
Computer Assisted Methods in Engineering and Science, 24: 157–180, 2017.
Copyright © 2017 by Institute of Fundamental Technological Research, Polish Academy of Sciences
Development of simple effective cloud of nodes

and triangular mesh generators for meshless
and element-based analyses – implementation in Matlab

Sławomir Milewski
Cracow University of Technology
Faculty of Civil Engineering
Institute for Computational Civil Engineering
Warszawska 24, 31-155 Cracow, Poland
e-mail: s.milewski@L5.pk.edu.pl

This paper is devoted to the development of the Matlab software dedicated to the generation of 2D
arbitrarily irregular clouds of nodes and triangular meshes. They may be applied in numerical analyses of
boundary value problems, based on both meshless and finite element discretization techniques, especially
in the case of numerical homogenization in which the domain partitioning into disjoint subdomains may be
required. Several Matlab functions are extended on the basis of the simple computational geometry-based
ideas and concepts of engineering nature. A set of Matlab functions, attached to this paper, is discussed
in detail, and examined on selected boundary value problems.

Keywords: cloud of nodes, mesh generation, Delaunay triangularization, meshless methods, finite element
method, implementation in Matlab.

1. INTRODUCTION

Nowadays, Matlab [5] constitutes a powerful tool for a variety of engineering purposes. One of its
biggest advantages is that it enables effective implementation of computational algorithms by ex-
perienced programmers (IT specialists) and inexperienced users (students, beginner engineers). It
is especially convenient in the analysis of more complex technical issues, which require substantial
implementation time and calculation effort. Boundary value problems of mechanics and civil engi-
neering [7, 21] are investigated in this paper. In some cases, existing commercial software may be
insufficient for effective numerical analysis of such problems, due to its limitations in the selection
of problem formulation, mesh generation, function approximation, numerical integration or final
postprocessing of the results. Moreover, the user’s task is to obtain control over every single step
of calculation. Such approach is indispensable for the original, non-trivial problems which have not
been thoroughly investigated in the past, and whose true nature is complex, unknown or uncertain.

Numerical modelling of the boundary value problems by means of the meshless methods (MM)
[13, 18, 25], may be difficult when using the traditional codes and commercially available software.
Most of them are based on the finite element (FE) [27] algorithms in which structural mesh is applied
and function approximation is ascribed in terms of a FE (e.g., [19, 28, 33]). On the contrary, in
case of MM, nodes and only nodes are applied for function approximation, without any imposed
structure such as FE or regular mesh [2]. Examples of application of MM may be found in the
moving boundary, crack propagation, concentrated loads, adaptation techniques etc. Therefore,
development of one’s own codes may be considered crucial, even though there exists a wide range
of available software and FE codes.

158 S. Milewski

The Matlab framework enables that, mainly due to the simplicity of the programming language,
which is based on the matrix and vector variables. Most importantly, the Matlab user does not
have to be an expert in information technology and computer programming. In most cases, the
fundamentals of linear algebra as well as the basic knowledge of numerical modelling seem to be
sufficient. The advantages of the Matlab software can be summarized in the following points:

● simple programming language based on the matrix notation and the features of linear algebra,
● existence of the colon (:) and dot (.) operations, which enable significant elimination of the
time-consuming ’for’ loops and reduction of the calculation time,

● effective visualization of the results (object-oriented graphics),
● simple construction of the graphical user interface (similar to Visual Basic techniques),
● existence of a variety of toolboxes, which contain thematically organized functions (e.g., symbolic
operations).

