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Abstract

This paper presents a novel framework for goal-oriented optimal static sensor placement and

dynamic sensor steering in PDE-constrained inverse problems, utilizing a Bayesian approach

accelerated by low-rank approximations. The framework is applied to airborne contaminant

tracking, extending recent dynamic sensor steering methods to complex geometries for compu-

tational efficiency. A C-optimal design criterion is employed to strategically place sensors, min-

imizing uncertainty in predictions. Numerical experiments validate the approach’s effectiveness

for source identification and monitoring, highlighting its potential for real-time decision-making

in crisis management scenarios.

Keywords— Airborne contaminant transport, Advection-diffusion equation, Large-scale inverse prob-

lems, Optimal experimental design, Dynamic sensor steering

1 Introduction

The growing capabilities of unmanned systems (UxS), such as unmanned aerial vehicles (UAVs, drones), au-

tonomous underwater vehicles (AUVs), and unmanned ground vehicles, e.g., mobile robots, have made these

systems indispensable tools in crisis management situations (see Figure 1 for examples). Such autonomous

sensor platforms facilitate the collection of valuable information in regions where manned missions would be

too dangerous or simply impossible due to inaccessibility for humans. However, during the routing of a sensor

platform in the complex environment of a crisis situation, the question arises as to at which locations (addi-

tional) measurements provide an information gain and thereby constitute added value for decision makers.

∗Corresponding Author e-mail: marco.mattuschka@dlr.de
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Figure 1: Unmanned systems operated as autonomous sensor platforms at German Aerospace

Center (DLR). Images: DLR, CC BY-NC-ND 3.0

This very question leads to the need for a goal-oriented optimal sensor placement and in the dynamic case to

a sensor steering problem. The task of selecting optimal measurement locations to infer system knowledge

falls within the classical field of optimal experimental design (OED). Goal-oriented optimal experimental

design generalizes this concept by determining the optimal design not for the parameters themselves, but

for a derived quantity of interest (QoI). This approach offers two major advantages. First, it enables a

more application-specific formulation, as the optimal design targets the QoI directly rather than the entire

parameter space of the inverse problem. Second, it substantially reduces computational cost, since the QoI

typically has far fewer degrees of freedom in its discretized representation.

This contribution addresses the problem in the mathematical setting of inverse problems constrained by

partial differential equations (PDEs). A selected sensor steering strategy is developed and applied to the

specific challenge of mapping airborne contaminant dispersion in the region of interest using discrete sensor

measurements. By specifying the region of interest in both space and time, the problem naturally falls within

the framework of goal-oriented optimal sensor placement.

Current methods for contaminant source identification and spread prediction rely heavily on an infor-

mative sensor placement. The selection of measuring points (sensor positions) is crucial, yet many existing

studies focus solely on stationary sensors. This work bridges this gap by incorporating recent advances in

sensor selection and experimental design to derive an algorithm for optimal sensor steering. Our research

focuses on developing a systematic approach to select sensor positions that maximize the accuracy of con-

taminant source identification and prediction. By integrating current methodological advancements, our aim

is to provide a practical solution for rescue workers and first responders, allowing informed decisions in high-
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stakes situations. Whereas the numerical examples presented in this work focus on the specific application

of airborne contaminant transport, the goal-oriented optimal sensor placement strategy is independent of

the considered physical model and, hence, can be easily transferred to other crisis management applications.

Starting point for this work is the recent publication by Wogrin et al. [23] that pioneers a dynamic sensor

steering method in the context of airborne contaminant transport. In this work, we extend this approach

to a significantly more complex geometry. Moreover, the inverse problem solution follows a more advanced

approach that uses a Laplacian-like operator of trace class as prior information within a Bayesian inverse

problem framework [20, 16]. To achieve approximate real-time capability, low-rank approximations of the

Hessian matrix are precomputed in an offline phase [13, 15], enabling efficient problem solving in the online

phase using a preconditioned inexact Newton-CG solver [19].

In the calculation of an optimal (stationary) sensor layout, Alexanderian et al. [3] used a reduced model

for the contaminant transport to determine an A-optimal design that minimizes the average point-wise pos-

terior variance of the inferred parameter vector. Following extensions proposed in [18] and [5], we focus on

a goal-oriented design, i.e., the uncertainty associated with the prediction of the contaminant concentration

in a specific region and time is minimized. To demonstrate the feasibility of sensor steering, a relaxed op-

timality criterion compared to the A-optimal criterion is chosen for this test case. Specifically, we use the

C-optimal criterion, which focuses on minimizing the posterior variance of a particular linear combination

of the inversion parameters. This approach eliminates the need to estimate the trace of the full covariance

matrix and allows us to directly assess the impact of the covariance matrix on the parameter of interest.

Alternatively, a D-optimal goal-oriented design in infinite dimensions maximizes the expected information

gain [24, 3]. For a broader perspective on optimal experimental design for infinite-dimensional Bayesian

inverse problems governed by PDEs, the interested reader is referred to [1]. The remainder of this paper is

organized as follows. Section 2 provides background and mathematical formulations of the forward problem

of contaminant transport, the inverse problem of source identification, as well as sensor positioning strate-

gies and goal-oriented optimization. The combination of methodological developments into an algorithm for

goal-oriented optimal sensor placement and steering is described in Section 3. Numerical results are pre-

sented in Section 5 for three test cases of goal-oriented optimal sensor placement, namely (a) to identify an

instantaneous contaminant source in a user-defined area of interest, (b) to monitor an area of special interest

over a predefined time window, and (c) to steer a moving sensor. Finally, Section 6 offers a conclusion and

an outlook.
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Figure 2: Forward simulation of airborne contaminant transport on a campus geometry. Computa-

tional domain Ω with highlighted inflow (Γ−), outflow (Γ+), and characteristic (Γ0) boundaries as

well as the initial contaminant source u(0, ·) = m(·) (above). Estimated wind vector field v (left),

initial condition (middle), and simulated concentration at t = 10 s (right).

