5 € [Ty, T) and interior points 2% € Q = Q \ 9Q. For the transient problem in
on a smooth domain €2, the diffusion term induces strong smoothing on the parameter field m. By standard
parabolic regularity (see, e.g., [I1]), u(t, -) embeds in the space of continuous functions C°({2) on the closure of
Q for any ¢ > 0. Since continuity is only required near the observation points, define Q,, := U, Br, (z9P%) C
), where 7o > 0 is chosen such that u € C%([Tp, T] x Q,) admits a continuous representation. This ensures
the formulation remains valid for less regular domains 2. Finally, we define a well-posed and bounded space-
time observation operator B : C°([Ty,T] x Q,) = R? by u + 7, Opobs govsy (u) € = (u(t?bs,x?bs))?zl,
where e; is the standard basis of R?. Using this observation operator, the final parameter-to-observable map

F : D — RY is defined by
F(m) :=BoK(m), with I(m) :=wu such that ri(u) =m. (2)

Here K is the parameter-to-state map, mapping parameter space D to state space, often referred to as

'model’ in this context [8]. An example problem in which K maps the initial condition wug to the solution of

u(t = 10s, -) is illustrated in



The next step is to model sensor noise, which is usually present in real-world measurements. To this end,
it is assumed that the observations d = F(m) + € contain centered additive Gaussian noise € ~ N (0, T'pise)
due to measurement uncertainties. For the sake of simplicity, it is further assumed that the sensor noise at
the different sensor positions is uncorrelated and of equal magnitude, represented by the diagonal matrix
Thoise = diag(o?,...,0%). Moreover, the conformity of the simulation with the measured values, also called

misfit, y = F(m) — d, is evaluated in the following norm
q
2 bs bs 2
IF(m) —dlp =1/0 > (u(tg™, 25®) —dy)”
i=1
In summary, the inverse problem consists in using available measurements d to infer the values of the
unknown parameter field m. Alternatively, the maximum a-posteriori point mmap, can be characterized by

the solution of the minimization problem

. 1 2 1 2
My = argmin () = 3 [ F0m) — s+ 3l gy 0

with the prior information encoded as a Tikhonov regularization term.

Unfortunately, the system is heavily under-determined under real conditions, as sensor measurements are
only available at a few locations, but an initial condition is to be reconstructed for the entire domain. In order
to transform this into a well-posed problem, some prior knowledge is needed and a formulation as a Bayesian
inverse problem provides a suitable framework. In this setting, a Gaussian prior N/ (Moprior; Iprior) With mean
Mprior ad covariance I'prior is chosen for parameter regularization. Then, the posterior density of m satisfies
by Bayes’ theorem: mpost(m|d) o Tiike(d|m) Tpmior(m) . Here, mie(d|m) o exp(3 || F(m) — d||121;01ise) is the
likelihood function under the observational Gaussian noise € ~ N(0, ['ypise). Due to the linearity of F, the

posterior distribution is again a Gaussian distribution N (mmap, Ipost) with covariance and mean

Tpost = (F Thoise + Dprior) ™" and mumap = Tpost (F Tpoied 4 Ty Mprior) - (4)

noise noise

The formal adjoint operator F* : R? — D* is required for this framework. For the mapping F : D — R?
between Hilbert spaces, the formal adjoint operator F* is characterized by the relation (F(m),y)re =
(m, F*(y))r2(q) for all y € R? and m € D, and its existence follows from Riesz’s representation theorem [4].
The posterior covariance or Hessian H := F*T L F + F;rlior of the objective function J, see
contains a wealth of information about the system. In line with the Bayesian framework [20], the covariance
or inverse Hessian matrix can be employed to predict the uncertainty of the system and is of particular
significance for optimal sensor placement in the following chapter.

The mean value mmy,p is a reliable estimate for the initial value and thus represents the solution of the
inverse problem In order to calculate Mmyap from a further specification of the adjoint
operator F* is necessary. By applying partial integration to the weak form of [Equation 1} the adjoint state

p can be derived and satisfies the following equation:

q
—ps — KAp — div(pv) = —1/0? Zyz S govs zobsy in (0,T) x Q,
i=1
(vp+KVp) n=0 in (0,7) x (T4 UTy), (5)
p=0 in (0,7) x I'_,
p(T,) =0 in Q.



for given y € R?. Finally, the adjoint operator F* can be explicitly determined, resulting in F*y = p(0, -).

2.3 Goal-oriented optimal experimental design: Sensor placement

So far, a model for the forward problem and an estimate of the initial condition, given a fixed sensor config-
uration, have been derived, but the question of how such a sensor arrangement ought to be chosen remains
unanswered. As mentioned in the previous chapter, the covariance of the posterior, or more specifically, the
Hessian matrix, plays a crucial role in developing an indicator for the uncertainty in the system. In classical
Bayesian optimal experimental design (OED), a design functional ® serves as a quantitative criterion for the
uncertainty described by the covariance matrix and is used to guide the selection of an optimal experimental

setup. Specifically, the problem
min (@[Cpos (w)] + R(W)), (6)

wew
is solved, where W denotes the set of all valid sensor configurations, and R is a suitable regularization term.
Asin [2], a finite set of candidate sensor placements (9%, 29%%) € [T}, T] x Q2 for 1 < i < ¢ will be considered.
An example of a spatial grid with 96 sensors can be seen in For this set of candidate locations,
a weight vector w € [0,1]? is defined with the i-th entry corresponding to the i-th location in space and