On the other hand, Matlab may not be the fastest language when it comes to the real computa-
tional time. This is one of its major drawbacks; however, this should not discourage potential users
from effective application of Matlab in the preliminary state of research. Usually, the final code for
practical usage may be prepared by means of other faster languages, such as C++ or Java, on the
basis of already generated Matlab algorithms, which are tested and verified.
This paper may be considered as a continuation of the paper [36] in which the meshless solution

approach to 2D Poisson problem and its implementation in the Matlab are presented. In spite of
complete meshless computational algorithms provided there, node generation was limited to very
simple cases, such as rectangular domain or cloud of nodes generated a priori by the user and loaded
from an external file. Therefore, various techniques of the arbitrarily irregular cloud of nodes and
triangular mesh generation are investigated in this paper.
It is very important to distinguish between two notions namely cloud of nodes and mesh, as

they assume different meanings in various computational approaches. In the finite element method
(FEM) [27], mesh is understood as the grid consisting of both nodes and elements (simple geo-
metrical figures). Thus, the approximation of the unknown function developed in terms of degrees
of freedom assigned to the elements’ nodes. Moreover, the approximation and integration meshes
(for trial and test functions of the appropriate variational principle) are usually the same (Bubnov-
Galerkin approach). It should be emphasised that in FEM it is impossible to develop function
approximation without having any element structure.
In the meshless methods (MM) [13, 18, 25, 34], one deals with the cloud of nodes. Nodes may

be arbitrarily irregularly distributed, without any a priori imposed structure, like a finite element
(FEM) or mesh regularity (as in the case of finite difference method – FDM), or projection con-
straints. The approximation of the unknown function is ascribed in terms of nodes only. Therefore,
generation and modification of the cloud of nodes may be performed more effective by than in the
case of FEM. Nodes may be added, removed or shifted without any impact on mesh structure as
it does not exist. In selected cases, additional integration mesh, totally independent of approxima-
tion nodes, may be required [13]. Moreover, it should be noted that this additional mesh cannot
be applied to unknown function approximation. Otherwise, the method is not meshless anymore.
Therefore, the notion mesh, in case of MM, should be understood as topology information rather
than the imposed nodes’ structure [2, 4]. If available, such topology may be convenient, e.g., for
the optimal star (stencil) generation (set of nodes for the local function approximation, equivalent
to the FE [18, 35]), numerical integration or visualization purposes.
In this paper, the cloud of nodes generation and triangular mesh generation are discussed sep-

arately, in order to provide clear distinction between the FE approach (which requires mesh) and
meshless approach (which requires nodes only). Variety of common types of 2D domains may be
taken into account, with straight and curved edge lines, convex and concave parts of the boundary,

Development of simple effective cloud of nodes and triangular mesh generators... 159

multiples of adjacent regions etc. In the author’s opinion, the most important novel contributions
of this work are:

● possibility of simultaneous analysis of several domains without any common parts and points
(e.g. for parallel calculations of the same problem),

● possibility of coupling subdomains with different node densities and non-conforming meshes,
or with different approximation schemes (as in the coupled FEM/MFDM analysis, which is
becoming more and more popular nowadays),

● independent modelling of the interface zone between two or more subdomains (potential appli-
cation in contact mechanics),

● selected types of regular edge curves may be taken into account, with nodes located regularly
along the curve,

● modelling of heterogeneous materials (holes, inclusions) with different material parameters (e.g.,
for numerical homogenization techniques),

● generation of both regular and irregular (randomly distorted) meshes of triangles,
● simple data structure, which may be prepared by non-expert users without any difficulties,
allowing for the coupling of Matlab functions for nodes/mesh generation with other available
functions for numerical solutions of boundary value problems (tested here on the basis of the
already published MFDMtool toolbox).

The paper is organized as follows:

● Section 2 gives general information concerning the Matlab codes (script and functions), attached
to this paper (nodes mesh tool).

● Section 3 presents the fundamentals of geometry modelling with the main concepts and ideas
applied here, the set of required geometry and topology data, which has to be defined by the
user for the proper running of all the discussed Matlab functions and description of the model
benchmark problems.

● Section 4 (cloud of nodes generation) presents appropriate techniques for the generation of nodes
at vertices, edge lines, and domain interior, according to the ascribed densities, as well as the
elimination of all obsolete nodes (e.g., located outside the domain or inside the holes).