2 Background

2.1 Forward problem: Contaminant distribution evolution

A mathematical description of the transport of a substance (contaminant) concentration u in a bounded

open domain Ω ⊆ Rn for n ∈ {2, 3}, which is shown in Figure 2, is given by the following equation:

rK(u) := ut − κ∆u+ v · ∇u = 0 in (0, T )× Ω,

κ∇u · n = 0 in (0, T )× (Γ+ ∪ Γ0),

u = 0 in (0, T )× Γ−,

u(0, ·) = m in Ω.

(1)

The parameter-dependent forward problem shown in Equation 1 is formulated for realizations of the param-

eter m. A visualization of the contaminant dispersion is provided in Figure 2.

The underlying transport process is governed by a wind vector field v, which is assumed to be sufficiently

smooth, bounded — i.e., v ∈ L∞(Ω,Rn) — and divergence-free — i.e., ∇ · v = 0. The example wind vector

field used hereinafter is shown in Figure 2 (left). Based on the orientation of the wind vector relative to the

outward-pointing boundary normal n, the domain boundary ∂Ω is partitioned into three disjoint subsets:

the outflow boundary Γ+ ⊂ ∂Ω, where v ·n > 0; the characteristic (or tangential) boundary Γ0 ⊂ ∂Ω, where

v · n = 0; and the inflow boundary Γ− ⊂ ∂Ω, where v · n < 0, following the convention in [10].
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2.2 Inverse problem: Source identification

Figure 3: Inverse Problem. Measurements at 96 equidistantly spaced sensor positions (left) and

reconstructed initial condition (solution of the inverse problem, right).

Whenever measurements of the concentration at discrete locations and times are available, an obvious

question is whether the initial condition can be reconstructed on the basis of the given measurements. The

respective inverse problem is illustrated in Figure 3, see also [20]. As function space for the initial condition,

we consider an admissible subset of square-integrable functions. For instance, we define D := H1,2
Γ−

(Ω) :={
m ∈ H1,2(Ω)

∣∣ m|Γ− = 0
}
, where H1,2(Ω) denotes the Sobolev space of square-integrable functions whose

weak derivatives ∂iu exist and are square-integrable. The gradient is denoted as ∇u = (∂1u, ∂2u), and the

norm on H1,2(Ω) is defined as

∥u∥H1,2(Ω) :=

(∫
Ω

u2 + ∥∇u∥22 dx
)1/2

.

In this setting, the estimation of the initial value leads to an optimization problem, which will be addressed

in the following. The first step is to describe sensor measurements within this formulation.

To incorporate sensor measurements, let T0 > 0 be fixed and consider space-time points (tobsi , xobs
i ), i =

1, . . . , q, with tobsi ∈ [T0, T ) and interior points xobs
i ∈ Ω = Ω̄ \ ∂Ω. For the transient problem in Equation 1

on a smooth domain Ω, the diffusion term induces strong smoothing on the parameter field m. By standard

parabolic regularity (see, e.g., [11]), u(t, ·) embeds in the space of continuous functions C0(Ω̄) on the closure of

Ω for any t > 0. Since continuity is only required near the observation points, define Ω̄o :=
⋃q

i=1 Br0(x
obs
i ) ⊂

Ω, where r0 > 0 is chosen such that u ∈ C0([T0, T ]× Ω̄o) admits a continuous representation. This ensures

the formulation remains valid for less regular domains Ω. Finally, we define a well-posed and bounded space-

time observation operator B : C0([T0, T ] × Ω̄o) → Rq by u 7→ ∑q
i=1 δ(tobsi ,xobs

i )(u) ei =
(
u(tobsi , xobs

i )
)q
i=1

,

where ei is the standard basis of Rq. Using this observation operator, the final parameter-to-observable map

F : D → Rq is defined by

F(m) := B ◦ K(m), with K(m) := u such that rK(u) = m. (2)

Here K is the parameter-to-state map, mapping parameter space D to state space, often referred to as

’model’ in this context [8]. An example problem in which K maps the initial condition u0 to the solution of

u(t = 10 s, ·) is illustrated in Figure 2.
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The next step is to model sensor noise, which is usually present in real-world measurements. To this end,

it is assumed that the observations d = F(m)+ ϵ contain centered additive Gaussian noise ϵ ∼ N (0,Γnoise)

due to measurement uncertainties. For the sake of simplicity, it is further assumed that the sensor noise at

the different sensor positions is uncorrelated and of equal magnitude, represented by the diagonal matrix

Γnoise = diag(σ2, . . . , σ2). Moreover, the conformity of the simulation with the measured values, also called

misfit, y = F(m)− d, is evaluated in the following norm

∥F(m)− d∥2Γ−1
prior

= 1/σ2

q∑
i=1

(
u(tobsi , xobs

i )− di
)2

.

In summary, the inverse problem consists in using available measurements d to infer the values of the

unknown parameter field m. Alternatively, the maximum a-posteriori point mmap can be characterized by

the solution of the minimization problem

mmap = argmin
m∈D

J(m) :=
1

2
∥F(m)− d∥2Γ−1

noise
+

1

2
∥m−mprior∥2Γ−1

prior
, (3)

with the prior information encoded as a Tikhonov regularization term.