time. In fact, the weight vector decides which measurements are realized or taken into account. In the case

obs

of stationary sensors located at positions x¢

, measurements collected from these spatial points over the
entire time horizon, denoted as (-, x%P%), are constantly weighted, included in the misfit. Hence, the number
of independent entries in the weight vector reduces to the number of possible stationary sensor positions.
If we consider a mobile sensor, we have a trajectory « : {tgP%, ..., 2P} — {x5P% ..., x°P*}. For points on the
trajectory (tfbs,x?bs) the sensor weight is w; = 1. All weights away from the trajectory are set to 0. To
adjust the forward model to the chosen sensor configuration, we consider the diagonal matrix W € R9*4
with W;; = w;. If we denote the parameter-to-observable map for all sensor positions as F, then for each
design w € W, we have F(w) = W F. Taking this further and using W to modify the noise matrix, the

influence of a selected sensor layout is also captured in the likelihood function

Tiike (d|m, W) o exp {—1(]-'(m) —d)TWar L W2 (F(m) — d)} .

9 noise

In consequence, the posterior covariance and mean also depend on the sensor layout via (cf. [Equation 4)

Tpost (W) = (F*W2TL L W2F+T5L )71 and mimap(W) = Cpost (F T oA WA + TpriorMprior) - (7)

noise prior noise

In Bayesian optimal experimental design, the objective is to construct experiments that minimize the
posterior uncertainty in the unknown parameter field m. This approach belongs to the broader class of inverse
uncertainty quantification methods. Goal-oriented optimal experimental design extends this framework by
additionally incorporating forward uncertainty quantification into the design objective. This is achieved
by introducing a goal quantity of interest (Qol), denoted by p. Following [5, Section 3], we consider a Qol
defined as the action of a bounded linear operator P on the parameter field, i.e., p = Pm. Due to the linearity
of P, the prior distribution of p is Gaussian. In particular, p ~ N (pprior; Lprior), With mean pprior = PMprior

and covariance Yprior = Plprior P*. The resulting Bayesian inverse problem is well defined, and the posterior



distribution of the Qol given measurements d is also Gaussian, mpost(p | d) ~ N (pposts Zpost). The posterior

mean and covariance are given by

Epost =P 1_\post P* and Ppost = Pmmapa

where I'post and muyap are the derived quantities from

3 Discretization, preconditioning, and sparsification

3.1 Finite element discretization

To solve the PDE problems (Equation 1| and [Equation 5) numerically, a finite element discretization is

employed using n4or Lagrange basis functions Vy, = span{és, ..., ¢n,,,}- Moreover, we find an identification
between a vector in R™f and finite elements I : Rt — V), via I(a) = Y% a;¢;. This leads to discretized
versions of the parameter-to-observable map Fj, : R™df — R? defined by Fp(mp) = B(up), where uyp, solves
weakly, and its adjoint operator F; : R? — R™e°f given by Fiy = pi(0,-), where pj, solves
weakly. The identification is an isometry, i.e., (I(a),I(b))2(0) = (a,b)pr =: a® M b, where the
mass matrix Mj; = [, ¢i(x)¢;(x)dx, M € R™Mor*"ot is used to define the corresponding scalar product.

For further details of the finite element discretization, we refer to [20] and [21].

3.2 Preconditioning of discrete inverse problem

To solve the discrete inverse problem, the prior distribution needs to be carefully chosen. A Laplacian-like
operator of trace class A := (nI —~vA), with Robin boundary condition, yVm -n+ 8m =01in (0,T) x 91,
is applied with the constant 8 proposed in [9]. This definition serves as a suitable covariance operator,
e.g., Dprior = A72 = (nI — yA)~2. In addition, its discrete counterpart is given by the mapping I'priorn
Rmdor — Rt via Tppiorn = (M 1A)™2 = ATTMA™'M := R™'M, with matrix representation A;; =
J ¢i(z)Ag;(x) dz

Combining this covariance operator together with an appropriate prior mean mpyior (in our applications,
e.g8., Mprior = 0) renders the inverse problem well-posed and its solution can be found by solving the following

equation for mmap

Hh( )mmap - j—"h n01se(Wd) + Fprlor h -t Mprior, (8)

for the discrete version of the Hessian, that is, Hp,(w) = Ff W 2T L W2 Fj 4 Tpriorn '- Since determining
the Hessian matrix directly is computationally expensive for large-scale problems (O(ngof)-PDE solutions),
an iterative conjugate gradient (CG) method is employed. This approach requires only the action of the
Hessian-vector on a given vector my € R™d°f at each iteration. Specifically, the Hessian action is computed by
the following steps: first, solve the forward equation d = Fj(my) = B(uy,), then, solve the adjoint equation
Fr (W FnollbeW d) = pp(0,-), next, compute My = I'prior,nmi, and finally obtain the Hessian action as
Hp(w)myg = pp(0,-) + M.