● Section 5 (mesh generation) presents appropriate techniques for the generation of mesh of tri-
angular elements based on the already generated nodes (Sec. 2). The main concept is to apply
the delaunay Matlab function and to improve its actions for the domains with arbitrary shape.

● Section 6 gives general information concerning possible mesh merging between adjacent subdo-
mains.

● Section 7 presents numerical results of the Poisson problem solution, defined on the selected do-
mains, obtained by using the Matlab package MFDMtool, being a software part of [36], available
from the Numerical Algorithms webpage or from the NETLIB library as the na36 package.

In Conclusions, some general remarks are given as well as possible extensions of the discussed
techniques and Matlab software development are mentioned.

160 S. Milewski

2. SOFTWARE INFORMATION

A special set of m-files (nodes mesh tool) was prepared by the author of this paper. The software
is available from the author’s home page: nodes mesh tool software.

Installation of this software is not very complicated. The user is supplied with one zip file
(nodes mesh tool.zip), which contains one directory with all files. This archive file should be un-
compressed to the ascribed location. The only m-files from this directory that may be run directly
are:

● TEST.m, script file for testing purposes of the cloud of nodes/mesh generation; its description
is given in Sec. 3,

● TEST MFDM.m, script file, which enables numerical solution of the Poisson problem using
the same cloud of nodes/triangular mesh, generated by means of the previous TEST.m file
(its description may be found in Sec. 7). Therefore, application of this file should follow the
application of TEST.m (both files use global variables).

One may add the name of this directory to the Matlab search path in order to run this file
from the Matlab Command Window. Otherwise, it should be opened in the Matlab Editor and run,
although it is proceeded by a modification of the Matlab Current Directory.

The other files include:

● generate nodes.m, primary function with procedures for cloud of nodes generation; its description
is given in Sec. 4,

● generate mesh.m, primary function with procedures for triangular mesh generation; its descrip-
tion may be found in Sec. 5,

● internal point.m, secondary function that examines whether the point in consideration is located
inside or outside the domain; its description is given in Sec. 4,

● complete mesh.m, secondary function that examines the mesh and adds additional triangles
wherever they are missing, due to the faulty application of the delaunay Matlab function; its
description may be found in Sec. 5,

● common edges.m, primary function that indicates which boundary edges are common for two
adjacent subdomains; its description is given in Sec. 6,

● plot nodes.m, primary function that plots cloud of nodes and real domain boundary,
● plot mesh.m, primary function that plots triangular mesh.
Moreover, all files from the previously published MFDMtool toolbox are given in the separate

directory, for the sake of convenience. Although all the codes were prepared and tested by means
of the Matlab 8.1.0.604 (R2013a), they do not contain any functions or syntax, which might be
aberrant for the most commonly applied Matlab versions. For effective modelling of the curved
edge lines (given by explicit function formula), symbolic toolbox is required (it is not a default
component in most of the Matlab releases). As long as it is unavailable, the domains with straight
edge lines only may be considered. More details on the implementation techniques of the subsequent
steps of the nodes/mesh generation algorithm applied can be found in the README.txt file as well
as in the following chapters.

Development of simple effective cloud of nodes and triangular mesh generators... 161

3. GEOMETRY MODELLING AND DATA INFORMATION (TEST.M)

There are three main types of computational modelling of the 2D geometry, namely

1. Decomposition of the considered domain into a set of subdomains, being geometrical primitives
(rectangle, triangle, circle) and definition of the appropriate Boolean operations on them (addi-
tion, subtraction, common part) [15, 17, 40]. Afterwards, generation of nodes for the subsequent
subdomains is performed separately, with the emphasis on the appropriate continuity on the
common edges (e.g., pdetool – convenient Matlab toolbox [5], though with many limitations).