Unfortunately, the system is heavily under-determined under real conditions, as sensor measurements are

only available at a few locations, but an initial condition is to be reconstructed for the entire domain. In order

to transform this into a well-posed problem, some prior knowledge is needed and a formulation as a Bayesian

inverse problem provides a suitable framework. In this setting, a Gaussian prior N (mprior,Γprior) with mean

mprior and covariance Γprior is chosen for parameter regularization. Then, the posterior density of m satisfies

by Bayes’ theorem: πpost(m|d) ∝ πlike(d|m)πprior(m) . Here, πlike(d|m) ∝ exp(12 ∥F(m)− d∥2Γ−1
noise

) is the

likelihood function under the observational Gaussian noise ϵ ∼ N (0,Γnoise). Due to the linearity of F , the
posterior distribution is again a Gaussian distribution N (mmap,Γpost) with covariance and mean

Γpost = (F∗Γ−1
noiseF + Γ−1

prior)
−1 and mmap = Γpost(F∗Γ−1

noised+ Γ−1
priormprior) . (4)

The formal adjoint operator F∗ : Rq → D∗ is required for this framework. For the mapping F : D → Rq

between Hilbert spaces, the formal adjoint operator F∗ is characterized by the relation ⟨F(m),y⟩Rq =

⟨m,F∗(y)⟩L2(Ω) for all y ∈ Rq and m ∈ D, and its existence follows from Riesz’s representation theorem [4].

The posterior covariance or Hessian H := F∗Γ−1
noiseF + Γ−1

prior of the objective function J , see Equation 3,

contains a wealth of information about the system. In line with the Bayesian framework [20], the covariance

or inverse Hessian matrix can be employed to predict the uncertainty of the system and is of particular

significance for optimal sensor placement in the following chapter.

The mean value mmap is a reliable estimate for the initial value and thus represents the solution of the

inverse problem Figure 3. In order to calculate mmap from Equation 4, a further specification of the adjoint

operator F∗ is necessary. By applying partial integration to the weak form of Equation 1, the adjoint state

p can be derived and satisfies the following equation:

−pt − κ∆p− div(pv) = −1/σ2

q∑
i=1

yi δ(tobsi ,xobs
i ) in (0, T )× Ω,

(vp+ κ∇p) · n = 0 in (0, T )× (Γ+ ∪ Γ0),

p = 0 in (0, T )× Γ−,

p(T, ·) = 0 in Ω.

(5)
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for given y ∈ Rq. Finally, the adjoint operator F∗ can be explicitly determined, resulting in F∗y = p(0, ·).

2.3 Goal-oriented optimal experimental design: Sensor placement

So far, a model for the forward problem and an estimate of the initial condition, given a fixed sensor config-

uration, have been derived, but the question of how such a sensor arrangement ought to be chosen remains

unanswered. As mentioned in the previous chapter, the covariance of the posterior, or more specifically, the

Hessian matrix, plays a crucial role in developing an indicator for the uncertainty in the system. In classical

Bayesian optimal experimental design (OED), a design functional Φ serves as a quantitative criterion for the

uncertainty described by the covariance matrix and is used to guide the selection of an optimal experimental

setup. Specifically, the problem

min
w∈W

(
Φ[Γpost(w)] +R(w)

)
, (6)

is solved, where W denotes the set of all valid sensor configurations, and R is a suitable regularization term.

As in [2], a finite set of candidate sensor placements (tobsi , xobs
i ) ∈ [T0, T ]×Ω for 1 ≤ i ≤ q will be considered.

An example of a spatial grid with 96 sensors can be seen in Figure 3. For this set of candidate locations,

a weight vector w ∈ [0, 1]q is defined with the i-th entry corresponding to the i-th location in space and

time. In fact, the weight vector decides which measurements are realized or taken into account. In the case

of stationary sensors located at positions xobs
s , measurements collected from these spatial points over the

entire time horizon, denoted as (·,xobs
s ), are constantly weighted, included in the misfit. Hence, the number

of independent entries in the weight vector reduces to the number of possible stationary sensor positions.

If we consider a mobile sensor, we have a trajectory γ : {tobs0 , ..., tobss } → {xobs
0 , ...,xobs

s }. For points on the

trajectory (tobsi ,xobs
i ) the sensor weight is wi = 1. All weights away from the trajectory are set to 0. To

adjust the forward model to the chosen sensor configuration, we consider the diagonal matrix W ∈ Rq×q

with Wii = wi. If we denote the parameter-to-observable map for all sensor positions as F , then for each

design w ∈ W, we have F(w) = W F . Taking this further and using W to modify the noise matrix, the

influence of a selected sensor layout is also captured in the likelihood function

πlike(d|m,w) ∝ exp

{
−1

2
(F(m)− d)TW

1
2Γ−1

noiseW
1
2 (F(m)− d)

}
.