Since two PDE solutions have to be determined in each iteration, a reduced model of the Hessian matrix

is created in advance so that the inverse problem can be solved quickly. Using the Cholesky decomposition



of the prior covariance, Fprionh_l = (M~*A)(M~1A)*, one obtains the preconditioned Hessian matrix as

(A Hi (W) A = (Fy o A1) WETRA W2 (Fp 0 AN + 1, 9)

noise

for .A;l = (A~1M). This preconditioned system F o A~! has fast decaying eigenvalues and so, we follow
[20, 14] in constructing a low rank approximation of the prior-preconditioned misfit part of the Hessian, i.e.,

POt (w) = (Fj, 0 A, ) WET,

noise

W2 (Fj, 0 A, ") by solving the symmetric eigenvalue problem [L3| [I5]:
HhmiSﬁt (W)Ul =\ MFprior,hilvi = \;Ru;

for an orthogonal basis V,. = (vy,...,v,) € R™*" and Ay > ... > A, with respect to the scalar product in-
duced by MFprior,h_l, ie., (a, b>MFpr;0r.h*1 =: a7 MFprionh_l b. Applying the Sherman-Morrison-Woodbury
formula, we write

An(Hu(w)) P AR = (-8 (w) — 1) = T+ VD, (w)V," (10)

where D, = diag(A1/(14+XA1), ..., Ar/(14A,)) is a low rank approximation of the Hessian. Detailed information
on this can be found in [I4] and [2]. Using this approximation, the solution of equation [Equation §| can be
determined with a preconditioned Newton-CG method, see [20 [19].

3.3 Sparsification of sensor layouts and optimality criteria

Obviously, the trace of the posterior covariance will be minimal exactly when every sensor weight is set to
1, which corresponds to using every available piece of information to reduce the level of uncertainty. Thus,
to derive a sparse sensor configuration, a penalty term must be introduced into the optimization problem

(Equation 6)). A common choice for the regularization term in [Equation 6|is the ¢;-norm, which leads to a

convex minimization problem with a unique minimizer. Specifically, the regularization term is defined as
R(w) = afw|; = alTw, (11)

where o > 0 is the regularization parameter and 1 is a vector of ones. Finally, a binary sensor configuration
{0,1}% is obtained by considering only sensor locations with weights above a certain threshold.

It should be noted that the resulting binary vector is not the optimal binary weight vector. Obtaining
such an optimal solution requires solving the fy-regularized problem considered in [2]. The key idea in that

approach is to employ a regularization term based on the number of nonzero entries in w, i.e.,

R(w) == « Z 1.
To approximate this discontinuous penalty, a sequence of strictly convex functions f;(w) is introduced such
that fj(w) — 37,401 as j — 0o. At each iteration, the optimization problem

min (@[pont (W)] + f5(w))

weW
is solved and and the optimizer obtained at iteration j is used as the initial value for iteration j + 1.

This procedure entails substantially higher computational cost. Moreover, as observed empirically in [2]

Section 6.1.4], the sensor configurations obtained using this ¢p-approximation strategy offer only marginal
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improvement compared with those produced by /;-regularization followed by a simple thresholding step.
Since a highly efficient method is required for the sensor steering presented in we therefore
employ an /¢;-regularization approach.

The A-optimality criterion for sensor placement minimizes the integrated point-wise posterior variance
in linear Bayesian inverse problems: [, Var[m(z)] dz = tr(I'pest(w)). To compute the discrete variance field
o%(z) := Var[m(z)], one can extract the diagonal of the inverse Hessian matrix in the finite element basis,
assigning each diagonal entry to its corresponding node. However, this exact calculation is computationally
expensive (O(ngof)), so the reduced-order model is used for visualization. (right)
shows the variance field 02(z) of Myyap obtained with a C-optimal sparse sensor layout.

Moreover, the prior covariance is computed using approximate random sampling [20]. Last, but not
least, computing the trace of the inverse Hessian is costly. Therefore, we relax A-optimality to a C-optimal
design, which requires only the evaluation of the Hessian’s action on a fixed vector ¢ € R™ef [I]. In this

case, the design criterion becomes ®(w) = ¢TT' o (W) c.

4 Goal-orientation and sensor steering

4.1 Goal-oriented optimal experimental design

In the next step, the presented method is adjusted to achieve goal-oriented C-optimal experimental designs
for stationary sensors. The operator P : D — R is first selected so that the design, namely the sensor
placement, is optimized to observe initial conditions in an area P C €2, shown in[Figure 4] This simplification
via forward uncertainty quantification, defined by the operator P, leads to a C-optimal design for the problem
in as described in [T].

The indicator function of a subset, that is the function 14: Q — {0, 1}, which for a given subset A of ,
attains the value 1 at points in A and the value 0 at points outside of A is used to define our operator P.
If an optimal design for the initial conditions m is desired, the operator P does not depend on the solution
u, or more specifically, it does not depend on the operator F. Concretely, the operator for the Qol is given

by P(m) := (m,1p)r2(q) = / m(x) dx. By identifying the dual space of L?(£2) and defining the adjoint
P

10
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Figure 5: Illustration of an example Qol 1[TQ01 79! (kept constant over time, left) and solution

UxP
K*(1 19 7 p)(t = 0,) of transport problem induced by adjoint operator K* (right).

final

operator, it follows that P* = 1p, and the design function for the optimal experimental design takes the form
tr[Cpost (W)] = (1p, Tpost (W) 1p) £2(q)- In a finite element setting, the function 1p is represented by a vector
¢ € R™et via the usual projection, i.e., 1p — ¢ L Vy into the finite element space Vi, = {é1,..., Pny, -
According to [I, Section 4.1], the design function is given by ®(w) = ¢} M H, '(w)cp. Together with a
suitable regularization term, e.g., «||wl|;1, an optimal design can be obtained by minimizing the objective
¢t M H;, (W) en + af|wl|p which is illustrated in If this procedure is generalized to determine an
optimal sensor placement for the contaminant concentration over a specific spatial region and time interval,
the operator P must be extended accordingly. Specifically, by defining P via a subset of space-time, e.g.,

[T, ngnoall] x P, the operator P is then constructed as

’ fmal
:/0 /Q]_[T(;QOI chlzxitll]xplc( m)(t,x) dt dx = /Qol / (t,x) dt dx.