2. Boundary representation, which assumes defining domain as the closed region by means of a set
of straight edge lines. In such case, generation of the nodes is divided into two main steps:
generation of the nodes on the boundary parts and inside the domain [6, 20, 23, 24, 26, 29,
31, 39].

3. Application of NURBS (Non-Uniform Rational B-Splines [8, 9]) in which all edge curves (usually
given by parameterization (x, y) = (x(t), y(t)) in 2D) are defined on the basis of the control
points. This technique is usually applied in FEM for the isogeometric finite elements (in which
the unknown function and the element geometry are ascribed by means of the same shape
functions, [30]).

In this paper, all three concepts are combined in one relatively fast, simple and effective tech-
nique. Firstly, the problem domain may be divided into several parts (subdomains with common
parts, adjacent or completely separated from each other) with arbitrary shapes (Fig. 1a). Dealing
with two or more separate subdomains (e.g., domains of the same shape and dimensions) allows for
simultaneous (or parallelized) comparison of the results for different discretizations and/or approxi-
mations. In the case of adjacent subdomains (Fig. 1b), one may have different material parameters,
loads, or approximation schemes (e.g., various combinations of FEM and meshless methods, [10, 14,
22, 37, 38, 41]) in subsequent subdomains. Contact mechanics problems can be modelled in such
manner as well. Additionally, the modelling of holes assumes that one or more subdomains are
located inside the main subdomain (Fig. 1c), which may be applied in the numerical homogeniza-
tion problems (in that case, a hole may be treated as an inclusion and considered in the numerical

a) b)

c)

Fig. 1. Different types of 2D geometry modelling: a) two separate subdomains, b) two adjacent subdomains
(one common side), c) domain with a hole.

162 S. Milewski

analysis based upon the Representative Volume Element (RVE), [32]). Finally, subdomains may
penetrate each other (a case not considered here).

All subdomains may have an independent boundary representation as a set of vertex points and
edge lines connecting them. Moreover, selected parts of the boundary may be defined as non-linear
functions (curves). No GUI (graphical user-interface) is provided. As a consequence, all necessary
data has to be defined in the Matlab script file directly as the set of vector/matrix variables. The
main Matlab m-file (script) TEST.m contains several examples of geometry modelling required for
further proceedings. Moreover, it loads all the subsequent functions, leading to nodes and mesh
generation. Parameters of several examples are given there (variable data = 1,2,3, ...). For each
example, the user has to define the following quantities (Matlab variables):

● PARAMETERS – numerical data matrix [6 × sdn] for subsequent subdomains (sdn – subdo-
mains number), containing parameters:

– first row: subdomain types (1-main contour, 2-hole),

– second row: numbers of edges noe (including straight and curves edges),

– third row: global nodes densities in x direction Nx,

– fourth row: global nodes densities in y direction Ny,

– fifth row: types of mesh (1-regular, 2-irregular),

– sixth row: distortion amplitudes amp (for irregular meshes only).

Fig. 2. Geometry data for three benchmark examples: a) example #1 (data = 1), b) example #2
(data = 2), c) example #3 (data = 3).

Development of simple effective cloud of nodes and triangular mesh generators... 163

● X ver [noe×sdn], Y ver [noe×sdn] – numerical matrices of x and y coordinates of edge points
(vertices) of all subdomains.

● Edges [noe × 3 × sdn] – numerical matrix of edge topologies for subsequent subdomains (con-
nections between vertices):

– edge type (1-straight, 2-curve),

– number of the first vertex point,

– number of the last vertex point.

● Edge curves [noe × sdn] – symbolic matrix, containing explicit mathematical formulas for sub-
sequent edge curves (functions of x, where x is a pre-defined symbolic variable); if all edge parts
are straight lines, it should be defined as an empty matrix [].
All numbers describing geometries of the selected three examples are presented in Fig. 2. The

second and the third example (data = 2 and data = 3) require application of the symbolic Matlab
toolbox [5]. Additional examples may be provided within the script file by the user. Moreover,
several other pre-defined examples are available from help manuals of the subsequent functions,
discussed in the following sections.