In consequence, the posterior covariance and mean also depend on the sensor layout via (cf. Equation 4)

Γpost(w) = (F∗W
1
2Γ−1

noiseW
1
2F + Γ−1

prior)
−1 and mmap(w) = Γpost(F∗Γ−1

noiseWd+ Γpriormprior) . (7)

In Bayesian optimal experimental design, the objective is to construct experiments that minimize the

posterior uncertainty in the unknown parameter fieldm. This approach belongs to the broader class of inverse

uncertainty quantification methods. Goal-oriented optimal experimental design extends this framework by

additionally incorporating forward uncertainty quantification into the design objective. This is achieved

by introducing a goal quantity of interest (QoI), denoted by ρ. Following [5, Section 3], we consider a QoI

defined as the action of a bounded linear operator P on the parameter field, i.e., ρ = Pm. Due to the linearity

of P, the prior distribution of ρ is Gaussian. In particular, ρ ∼ N (ρprior, Σprior), with mean ρprior = Pmprior

and covariance Σprior = PΓpriorP∗. The resulting Bayesian inverse problem is well defined, and the posterior
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distribution of the QoI given measurements d is also Gaussian, πpost(ρ | d) ∼ N (ρpost, Σpost). The posterior

mean and covariance are given by

Σpost = P Γpost P∗ and ρpost = Pmmap,

where Γpost and mmap are the derived quantities from Equation 7.

3 Discretization, preconditioning, and sparsification

3.1 Finite element discretization

To solve the PDE problems (Equation 1 and Equation 5) numerically, a finite element discretization is

employed using ndof Lagrange basis functions Vh = span{ϕ1, . . . , ϕndof
}. Moreover, we find an identification

between a vector in Rndof and finite elements I : Rndof → Vh via I(a) =
∑ndof

i=1 aiϕi. This leads to discretized

versions of the parameter-to-observable map Fh : Rndof → Rq defined by Fh(mh) = B(uh), where uh solves

Equation 1 weakly, and its adjoint operator F∗
h : Rq → Rndof given by F∗

hy = ph(0, ·), where ph solves

Equation 5 weakly. The identification is an isometry, i.e., ⟨I(a), I(b)⟩L2(Ω) = ⟨a, b⟩M =: aT M b, where the

mass matrix Mji :=
∫
Ω
ϕi(x)ϕj(x) dx, M ∈ Rndof×ndof is used to define the corresponding scalar product.

For further details of the finite element discretization, we refer to [20] and [21].

3.2 Preconditioning of discrete inverse problem

To solve the discrete inverse problem, the prior distribution needs to be carefully chosen. A Laplacian-like

operator of trace class A := (η I − γ∆), with Robin boundary condition, γ∇m ·n+ βm = 0 in (0, T )× ∂Ω,

is applied with the constant β proposed in [9]. This definition serves as a suitable covariance operator,

e.g., Γprior = A−2 = (η I − γ∆)−2. In addition, its discrete counterpart is given by the mapping Γprior,h :

Rndof → Rndof via Γprior,h = (M−1A)−2 = A−1MA−1M := R−1M , with matrix representation Aij =∫
ϕi(x)Aϕj(x) dx.

Combining this covariance operator together with an appropriate prior mean mprior (in our applications,

e.g., mprior = 0) renders the inverse problem well-posed and its solution can be found by solving the following

equation for mmap

Hh(w)mmap = F∗
hΓ

−1
noise(Wd) + Γprior,h

−1 mprior, (8)

for the discrete version of the Hessian, that is, Hh(w) = F∗
hW

1
2Γ−1

noiseW
1
2Fh +Γprior,h

− 1. Since determining

the Hessian matrix directly is computationally expensive for large-scale problems (O(ndof)-PDE solutions),

an iterative conjugate gradient (CG) method is employed. This approach requires only the action of the

Hessian-vector on a given vector mk ∈ Rndof at each iteration. Specifically, the Hessian action is computed by

the following steps: first, solve the forward equation d = Fh(mk) = B(uh), then, solve the adjoint equation

F∗
h

(
W

1
2Γ−1

noiseW
1
2 d

)
= ph(0, ·), next, compute m̃k = Γprior,hmk, and finally obtain the Hessian action as

Hh(w)mk = ph(0, ·) + m̃k.

Since two PDE solutions have to be determined in each iteration, a reduced model of the Hessian matrix

is created in advance so that the inverse problem can be solved quickly. Using the Cholesky decomposition
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of the prior covariance, Γprior,h
−1 = (M−1A)(M−1A)∗, one obtains the preconditioned Hessian matrix as

(A−1
h )∗Hh(w)A−1

h = (Fh ◦ A−1
h )∗W

1
2Γ−1

noiseW
1
2 (Fh ◦ A−1

h ) + I, (9)

for A−1
h = (A−1M). This preconditioned system F ◦ A−1 has fast decaying eigenvalues and so, we follow

[20, 14] in constructing a low rank approximation of the prior-preconditioned misfit part of the Hessian, i.e.,

H̃misfit
h (w) := (Fh ◦ A−1

h )∗W
1
2Γ−1

noiseW
1
2 (Fh ◦ A−1

h ) by solving the symmetric eigenvalue problem [13, 15]:

Hmisfit
h (w)vi = λi M Γprior,h

−1vi = λiRvi

for an orthogonal basis Vr = (v1, ..., vr) ∈ Rndof×r and λ1 ≥ ... ≥ λr with respect to the scalar product in-

duced by MΓprior,h
−1, i.e., ⟨a, b⟩MΓprior,h

−1 =: aT MΓprior,h
−1 b. Applying the Sherman-Morrison-Woodbury

formula, we write

Ah(Hh(w))−1Ah = (H̃misfit
h (w)− I)−1 ≈ I + VrDr(w)V T

r
(10)

whereDr = diag(λ1/(1+λ1), ..., λr/(1+λr)) is a low rank approximation of the Hessian. Detailed information

on this can be found in [14] and [2]. Using this approximation, the solution of equation Equation 8 can be

determined with a preconditioned Newton-CG method, see [20, 19].