Again, the adjoint of P is needed. For this, we calculate
P (1) (1) = (K(h), 1[T(9017Tf?no;1]xp>Lz(Q)
— <m ’C 1 TQoI Tg:’:l]xP»Lz(Q)

and therefore the map ¢ is obtained by ¢ := P*(1) = K* (1[T(§Q01 TR p), since 7 was arbitrary. More

final

precisely, the map c satisfies the following PDE:

—¢t — kAc —div(ev) = Lipaer roty, p in (0,7) x Q,
(ve+kVe)-n=0 in (0,T) x (T'+ UTYy), 12)
c=0 in (0,7) x I'_,
c(T,)=0 in Q.

In (left) an example of a constant-over-time Qol 1[T§3°I,Tf‘;2nﬁjl]>< p is shown. The corresponding map
c(t = 0) is visualized in (right). Returning to the definition, the objective for the goal-oriented

sensor design reads
d(w) = PH Y (w)P*(1) = P(H *(w)e)
= </C(7—[—1(W)C), 1[T(§QOI Tf(‘QnoaI]XP>L2(Q)

= <H_1(W)C7K*(1[T(§QDI QDI]XP)>L2(Q) = <C,7{_1(W)C>L2(Q).

tmml
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Thus, the time-dependent case is reduced to the fact that an optimal design for initial conditions for the
transported Qol ¢ must be found and coincides with the first case.

For the numerical evaluation of this objective function and its gradient, which are required to mini-
mize the regularised design function using the L-BFGS-B solver, we start again with the inverse low-rank

approximation of the Hessian from and proceed to compute the design function as follows
d(w) = (e, HH(W)ehre ~cE AN I - VoD VA ey

For a shorter notation, we set gy, := (I — VTDTVTT)A;lch, qn = A;ltjh and obtain ®(w) = cg qn, and so the
calculation of the of the trace consists only a projection in the low rank subspace and solutions of an elliptic
problem A resp. Ap, for which very fast solving strategies exists. To calculate the derivative, we follow [2]
and conclude for this simplified case

0

S (W) = (F@)* ~ (Fh o A7 @) (13)

So, this calculation can be replaced by a surrogate model for the preconditioned forward operator. In

principle, this procedure can be extended to a stronger, A- or D-optimal design.

4.2 Dynamic sensor steering based on goal-oriented optimal sensor placement

A method will now be presented which is capable of dynamically controlling a sensor in such a way that
a greater knowledge of the actual contaminant concentration can be generated. We assume that some
knowledge about the concentration is already available due to certain stationary sensors, i.e., that the true
contaminant already possesses an appreciable concentration at the sensor location, to permit a solution to
the inverse problem. This situation can be seen in We then set the Qol so that its center point is
at the maximum of the reconstructed initial condition. The optimum design is then calculated on this basis
and the sensor is steered to the position with the highest weight w. The next measurement is then awaited
and the procedure is started again from the beginning. The method is shown schematically in In

this way, we obtain a trajectory v : {tgP%, ..., 2P} — {x§"s, ..., xPs} for the steered sensor.

5 Numerical results of optimal experimental designs

In order to simulate scenarios on real-world domains, we use a highly automated process for grid genera-
tion. Building imprints as obstacles for two-dimensional contaminant transport are imported directly from
Open Street Map (OSM), and locally refined triangular meshes are generated for the region of interest [7].
The forward model is implemented with stabilized linear Lagrange finite elements in the software frame-
work FEniCs [6]. The FEniCs extension hIPPY1lib (Inverse Problem PYthon library [20]) was used in the
implementation of the inverse problem.

In the three following inverse problem OED examples, we use the forward simulation of
illustrated in as the ground truth. Two radially symmetric functions

My, (X; X, 7) = min {0.5,exp (—ln(e) Ix — x5||§ /r2>} ,e =0.001

12
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Figure 6: Dynamic sensor steering test case with stationary sensor (green) and mobile sensor
(purple trajectory). (a) True concentration field at u(-,t = 2.2s) during the second steering time
step, (b) Maximum-a-posteriori estimate mmap, of inverse problem and algorithmically selected
zone of interest (red square), (c) optimal sensor design, (d) target position of the mobile sensor
(red sphere), true concentration field u(-,¢ = 7s) in background of (c¢) and (d) to visualize transport

problem dynamics
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Sample measurements d for [To; Tseep]

S J
e N
Solve inverse problem for m
S J
e N\

Set center of Qol region
to position of max(m)

Calculate optimal design for Qol

Steer sensor to position
with highest weight w

Tstep — Tstep + AtObs

S J

Figure 7: Algorithm for dynamic sensor steering based on goal-oriented sensor placement [22] 23].

describe the initial concentration field,
up(x) = my, (x;xs = [-100m, —80m], r = 25m) + mx, (x;xs = [75m, —80m], r = 25m). (14)

The initial concentration field is transported by the vector field v. For the considered test cases, we estimate
a stationary wind vector field as solution of the incompressible Navier-Stokes equations with wind entering
the given geometry from the south at a velocity of v = 10ms~'. This condition is realized using a Dirichlet
boundary condition. In the inner boundaries that represent the imprints of the buildings, a no-slip condition
is applied. The remaining edges correspond to free boundary conditions. For the chosen Reynolds number
of 50, we obtain the laminar wind field visualized in [Figure 21 Moreover, the diffusion coefficient is selected

! resulting in a transport problem with a moderate Peclet number. Finally, the time step size

as k= 1m?s™
for the implicit Euler time-stepping scheme is set to 0.05s. In the parametrization of the prior, the constants
were chosen as 1 = 8 and « = 800, yielding the operator A := 81 — 800 A.