4. GENERATION OF A CLOUD OF NODES (GENERATE NODES.M)

In this section, the generation of a cloud of arbitrarily distributed nodes (without any imposed
element structure) is taken under consideration. The relevant algorithms, discussed in this paper, are
implemented in the generate nodes.m, which is a function m-file. Its arguments are the geometry and
topology data presented in the previous section. On the other hand, this function yields another set
of vector and matrix variables, containing cloud of nodes data (nodes coordinates X nodes, Y nodes
and nodes’ numbers nodes no for all subdomains + boundary codes Nodes codes as well as new
edge lines topology information (X ver real, Y ver real, Edges real, edge no real). This topology
information is related to all edge lines, obtained after the numerical representation of curves, and
reflects the real envelope line for the entire domain, taking into account all boundary nodes.
Node generation process is divided here into three steps, namely

(i) setting nodes at all vertices,

(ii) generating nodes at boundary parts (straight edges, curves),

(iii) generating nodes inside the domain.

Although locations of nodes from (i) are fixed, nodes from (ii) and (iii) may be relocated towards
specified directions (e.g., along the boundary). In the generate nodes.m file, the main loop for goes
through all subdomains. For each subdomain, some reference names (variables nicknames) are
provided. Then, all three steps (i)–(iii) are implemented in the subsequent subsections, indicated
by appropriate comment lines. Generation techniques and general remarks are given and discussed
below, whereas all generation steps are illustrated in the second example (data = 2) – see Fig. 3.

4.1. Generation of nodes at vertices

All vertices of the pre-defined subdomains become nodes (Fig. 3a). Their locations are fixed, and
can not be modified by any random process. In matrix Nodes codes, there are: code 1 (for all
boundary nodes), the total number of edge lines/curves, on which the particular node is located
(here: 2) as well as numbers (codes) of those lines/curves.

164 S. Milewski

a) b)

c)

Fig. 3. Illustration of the three steps for cloud of nodes generation technique (black dots indicate new
nodes for each step): a) example #2 – nodes at vertices, b) example #2 – nodes along the edge lines-curves,

c) example #2 – internal nodes.

4.2. Generation of nodes at the boundary lines

Here, the main parameters are the global nodes densities Nx and Ny ascribed to each subdomain
as well as the coordinates of the first (xstart, ystart) and the last point (xend, yend) of the boundary
part. The selection of the appropriate procedure depends on the boundary part type (Fig. 3b). In
the case of a straight line (Fig. 4), all node locations are found simultaneously, according to the
following formulae:

{ xk = xstart + h ⋅ c ⋅ (k − 1),
yk = ystart + h ⋅ s ⋅ (k − 1), k = 2,3, ..., n − 1 (1)

(k = 1 and k = n are skipped since they are the already generated vertex nodes), where
s = yend − ystart

L
, c = xend − xstart

L
, h = L

n − 1
,

Lx = ∣xend − xstart∣ , Ly = ∣yend − ystart∣ , L =√L2
x +L

2
y,

nx = ⌈ Nx ⋅Lx

xmax − xmin

⌉ , ny = ⌈ Ny ⋅Ly

ymax − ymin

⌉ , n =max (nx, ny) ,
(2)

in which s and c are the values of the sine s = sin(α) and the cosine c = cos(α) of the slope angle α
of the edge line, Lx, Lx are the edge line semi-lengths for the x-axis and y-axis directions, L is the
total length, and nx, ny are the local nodes’ densities (integers), along the x and y axes, selected

Development of simple effective cloud of nodes and triangular mesh generators... 165

Fig. 4. Generation of nodes on the straight boundary line.