3.3 Sparsification of sensor layouts and optimality criteria

Obviously, the trace of the posterior covariance will be minimal exactly when every sensor weight is set to

1, which corresponds to using every available piece of information to reduce the level of uncertainty. Thus,

to derive a sparse sensor configuration, a penalty term must be introduced into the optimization problem

(Equation 6). A common choice for the regularization term in Equation 6 is the ℓ1-norm, which leads to a

convex minimization problem with a unique minimizer. Specifically, the regularization term is defined as

R(w) := α∥w∥1 = α1⊤w, (11)

where α > 0 is the regularization parameter and 1 is a vector of ones. Finally, a binary sensor configuration

{0, 1}q is obtained by considering only sensor locations with weights above a certain threshold.

It should be noted that the resulting binary vector is not the optimal binary weight vector. Obtaining

such an optimal solution requires solving the ℓ0-regularized problem considered in [2]. The key idea in that

approach is to employ a regularization term based on the number of nonzero entries in w, i.e.,

R(w) := α
∑
wi ̸=0

1.

To approximate this discontinuous penalty, a sequence of strictly convex functions fj(w) is introduced such

that fj(w) −→ ∑
wi ̸=0 1 as j →∞. At each iteration, the optimization problem

min
w∈W

(
Φ[Γpost(w)] + fj(w)

)
is solved and and the optimizer obtained at iteration j is used as the initial value for iteration j + 1.

This procedure entails substantially higher computational cost. Moreover, as observed empirically in [2,

Section 6.1.4], the sensor configurations obtained using this ℓ0-approximation strategy offer only marginal
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Figure 4: Region of interest P defining the QoI (left) and point-wise variance σ2(x) of mmap

obtained with five selected sensors (green spheres, right)

improvement compared with those produced by ℓ1-regularization followed by a simple thresholding step.

Since a highly efficient method is required for the sensor steering presented in Subsection 5.3, we therefore

employ an ℓ1-regularization approach.

The A-optimality criterion for sensor placement minimizes the integrated point-wise posterior variance

in linear Bayesian inverse problems:
∫
Ω
Var[m(x)] dx = tr(Γpost(w)). To compute the discrete variance field

σ2(x) := Var[m(x)], one can extract the diagonal of the inverse Hessian matrix in the finite element basis,

assigning each diagonal entry to its corresponding node. However, this exact calculation is computationally

expensive (O(ndof)), so the reduced-order model (Equation 10) is used for visualization. Figure 4 (right)

shows the variance field σ2(x) of mmap obtained with a C-optimal sparse sensor layout.

Moreover, the prior covariance is computed using approximate random sampling [20]. Last, but not

least, computing the trace of the inverse Hessian is costly. Therefore, we relax A-optimality to a C-optimal

design, which requires only the evaluation of the Hessian’s action on a fixed vector c ∈ Rndof [1]. In this

case, the design criterion becomes Φ(w) = cTΓpost(w) c.

4 Goal-orientation and sensor steering

4.1 Goal-oriented optimal experimental design

In the next step, the presented method is adjusted to achieve goal-oriented C-optimal experimental designs

for stationary sensors. The operator P : D → R is first selected so that the design, namely the sensor

placement, is optimized to observe initial conditions in an area P ⊂ Ω, shown in Figure 4. This simplification

via forward uncertainty quantification, defined by the operator P , leads to a C-optimal design for the problem

in Equation 7, as described in [1].

The indicator function of a subset, that is the function 1A : Ω→ {0, 1}, which for a given subset A of Ω,

attains the value 1 at points in A and the value 0 at points outside of A is used to define our operator P .
If an optimal design for the initial conditions m is desired, the operator P does not depend on the solution

u, or more specifically, it does not depend on the operator F . Concretely, the operator for the QoI is given

by P(m) := ⟨m,1P ⟩L2(Ω) =

∫
P

m(x) dx. By identifying the dual space of L2(Ω) and defining the adjoint

10
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Figure 5: Illustration of an example QoI 1
[TQoI

0 ,TQoI
final]×P

(kept constant over time, left) and solution

K∗(1
[TQoI

0 ,TQoI
final]×P

)(t = 0, ·) of transport problem induced by adjoint operator K∗ (right).

operator, it follows that P∗ = 1P , and the design function for the optimal experimental design takes the form

tr[Γpost(w)] = ⟨1P ,Γpost(w)1P ⟩L2(Ω). In a finite element setting, the function 1P is represented by a vector

c ∈ Rndof via the usual projection, i.e., 1P − ch ⊥ Vh into the finite element space Vh = {ϕ1, . . . , ϕndof
}.

According to [1, Section 4.1], the design function is given by Φ(w) = cTh M H−1
h (w) ch. Together with a

suitable regularization term, e.g., α∥w∥l1 , an optimal design can be obtained by minimizing the objective

cTh M H−1
h (w) ch + α∥w∥l1 which is illustrated in Figure 4. If this procedure is generalized to determine an

optimal sensor placement for the contaminant concentration over a specific spatial region and time interval,

the operator P must be extended accordingly. Specifically, by defining P via a subset of space-time, e.g.,

[TQoI
0 , TQoI

final]× P , the operator P is then constructed as

P(m) =

∫ T

0

∫
Ω

1[TQoI
0 ,TQoI

final]×P K(m)(t,x) dt dx =

∫ TQoI
final

TQoI
0

∫
P

u(t,x) dt dx.