In order to make this problem computationally feasible, reduced-order models (ROMs) of the forward
and adjoint operators are derived. Considering the forward operator Fj : R™df — R? it is observed that it
constitutes a linear mapping from a high-dimensional to a lower-dimensional space. Thus, a singular value
decomposition is performed to construct a ROM; see also [I3, [I5]. The decomposition provides singular
values A\; > ... > )., an L?-orthogonal basis U, = (ug,...;tty) € R™etX7 and an orthogonal basis V. =
(U, ..., v) € RI*". During the online phase, for example, when the precomputed reduced-order model
(ROM) is used for sensor steering, the selected initial condition is projected, such that only matrix-vector

multiplications are required:

]:h(mh) ~ Vr DT UrMmh;

where my, € R™f and D, = diag(A1,...,A).

As discussed in [Equation 9| and [Equation 13| it is also viable to construct a ROM directly for the

14
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Figure 9: OED 1. Weights of optimal sensor configuration to monitor P; (left) and reconstructed

initial condition (right, ground truth shown in .

preconditioned forward operator. The singular values of the operators F; and Fj o A are compared in
Figure §| (left). It is observed that the singular values of the preconditioned operator decay faster and
therefore less computations have to be performed to construct a ROM with acceptable accuracy.
(right) shows that the ROM approximates the forward operator fairly well. Furthermore, the computed
singular value decomposition is reused to approximate the adjoint operator 7 : R? — R™df with a ROM
as well, namely, ' (y) ~ M U, D, V,.y, for y € R

To assess the benefits of the reduced model in the context of forward evaluations, we first performed a
single evaluation of the full-order model, which required approximately 1s on our hardware. To simulate a
scenario relevant to optimal sensor placement, the reduced model was used to evaluate the full-order model
at 96 spatial positions over 90 time instances, resulting in a total of ¢ = 8640 measurements. In total, we
calculated 200 spectral values. On average, each evaluation of the reduced model took 6.25ms, yielding a

relative speedup of approximately 160 compared to the full-order model.
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for the optimal configuration for Py (left) compared to the full sensor grid (right)

5.1 OED 1. Sensor configuration to reconstruct initial condition in critical area

As first example for a goal-oriented optimal experimental design, we address the problem of identifying
an optimal sensor layout to recover the initial condition in a defined subset of the computational domain
Py:={(z,y) € Q|75 <z <125, —100 < y < —60} . In a practical application, P; might represent a critical
area of a chemistry plant site where hazardous material is stored. The inverse problem is posed under
the assumption that only stationary sensors are used. These sensors sample the concentration at a rate of
5Hz, beginning at T, = 2s. Measurements taken after 12s are not taken into account. A noise variance
of 2 = (0.005)? is assumed, resulting in a signal-to-noise ratio of approximately SNR = 100. Moreover,
a regularization parameter of & = 0.1 is applied to obtain a sparse sensor configuration, see
The selected domain where the quantity of interest (Qol) is inferred is indicated in (left), along
with the optimal sensor configuration (right)). Moreover, the point-wise variance, which represents
the uncertainty in the reconstruction, is also illustrated in The solution to the inverse problem
represented by mmap is visualized in The numerical result demonstrates a reconstruction quality
in P, comparable to that achieved using the full configuration with 96 sensors in contrast to 5
optimally selected sensors in OED 1.
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5.2 OED 2. Configuration to monitor concentration evolution in critical area

In the second scenario, our aim is to secure a specific area for a given time period. To achieve this, the
quantity of interest (Qol) is defined to depend on the state u. To create a meaningful scenario, we shift
Py = {(z,y) € Q|75 <z <125, 60 < y < 100} upwards. The goal of OED 2 is to ensure that concentration
values can be predicted correctly in region P, during the time from 5s to 12s. This formulation results in

the following operator:

Tf(iln(i'x11=12s Tf(;zn(;llzlzs
Pa(m) = /Q ) K(m)(t,x) dt dx :/ ) / u(t, x) dt dx.
T3 =55 Py T =55 Py

The sensor weights w in |[Figure 10| are calculated using a regularization parameter of a = 1.0. In this case
as well, the source relevant to the Qol is reconstructed accurately using the optimized sensor configuration.
The reconstructed initial condition and the corresponding prediction are shown in As illustrated
in the reduction in uncertainty is concentrated primarily in the region relevant to Qol compared

to the complete sensor configuration.