proportionally to the semi-lengths Lx and Ly and to the entire subdomain dimensions xmax − xmin

and ymax − ymin, whereas n is their representative value. Ceiling function ⌈x⌉ yields the smallest
integer, which is not less than x.
Boundary codes for all nodes (1) are set to 1. Moreover, all nodes are located on one (and

only one) edge line, stored in the Nodes codes matrix as well. Additionally, for every straight line,
appropriate elements of “real” edge matrices are filled with the same quantities as for the user-
defined edge matrices. In the case of straight edge lines, no boundary geometry changes occur.
Curved edge parts require special treatment (Fig. 5). The explicit formula for the curve is given

by the function y = f(x), in which x ∈ (xstart, xend). Analytical approach for nodes generation on
a curve assumes division of the total curve length

Lf =
xend

∫
xstart

√
1 + (f ′(x))2dx (3)

into equal parts and generation of nodes along the curve with the same modulus. However, due
to the potential complexity of the f(x), both numerical and analytical (e.g. symbolical) direct
calculations in Matlab of the above given integral may fail. Therefore, in order to generalise this
appraoch, the total curve length Tf is calculated in a very simple numerical manner, whereas nodes
on the curve are generated one by one (one node at once), by means of the appropriate iterative
procedure [21].
The total curve length Lf is calculated by means of a division of x ∈ (xstart, xend) interval into

popt subintervals (xi, xi+1), i = 1,2, ..., popt of the same length each. It is assumed that on each small
subinterval, the curve may be replaced by the straight line. Therefore, one obtains the approximate
formula for Lf

Lf ≈
popt∑
i=1

√(xi+1 − xi)2 + (f(xi+1) − f(xi))2 (4)

and the length of each curve segment (between neighboring nodes on the curve) Li = Lf

n
, in which

n is obtained in the same way as for the straight boundary line (2).

166 S. Milewski

Fig. 5. Generation of nodes on the curved boundary line.

The optimal number of subintervals popt is selected in an adaptive strategy in which the above
integral is evaluated with admissible relative error ǫadm = 10−6. Maximum number of subdivisions
is assumed as pmax = 1000.
Subsequent nodes are determined “node by node”, by means of the standard bisection method,

applied to nonlinear equation in the following form:

F (x) =√(xi − x)2 + (f(xi) − f(x))2 −Li. (5)

Any other iterative procedure (Newton’s method) may be applied as well, although the bisection
method was selected due to its simplicity as well as convergence guarantee (as long as the equation
root is located within the considered interval).
Equation (5) assumes that the curve length between xi (previous node) and x (potential node

location) is approximately equal to Li. Therefore, determination of each node on the curve requires
separate bisection approach. The middle point of the interval (a, b) is evaluated as xk = (a + b)/2.
The sign (−,+) of the factor F (xk) ⋅F (a) determines whether the left subinterval (a,xk) or the right
subinterval (xk, b) requires further division. The process is continued as long as the appropriate
break-off conditions are satisfied. Here, it relies on two assumptions, namely: the admissible residual
error ∣F (xk)∣ < ǫadm = 10

−6 and the maximum number of iterations = 100. Thus, the determined
point (xk, f(xk)) becomes the following node on the curve.
For the first node, a = xstart and b = xend are assumed. After determining the location of the first

node x2 on the curve, a changes into a = xstart + x2, whereas b remains unchanged. The process is
continued as long as locations of all n−2 nodes (xk, f(x)) are found on the curve (k = 2,3, ..., n−1).
The curve number is stored in the Nodes codes matrix. However, matrices ascribing real domain

vertex points have to be modified with the determined locations of nodes on the curve. In fact, this
angular line constitutes the real domain envelope line, which is required, e.g., for a proper mesh
generation and graphical purposes.