Again, the adjoint of P is needed. For this, we calculate

P∗(1)(m̂) = ⟨K(m̂),1[TQoI
0 ,TQoI

final]×P ⟩L2(Ω)

= ⟨m̂,K∗1[TQoI
0 ,TQoI

final]×P )⟩L2(Ω),

and therefore the map c is obtained by c := P∗(1) = K∗(1[TQoI
0 ,TQoI

final]×P ), since m̂ was arbitrary. More

precisely, the map c satisfies the following PDE:

−ct − κ∆c− div(cv) = 1[TQoI
0 ,TQoI

final]×P in (0, T )× Ω,

(vc+ κ∇c) · n = 0 in (0, T )× (Γ+ ∪ Γ0),

c = 0 in (0, T )× Γ−,

c(T, ·) = 0 in Ω.

(12)

In Figure 5 (left) an example of a constant-over-time QoI 1[TQoI
0 ,TQoI

final]×P is shown. The corresponding map

c(t = 0) is visualized in Figure 5 (right). Returning to the definition, the objective for the goal-oriented

sensor design reads

Φ(w) = PH−1(w)P∗(1) = P(H−1(w)c)

= ⟨K(H−1(w)c),1[TQoI
0 ,TQoI

final]×P ⟩L2(Ω)

= ⟨H−1(w)c,K∗(1[TQoI
0 ,TQoI

final]×P )⟩L2(Ω) = ⟨c,H−1(w)c⟩L2(Ω).
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Thus, the time-dependent case is reduced to the fact that an optimal design for initial conditions for the

transported QoI c must be found and coincides with the first case.

For the numerical evaluation of this objective function and its gradient, which are required to mini-

mize the regularised design function using the L-BFGS-B solver, we start again with the inverse low-rank

approximation of the Hessian from Equation 10 and proceed to compute the design function as follows

Φ(w) = ⟨c,H−1(w)c⟩L2 ≈ cThA−1
h (I − VrDrV

T
r )A−1

h ch .

For a shorter notation, we set q̂h := (I − VrDrV
T
r )A−1

h ch, qh := A−1
h q̂h and obtain Φ(w) ≈ cTh qh and so the

calculation of the of the trace consists only a projection in the low rank subspace and solutions of an elliptic

problem A resp. Ah, for which very fast solving strategies exists. To calculate the derivative, we follow [2]

and conclude for this simplified case

∂

∂wi
Φ(w) = (F i(q))2 ≈ (F i

h ◦ A−1
h (q̂))2 (13)

So, this calculation can be replaced by a surrogate model for the preconditioned forward operator. In

principle, this procedure can be extended to a stronger, A- or D-optimal design.

4.2 Dynamic sensor steering based on goal-oriented optimal sensor placement

A method will now be presented which is capable of dynamically controlling a sensor in such a way that

a greater knowledge of the actual contaminant concentration can be generated. We assume that some

knowledge about the concentration is already available due to certain stationary sensors, i.e., that the true

contaminant already possesses an appreciable concentration at the sensor location, to permit a solution to

the inverse problem. This situation can be seen in Figure 6. We then set the QoI so that its center point is

at the maximum of the reconstructed initial condition. The optimum design is then calculated on this basis

and the sensor is steered to the position with the highest weight w. The next measurement is then awaited

and the procedure is started again from the beginning. The method is shown schematically in Figure 7. In

this way, we obtain a trajectory γ : {tobs0 , ..., tobss } → {xobs
0 , ...,xobs

s } for the steered sensor.

5 Numerical results of optimal experimental designs

In order to simulate scenarios on real-world domains, we use a highly automated process for grid genera-

tion. Building imprints as obstacles for two-dimensional contaminant transport are imported directly from

Open Street Map (OSM), and locally refined triangular meshes are generated for the region of interest [7].

The forward model is implemented with stabilized linear Lagrange finite elements in the software frame-

work FEniCs [6]. The FEniCs extension hIPPYlib (Inverse Problem PYthon library [20]) was used in the

implementation of the inverse problem.

In the three following inverse problem OED examples, we use the forward simulation of Equation 1

illustrated in Figure 2 as the ground truth. Two radially symmetric functions

mxs(x;xs, r) = min
{
0.5, exp

(
−ln(ϵ) ∥x− xs∥22 /r2

)}
, ϵ = 0.001
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(a) Sample information (b) Inverse solution

(c) Optimal sensor configuration (d) Steer sensor

Figure 6: Dynamic sensor steering test case with stationary sensor (green) and mobile sensor

(purple trajectory). (a) True concentration field at u(·, t = 2.2 s) during the second steering time

step, (b) Maximum-a-posteriori estimate mmap of inverse problem and algorithmically selected

zone of interest (red square), (c) optimal sensor design, (d) target position of the mobile sensor

(red sphere), true concentration field u(·, t = 7 s) in background of (c) and (d) to visualize transport

problem dynamics
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Sample measurements d for [T0;Tstep]

Solve inverse problem for m

Set center of QoI region
to position of max(m)

Calculate optimal design for QoI

Steer sensor to position
with highest weight w

Tstep ← Tstep + ∆tobs

Figure 7: Algorithm for dynamic sensor steering based on goal-oriented sensor placement [22, 23].

describe the initial concentration field,

u0(x) = mxs(x;xs = [−100m,−80m], r = 25m) +mxs(x;xs = [75m,−80m], r = 25m). (14)

The initial concentration field is transported by the vector field v. For the considered test cases, we estimate

a stationary wind vector field as solution of the incompressible Navier-Stokes equations with wind entering

the given geometry from the south at a velocity of v = 10m s−1. This condition is realized using a Dirichlet

boundary condition. In the inner boundaries that represent the imprints of the buildings, a no-slip condition

is applied. The remaining edges correspond to free boundary conditions. For the chosen Reynolds number

of 50, we obtain the laminar wind field visualized in Figure 2. Moreover, the diffusion coefficient is selected

as κ = 1m2 s−1 resulting in a transport problem with a moderate Peclet number. Finally, the time step size

for the implicit Euler time-stepping scheme is set to 0.05 s. In the parametrization of the prior, the constants

were chosen as η = 8 and γ = 800, yielding the operator A := 8 I − 800∆.