5.3 OED 3. Dynamic sensor steering for source identification

Finally, the sensor steering method described in is tested in a numerical application case with
k = 10m?s~!. To steer the sensor, a much finer sensor grid totaling 1511 possible sensor locations is used.
In this formulation, the moving sensor is allowed to take one step on this grid per cycle, which needs 0.2
and thus corresponds to the measurement frequency of 5 Hz. This corresponds to a speed of approximately
40ms~! for the moving sensor. To demonstrate the capabilities of the sensor steering approach, we placed
a single stationary sensor just behind one of the obstacles. However, due to the transport characteristics
in this region, information solely from this stationary sensor results in an inaccurate reconstruction of the
source, which grossly underestimates the degree of contamination further from the buildings. In addition to
the stationary sensor, measurements from a mobile sensor are available. The measurement process begins
at time Ty = 2s, with data collected at a frequency of 5Hz. The state u at Tyep = To = 25 is shown in
Figure 12| (a). At this point, the stationary sensor receives very limited information and is thus unable to
provide an accurate source estimate. However, computing the optimal sensor design based on the current
quantity of interest (Qol), defined as the integral over a square measuring 40 m on each side, centered on the
maximal point of the reconstructed initial condition, yields favorable estimates for informative measurement
positions. The mobile sensor is then directed toward the location associated with the highest weight w, as
determined by the C-optimal design criterion, computed over the observation period [Tyep, Tstep + 28] with
the same sampling rate of 5 Hz, wherein we take as sensor weights in the time leading up to Titcp, the actual
past locations of the sensor. In the subsequent time steps, illustrated in (c), the sensor continues to
move toward regions of increasing concentration. In (d), corresponding to Tyep = 4.6's, the mobile
sensor has found the core of the contaminant. Finally, (e) and (f) demonstrate that the mobile
sensor continues to accurately pursue the contaminant in further time steps. Comparing the performance
of the stationary sensor with that of the combination of a stationary sensor and a dynamically steered one,

we find, as depicted in that the mobile sensor achieves substantially improved reconstruction

17



3.68-01 3.7e-03
20 201
15 0.3 15 0.003
10 0.25 10 0.0025
g :
5 02 % 5 0002 2
y[m] g y[m] oools &
015 2 ' £
“ coo1 <
0.1
-10 101 0.0005
—005
-151 -151 0
-200 -150 -100 -50 O 50 100 150 200 —0.0e+00 -200 -150 -100 -50 0O 50 100 150 200 —-3.9e-04
x[m] x[m]
) Concentration u at t = 2.0s (truth) (b) Reconstruction of m with data up to t = 2.0s
2.0e-01 13602
20 0012
0.18
0.16 001
0.14
= 0008 ¢
012 g £
y[m] o1 y[m] 0006 2
1) g
008 § g
& ooo4 @
} 006 .
B 0.04 - 0.002
- 70.02 -
200 150 100 50 5o 100 150 200 —0:0e+00 -200 -150 -100 50 S0 100 150 200 — /4804
x[m]
(¢) Concentration u at t = 4.6s (truth) (d) Reconstruction of m with data up to t =4.6s
1.46-01 7.08-02
201 20!
0.06
15 0.12
10 0.1 0.056
1= =]
ks) 0.04 L
5 0.08 § §
y [m] g y [m] 0.03 54
006 g £
g 0.02 8
} oot .
10 . 001
— 002
15 . -0
-200 -150 -100 -50 0 50 100 150 200 —0.0e+00 -200 -150 -100 50 50 100 150 200 —6.26:03
x[m]
(e) Concentration u at t = 7s (truth) (f) Reconstruction of m with data up to t = 7s

Figure 12: OED 3. Data fusion of stationary sensor (marked in green) and mobile sensor (marked
in purple). Mobile sensor steered to maximize information gain (trajectory marked with small

purple spheres)

18

HINHAIOS ANV ONTUHANIONHA NI SAOHLHAIW dALSISSY HALNdINOD NOILVOI'TdNd 400dd-ddd



7.06-02 7.06-02
20
0.06 006
15
0,08 005
10
= =}
o4 004 §
’ g :
y[m] 003 & 003 &
2 =
ooz 8 o 8
o 001 a1
15 -0 = 1]
0 s0 100 150 200 — 62803 — 62008
x[m]
(a) Reconstruction of m (with mobile sensor) (b) Reconstruction of m (stationary sensor alone)
4.60-02 2,66-02
20 20
0.04 004
15 15
0,035 0035
10 10
003 08 o
8 g
[ ]5 0.025 § [ ]5 0.025 §
m m
Y 002 3 Y 002 8
g 5
ool S 0015 8
001 a1
-101 -101
—0.005 —0.005
215 -151
-200 -150 -100 -50 O 50 100 150 200 —-1.8e-03 -200 -150 -100 -50 0 50 100 150 200 —-1.8e-03
x[m] x[m]
(c) Prediction ¢t = 7s (with mobile sensor) (d) Prediction ¢ = 7s (stationary sensor alone)
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sensor (left column) and stationary sensor alone (right column)

accuracy after just 7s, in contrast to the stationary sensor, which fails to produce a reliable estimate even

after 12s.

6 Conclusion and Outlook

This paper investigated a novel approach for goal-oriented optimal static sensor placement and dynamical
sensor steering for PDE-constrained problems. Adopting previous work by Wogrin et al. [23] 22] on dynamic
sensor steering, we leverage a Bayesian approach for the solution of the inverse problem, accelerated by
offline-computations of low-rank approximations for the Hessian matrix and an online preconditioned inexact
Newton-CG method. The resulting framework was then applied to a more complex geometry extracted from
real-world map data. We showcased the strengths of the proposed workflow on three application cases
from the field of airborne contaminant transport: In the first example, we derived an optimal placement
of stationary sensors to recover the initial condition inside a spatially constrained rectangular region. The
results showed that our proposed method only requires five sensors to reconstruct the initial condition locally
with an accuracy comparable to the full configuration of 96 sensors. In our second example, we extended
the Qol in the sense that a region of interest is monitored not only at a specific time instance, but over
a fixed time period. From a practical point of view, this corresponds to the goal of securing a specific

area for a given time period. Using only eight sensors, the evolution of the concentration was accurately
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reconstructed and the uncertainty was minimized in the area of interest. Lastly, we investigated a dynamic
sensor steering problem. Here we showed, that while we are still able to roughly predict the general shape of
the initial condition with an unfavorably placed stationary sensor, adding a mobile sensor we obtain much
better agreement with the true solution while simultaneously reducing the required measurement time to
one-third of the stationary case. This proves that the presented method is able to successfully handle the
complexity of a moving sensor and steer the sensor to achieve a fast and reliable reconstruction of the (in
practice unknown) initial condition.