4.3. Generation of the nodes inside the domain

After all boundary nodes are generated, one has to fill the domain interior with nodes, taking into
account the selected generation criteria and limitations, such as admissible distance to boundary

Development of simple effective cloud of nodes and triangular mesh generators... 167

nodes and/or boundary lines/curves or location inside the domain and/or outside the hole. There-
fore, the generation of nodes inside the domain may be divided into three general steps, namely:

● Generation of nodes inside the rectangle built upon the extreme coordinates (xmin, ymin) and(xmax, ymax) of the vertex points of the current subdomain (subdomain rectangular envelope). In
such case, it is sufficient to apply the Matlab built-in function meshgrid, which produces regular
mesh represented by two matrices, with x and y coordinates of all internal nodes, respectively.
It is based upon the following mesh modules:

hx = xmax − xmin

Nx − 1
, hy = ymax − ymin

Ny − 1
, (6)

but with generation starting at the point (xmin + hx, ymin + hy) and ending at the point(xmax − hx, ymax − hy). Therefore, no boundary nodes will be generated multiple times.
Although very simple in concept, selected nodes from this regular mesh have to be deleted (or
shifted) due to numerous constraints.

● Elimination of the obsolete nodes located outside the domain requires an appropriate criterion
of node location inside/outside the domain (polygon). Among many possible approaches, the
ray-casting algorithm seems to be the optimal one.
The ray-casting algorithm (also known as: crossing-number algorithm, even-odd rule algorithm
or Jordan algorithm, [1, 12]) is a very simple method of finding whether the point is inside
or outside a polygon. One needs to test how many times a ray, starting from the point (here:
potential node) and going in any fixed direction, intersects with the edges of the polygon (Fig. 6).
If the ray intersects the polygon edge an even number of times, the point is located outside the
polygon. On the contrary, if the ray intersects the polygon edge an odd number of times, the
point is located inside the polygon. This method is reported [12] not to work if the point is on
the edge of the polygon, but this is not the case here, since only real internal nodes are generated
in the first step. The results may be incorrect, if the point lies very close to that boundary, due
to rounding errors. However, in such case, additional criterion needs to be applied, examining
whether the node is not too close to the boundary lines/curves or to other boundary nodes.
The approach is very simple in implementation. The appropriate Matlab code may be found
in internal point function m-file, which contains eight lines of code only. It requires one loop
over all edges of a current subdomain. Function returns 1 if the point is inside the domain, or

Fig. 6. Illustration for the ray-casting algorithm.

168 S. Milewski

0 otherwise. In this stage of calculations, we examine whether the potential node is inside the
current subdomain (value 1) and outside its all holes (value 0). If both criteria are fulfilled, it
becomes a node.

● Elimination of nodes located “too close” to the boundary line and/or boundary nodes. In order
to keep the cloud of nodes smooth in transitions between the boundary and the internal zones,
all nodes which are located too close to the boundary have to be deleted. Firstly, all boundary
lines and all internal nodes are taken into account. The distance between the i-th node and the
k-th boundary line may be evaluated as

dk,i = ∣Ak ⋅ xi +Bk ⋅ yi +Ck ∣√
A2

k
+B2

k

, (7)

in which Ak = yend,k − ystart,k, Bk = − (xend,k − xstart,k) and Ck = −A ⋅ xstart,k − B ⋅ ystart,k are
the parameters of a k-th straight boundary line, given by means of a general equation yk(x) =
Ak ⋅ x +Bk ⋅ y +Ck. Node (xi, yi) is not deleted as long as the criterion
∣dk,i − 1

3
⋅max ([hx, hy])∣ < 10−12 (8)

is not fulfilled. Factor
1

3
is an arbitrary number, obtained after series of tests, reflecting the

smoothness of the cloud of nodes near the boundary lines. The smaller this number is, the
greater number of nodes remains unchanged. Number 10−12 is close to the working precision of
Matlab and is introduced due to the truncation errors.