In order to make this problem computationally feasible, reduced-order models (ROMs) of the forward

and adjoint operators are derived. Considering the forward operator Fh : Rndof → Rq, it is observed that it

constitutes a linear mapping from a high-dimensional to a lower-dimensional space. Thus, a singular value

decomposition is performed to construct a ROM; see also [13, 15]. The decomposition provides singular

values λ1 ≥ ... ≥ λr, an L2-orthogonal basis Ur = (u1, ..., ur) ∈ Rndof×r and an orthogonal basis Vr =

(vr, ..., vr) ∈ Rq×r. During the online phase, for example, when the precomputed reduced-order model

(ROM) is used for sensor steering, the selected initial condition is projected, such that only matrix-vector

multiplications are required:

Fh(mh) ≈ Vr Dr Ur M mh,

where mh ∈ Rndof and Dr = diag(λ1, . . . , λr).

As discussed in Equation 9 and Equation 13, it is also viable to construct a ROM directly for the
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Figure 8: Reduced-order modeling. Decay of singular values of Fh and of preconditioned Fh ◦ A
(left), comparison of ROM and forward model Fh evaluated at sensor positions (right).

Figure 9: OED 1. Weights of optimal sensor configuration to monitor P1 (left) and reconstructed

initial condition (right, ground truth shown in Figure 2).

preconditioned forward operator. The singular values of the operators Fh and Fh ◦ A are compared in

Figure 8 (left). It is observed that the singular values of the preconditioned operator decay faster and

therefore less computations have to be performed to construct a ROM with acceptable accuracy. Figure 8

(right) shows that the ROM approximates the forward operator fairly well. Furthermore, the computed

singular value decomposition is reused to approximate the adjoint operator F∗
h : Rq → Rndof with a ROM

as well, namely, F∗
h(y) ≈M Ur Dr Vr y, for y ∈ Rq.

To assess the benefits of the reduced model in the context of forward evaluations, we first performed a

single evaluation of the full-order model, which required approximately 1 s on our hardware. To simulate a

scenario relevant to optimal sensor placement, the reduced model was used to evaluate the full-order model

at 96 spatial positions over 90 time instances, resulting in a total of q = 8640 measurements. In total, we

calculated 200 spectral values. On average, each evaluation of the reduced model took 6.25ms, yielding a

relative speedup of approximately 160 compared to the full-order model.
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Figure 10: OED 2. Weights of optimal configuration to monitor concentration evolution in P2
(left), reconstructed initial condition (middle), prediction of concentration for T = 10 s (right)

Figure 11: OED 2. Point-wise variance σ2 as measure of the uncertainty of the inferred parameter

for the optimal configuration for P2 (left) compared to the full sensor grid (right)

5.1 OED 1. Sensor configuration to reconstruct initial condition in critical area

As first example for a goal-oriented optimal experimental design, we address the problem of identifying

an optimal sensor layout to recover the initial condition in a defined subset of the computational domain

P1 := {(x, y) ∈ Ω | 75 ≤ x ≤ 125, −100 ≤ y ≤ −60} . In a practical application, P1 might represent a critical

area of a chemistry plant site where hazardous material is stored. The inverse problem is posed under

the assumption that only stationary sensors are used. These sensors sample the concentration at a rate of

5Hz, beginning at T0 = 2 s. Measurements taken after 12 s are not taken into account. A noise variance

of σ2 = (0.005)2 is assumed, resulting in a signal-to-noise ratio of approximately SNR ≈ 100. Moreover,

a regularization parameter of α = 0.1 is applied to obtain a sparse sensor configuration, see Equation 11.

The selected domain where the quantity of interest (QoI) is inferred is indicated in Figure 4 (left), along

with the optimal sensor configuration (Figure 4 (right)). Moreover, the point-wise variance, which represents

the uncertainty in the reconstruction, is also illustrated in Figure 4. The solution to the inverse problem

represented by mmap is visualized in Figure 9. The numerical result demonstrates a reconstruction quality

in P1 comparable to that achieved using the full configuration with 96 sensors (Figure 3) in contrast to 5

optimally selected sensors in OED 1.
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5.2 OED 2. Configuration to monitor concentration evolution in critical area

In the second scenario, our aim is to secure a specific area for a given time period. To achieve this, the

quantity of interest (QoI) is defined to depend on the state u. To create a meaningful scenario, we shift

P2 := {(x, y) ∈ Ω | 75 ≤ x ≤ 125, 60 ≤ y ≤ 100} upwards. The goal of OED 2 is to ensure that concentration

values can be predicted correctly in region P2 during the time from 5 s to 12 s. This formulation results in

the following operator:

P2(m) =

∫ TQoI
final=12 s

TQoI
0 =5 s

∫
P2

K(m)(t,x) dt dx =

∫ TQoI
final=12 s

TQoI
0 =5 s

∫
P2

u(t,x) dt dx.

The sensor weights w in Figure 10 are calculated using a regularization parameter of α = 1.0. In this case

as well, the source relevant to the QoI is reconstructed accurately using the optimized sensor configuration.