While we believe this work to be an important step towards optimally steering unmanned sensor platforms
in crisis situations, there still remain several points for improvement and further investigation of the proposed
algorithm. One potential area for improvement concerns the mathematical formulation and solution of
the inverse problem. In many applications, it is reasonable to assume that the initial condition is sparse.
Integrating this additional knowledge into the solution procedure is expected to speed up the time to solution
and further improve real-time capabilities of the method [I7]. Moreover, we plan to extend the sensor steering
to Reinforcement Learning based approach, where the position and size of the Qol in each step is determined

by an agent that was previously trained based on trial-and-error interactions with the forward model [12].

Acknowledgement

DW and AP gratefully acknowledge the funding by dtec.bw - Digitalization and Technology Research Center
of the Bundeswehr (project RISK.twin). dtec.bw is funded by the European Union - NextGenerationEU.

References

[1] Alen Alexanderian. Optimal experimental design for infinite-dimensional Bayesian inverse problems

governed by PDEs: a review. Inverse Problems, 37(4):043001, 2021. doi:10.1088/1361-6420/abel0c.

[2] Alen Alexanderian, Noemi Petra, Georg Stadler, and Omar Ghattas. A-optimal design of experiments
for infinite-dimensional Bayesian linear inverse problems with regularized {y-sparsification. SIAM Jour-

nal on Scientific Computing, 36(5):A2122-A2148, 2014. doi:10.1137/130933381.

[3] Alen Alexanderian and Arvind K. Saibaba. Efficient D-optimal design of experiments for infinite-
dimensional Bayesian linear inverse problems. SIAM Journal on Scientific Computing, 40(5):A2956—
A2985, 2018. |doi:10.1137/17M115712X.

[4] Hans Wilhelm Alt. Lineare Funktionalanalysis. Springer Berlin Heidelberg, Berlin, Heidelberg, 2012.
doi:10.1007/978-3-642-22261-0.

[6] Ahmed Attia, Alen Alexanderian, and Arvind K. Saibaba. Goal-oriented optimal design of experiments
for large-scale Bayesian linear inverse problems. Inverse Problems, 34(9):095009, 2018. doi:10.1088/
1361-6420/aad210.

20


https://doi.org/10.1088/1361-6420/abe10c
https://doi.org/10.1137/130933381
https://doi.org/10.1137/17M115712X
https://doi.org/10.1007/978-3-642-22261-0
https://doi.org/10.1088/1361-6420/aad210
https://doi.org/10.1088/1361-6420/aad210

[6]

[10]

[11]

[12]

[13]

[15]

[17]

Igor A. Baratta, Joseph P. Dean, Jorgen S. Dokken, Michal Habera, Jack S. Hale, Chris N. Richardson,
Marie E. Rognes, Matthew W. Scroggs, Nathan Sime, and Garth N. Wells. DOLFINx: The next
generation FEniCS problem solving environment, 2023. doi:10.5281/zenodo.10447666.

Jacopo Bonari, Lisa Kithn, Max von Danwitz, and Alexander Popp. Towards real-time urban physics
simulations with digital twins. In 2024 28th International Symposium on Distributed Simulation and

Real Time Applications (DS-RT), pages 18-25, 2024. doi:10.1109/DS-RT62209.2024.00013.

Nada Cvetkovi¢, Han Cheng Lie, Harshit Bansal, and Karen Veroy. Choosing observation operators to
mitigate model error in Bayesian inverse problems. SIAM/ASA Journal on Uncertainty Quantification,

12(3):723-758, 2024. doi:10.1137/23M1602140!

Yair Daon and Georg Stadler. Mitigating the influence of the boundary on PDE-based covariance
operators. Inverse Problems and Imaging, 12(5):1083-1102, 2018. doi:10.3934/ipi.2018045.

Howard C. Elman and Tengfei Su. A low-rank solver for the stochastic unsteady Navier—Stokes problem.
Computer Methods in Applied Mechanics and Engineering, 364:112948, 2020. doi:10.1016/j.cma.
2020.112948.

Lawrence C. Evans. Partial differential equations, volume 19 of Graduate studies in mathematics.

American Mathematical Society, Providence, Rhode Island, second edition edition, 2022.

Clemens Fricke, Daniel Wolff, Marco Kemmerling, and Stefanie Elgeti. Investigation of reinforcement
learning for shape optimization of 2D profile extrusion die geometries. Advances in Computational

Science and Engineering, 1(1):1-35, 2023. doi:10.3934/acse.2023001.