The reconstructed initial condition and the corresponding prediction are shown in Figure 10. As illustrated

in Figure 11, the reduction in uncertainty is concentrated primarily in the region relevant to QoI compared

to the complete sensor configuration.

5.3 OED 3. Dynamic sensor steering for source identification

Finally, the sensor steering method described in Subsection 4.2 is tested in a numerical application case with

κ = 10m2 s−1. To steer the sensor, a much finer sensor grid totaling 1511 possible sensor locations is used.

In this formulation, the moving sensor is allowed to take one step on this grid per cycle, which needs 0.2 s

and thus corresponds to the measurement frequency of 5Hz. This corresponds to a speed of approximately

40m s−1 for the moving sensor. To demonstrate the capabilities of the sensor steering approach, we placed

a single stationary sensor just behind one of the obstacles. However, due to the transport characteristics

in this region, information solely from this stationary sensor results in an inaccurate reconstruction of the

source, which grossly underestimates the degree of contamination further from the buildings. In addition to

the stationary sensor, measurements from a mobile sensor are available. The measurement process begins

at time T0 = 2 s, with data collected at a frequency of 5Hz. The state u at Tstep = T0 = 2 s is shown in

Figure 12 (a). At this point, the stationary sensor receives very limited information and is thus unable to

provide an accurate source estimate. However, computing the optimal sensor design based on the current

quantity of interest (QoI), defined as the integral over a square measuring 40m on each side, centered on the

maximal point of the reconstructed initial condition, yields favorable estimates for informative measurement

positions. The mobile sensor is then directed toward the location associated with the highest weight w, as

determined by the C-optimal design criterion, computed over the observation period [Tstep, Tstep + 2 s] with

the same sampling rate of 5Hz, wherein we take as sensor weights in the time leading up to Tstep, the actual

past locations of the sensor. In the subsequent time steps, illustrated in Figure 12 (c), the sensor continues to

move toward regions of increasing concentration. In Figure 12 (d), corresponding to Tstep = 4.6 s, the mobile

sensor has found the core of the contaminant. Finally, Figure 12 (e) and (f) demonstrate that the mobile

sensor continues to accurately pursue the contaminant in further time steps. Comparing the performance

of the stationary sensor with that of the combination of a stationary sensor and a dynamically steered one,

we find, as depicted in Figure 13, that the mobile sensor achieves substantially improved reconstruction
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(a) Concentration u at t = 2.0 s (truth) (b) Reconstruction of m with data up to t = 2.0 s

(c) Concentration u at t = 4.6 s (truth) (d) Reconstruction of m with data up to t = 4.6 s

(e) Concentration u at t = 7 s (truth) (f) Reconstruction of m with data up to t = 7 s

Figure 12: OED 3. Data fusion of stationary sensor (marked in green) and mobile sensor (marked

in purple). Mobile sensor steered to maximize information gain (trajectory marked with small

purple spheres)
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(a) Reconstruction of m (with mobile sensor) (b) Reconstruction of m (stationary sensor alone)

(c) Prediction t = 7 s (with mobile sensor) (d) Prediction t = 7 s (stationary sensor alone)

Figure 13: OED 3. Comparison of predictions based on data fusion of mobile sensor and stationary

sensor (left column) and stationary sensor alone (right column)

accuracy after just 7 s, in contrast to the stationary sensor, which fails to produce a reliable estimate even

after 12 s.

6 Conclusion and Outlook

This paper investigated a novel approach for goal-oriented optimal static sensor placement and dynamical

sensor steering for PDE-constrained problems. Adopting previous work by Wogrin et al. [23, 22] on dynamic

sensor steering, we leverage a Bayesian approach for the solution of the inverse problem, accelerated by

offline-computations of low-rank approximations for the Hessian matrix and an online preconditioned inexact

Newton-CG method. The resulting framework was then applied to a more complex geometry extracted from

real-world map data. We showcased the strengths of the proposed workflow on three application cases

from the field of airborne contaminant transport: In the first example, we derived an optimal placement

of stationary sensors to recover the initial condition inside a spatially constrained rectangular region. The

results showed that our proposed method only requires five sensors to reconstruct the initial condition locally

with an accuracy comparable to the full configuration of 96 sensors. In our second example, we extended

the QoI in the sense that a region of interest is monitored not only at a specific time instance, but over

a fixed time period. From a practical point of view, this corresponds to the goal of securing a specific

area for a given time period. Using only eight sensors, the evolution of the concentration was accurately
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reconstructed and the uncertainty was minimized in the area of interest. Lastly, we investigated a dynamic

sensor steering problem. Here we showed, that while we are still able to roughly predict the general shape of

the initial condition with an unfavorably placed stationary sensor, adding a mobile sensor we obtain much

better agreement with the true solution while simultaneously reducing the required measurement time to

one-third of the stationary case. This proves that the presented method is able to successfully handle the

complexity of a moving sensor and steer the sensor to achieve a fast and reliable reconstruction of the (in

practice unknown) initial condition.

While we believe this work to be an important step towards optimally steering unmanned sensor platforms

in crisis situations, there still remain several points for improvement and further investigation of the proposed

algorithm. One potential area for improvement concerns the mathematical formulation and solution of

the inverse problem. In many applications, it is reasonable to assume that the initial condition is sparse.

Integrating this additional knowledge into the solution procedure is expected to speed up the time to solution

and further improve real-time capabilities of the method [17]. Moreover, we plan to extend the sensor steering

to Reinforcement Learning based approach, where the position and size of the QoI in each step is determined

by an agent that was previously trained based on trial-and-error interactions with the forward model [12].
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