Nathan Halko, Per-Gunnar Martinsson, and Joel A. Tropp. Finding structure with randomness: Prob-
abilistic algorithms for constructing approximate matrix decompositions. STAM Review, 53(2):217-288,

2011. |[doi:10.1137/090771806

Tobin Isaac, Noemi Petra, Georg Stadler, and Omar Ghattas. Scalable and efficient algorithms for
the propagation of uncertainty from data through inference to prediction for large-scale problems, with
application to flow of the Antarctic ice sheet. Journal of Computational Physics, 296:348-368, 2015.
doi:10.1016/7.jcp.2015.04.047.

Edo Liberty, Franco Woolfe, Per-Gunnar Martinsson, Vladimir Rokhlin, and Mark Tygert. Randomized
algorithms for the low-rank approximation of matrices. Proceedings of the National Academy of Sciences,

104(51):20167-20172, 2007. doi:10.1073/pnas.0709640104.

Noemi Petra and Georg Stadler. Model variational inverse problems governed by partial differential
equations. ICES REPORT 11-05, The Institute for Computational Engineering and Sciences, The Uni-
versity of Texas at Austin, 2011. URL: https://math.nyu.edu/~stadler/papers/PetraStadleril.
pdf.

Konstantin Pieper and Daniel Walter. Linear convergence of accelerated conditional gradient algorithms
in spaces of measures. ESAIM: Control, Optimisation and Calculus of Variations, 27:38, 2021. |doi:
10.1051/cocv/2021042.

21


https://doi.org/10.5281/zenodo.10447666
https://doi.org/10.1109/DS-RT62209.2024.00013
https://doi.org/10.1137/23M1602140
https://doi.org/10.3934/ipi.2018045
https://doi.org/10.1016/j.cma.2020.112948
https://doi.org/10.1016/j.cma.2020.112948
https://doi.org/10.3934/acse.2023001
https://doi.org/10.1137/090771806
https://doi.org/10.1016/j.jcp.2015.04.047
https://doi.org/10.1073/pnas.0709640104
https://math.nyu.edu/~stadler/papers/PetraStadler11.pdf
https://math.nyu.edu/~stadler/papers/PetraStadler11.pdf
https://doi.org/10.1051/cocv/2021042
https://doi.org/10.1051/cocv/2021042

[18]

[19]

[20]

23]

[24]

Alessio Spantini, Tiangang Cui, Karen Willcox, Luis Tenorio, and Youssef Marzouk. Goal-oriented
optimal approximations of Bayesian linear inverse problems. SIAM Journal on Scientific Computing,

39(5):9167-S196, 2017. |doi:10.1137/16M1082123

Trond Steihaug. Local and superlinear convergence for truncated iterated projections methods. Math-

ematical Programming, 27(2):176-190, 1983. doi:10.1007/BF02591944|

Umberto Villa, Noemi Petra, and Omar Ghattas. hIPPYlib: An extensible software framework for
large-scale inverse problems governed by PDEs: Part I: Deterministic inversion and linearized Bayesian

inference. ACM Transactions on Mathematical Software, 47(2):1-34, 2021. |doi:10.1145/3428447.

Max von Danwitz, Jacopo Bonari, Philip Franz, Lisa Kithn, Marco Mattuschka, and Alexander Popp.
Contaminant dispersion simulation in a digital twin framework for critical infrastructure protection. In
9th European Congress on Computational Methods in Applied Sciences and Engineering. CIMNE, 2024.
doi:10.23967/eccomas.2024.301.

Sonja Wogrin. Model Reduction for Dynamic Sensor Steering: A Bayesian Approach to Inverse Prob-
lems. Master’s thesis, Massachusetts Institute of Technology. Computation for Design and Optimization

Program., 2008. URL: http://hdl.handle.net/1721.1/43739.

Sonja Wogrin, Arjun Singh, Douglas Allaire, Omar Ghattas, and Karen Willcox. From Data to De-
cisions: A Real-Time Measurement—Inversion—Prediction—Steering Framework for Hazardous Events
and Health Monitoring, pages 195-227. Springer International Publishing, Cham, 2023. |doi:
10.1007/978-3-031-27986-7_8.

Keyi Wu, Peng Chen, and Omar Ghattas. An offline-online decomposition method for efficient linear
Bayesian goal-oriented optimal experimental design: Application to optimal sensor placement. SIAM

Journal on Scientific Computing, 45(1):B57-B77, 2023. doi:10.1137/21M1466542.

22


https://doi.org/10.1137/16M1082123
https://doi.org/10.1007/BF02591944
https://doi.org/10.1145/3428447
https://doi.org/10.23967/eccomas.2024.301
http://hdl.handle.net/1721.1/43739
https://doi.org/10.1007/978-3-031-27986-7_8
https://doi.org/10.1007/978-3-031-27986-7_8
https://doi.org/10.1137/21M1466542

	EB template Cames
	1887_doWer
	Introduction
	Background
	Forward problem: Contaminant distribution evolution
	Inverse problem: Source identification
	Goal-oriented optimal experimental design: Sensor placement

	Discretization, preconditioning, and sparsification
	Finite element discretization
	Preconditioning of discrete inverse problem
	Sparsification of sensor layouts and optimality criteria

	Goal-orientation and sensor steering
	Goal-oriented optimal experimental design
	Dynamic sensor steering based on goal-oriented optimal sensor placement

	Numerical results of optimal experimental designs
	OED 1. Sensor configuration to reconstruct initial condition in critical area
	OED 2. Configuration to monitor concentration evolution in critical area
	OED 3. Dynamic sensor steering for source identification

	Conclusion and Outlook