● Elimination of nodes located “too close” to the already generated boundary nodes. If the bound-
ary line is long and/or the number of its boundary nodes is high, the above discussed criterion
may be not sufficient. In order to improve the smoothness of the cloud of nodes, additional
nodes are deleted according to the following condition:

∣√(xi − xj)2 + (yi − yj)2 − 1

2
⋅max ([hx, hy])∣ < 10−12. (9)

Here, (xi, yi) are the coordinates of an examined (potential) internal node, whereas (xj, yj) are
the coordinates of a current boundary node. Similarly to the previous criterion (8), factor

1

2
was

obtained after performing a variety of benchmark tests.

Function generate nodes.m additionally produces a text report, displayed in the Matlab Com-
mand Window, showing all details concerning the numbers of generated and deleted nodes.

4.4. Randomization of nodes locations

Despite being based on regularity assumptions, locations of almost all nodes in the final cloud may
be distorted by using random numbers. The only nodes with fixed locations are the vertex nodes.
Nodes located on the boundary may be shifted along both the straight and curved edges, while
nodes inside the domain may be shifted in all directions, and their new locations are limited by
the same constraints as discussed in the previous subsection. Assuming that the randomization is
active (Amp ≠ 0), nodes’ locations may be distorted by means of the rand Matlab function in the
following general manner:

{ xnewk = xk + hx ⋅Amp ⋅ (2 ⋅ rand − 1) ,
ynewk = yk + hy ⋅Amp ⋅ (2 ⋅ rand − 1) , k = 1,3, ..., n, (10)

Development of simple effective cloud of nodes and triangular mesh generators... 169

where rand ∈ (0,1) is the pseudo-random number. Therefore, new randomly distorted coordinates
of the k-th node are limited by

{ xnewk ∈ (xk − hx ⋅Amp,xk + hx ⋅Amp) ,
ynewk ∈ (yk − hy ⋅Amp,yk + hy ⋅Amp) . (11)

4.5. Examples

Figure 7 presents selected examples of clouds of nodes, generated by means of the above discussed
techniques. The first three examples were already introduced in this paper. The fourth example
(bottom right corner) is domain bounded by a sine-shaped boundary part. All those results may be
obtained by running the “TEST.m” file available in m-files attached to this paper. The user may
modify parameters, by increasing or decreasing the nodes’ density and switching from regular to
irregular cloud of nodes (with ascribed irregularity parameter). Some other examples are available
in the text help manual in Matlab (e.g., type help generate nodes in theMatlab Command Window).
Moreover, the user is encouraged to prepare her/his own examples within the TEST.m file.

Fig. 7. Selected examples of cloud of nodes generation.

5. GENERATION OF A TRIANGULAR MESH OF ELEMENTS (GENERATE MESH.M)

In some cases, regular mesh/irregular cloud of nodes may be applied directly to numerical analysis
of the boundary value problems, posed in both local and variational (weak) formulations. However,
its application is limited to MM only. In MM, unknown function approximation is ascribed by
terms of nodes, therefore no mesh structure is required. However, additional background mesh (e.g.,
independent from nodes) may be helpful for numerical integration, graphical purposes (visualization
of results) or general postprocessing (a-posteriori error estimation). With element-based methods

170 S. Milewski

(such as FEM), additional mesh of simple geometrical figures (triangles [15], quadrangles) is required
[2, 4].
In this Section, construction of a triangular mesh is presented. It is based on the Matlab function

delaunay, which uses well-known Delaunay tessellation (partition of the entire domain into triangles,
with nodes at their vertex points). Although very fast and effective, this function does not work
properly with all types of domains or clouds of nodes. Its main drawback is that it does not comprise
the domain boundary (Unconstrained Delaunay Triangulation, [15]). Therefore, in the case of non-
convex domains or domains with holes, triangles are generated outside the domain or inside the
holes. Moreover, the function is very sensitive to rounding errors, e.g., in the case of the skew
boundary lines, triangles with almost zero surface area are generated. Usually, it is the user’s task
to improve its application. It may be stressed here that similar issues arise in the case of the voronoi
Matlab function, which generates the set of Voronoi polygons, ascribed to each node. However, they
are not investigated here. This problem is planned as the subject of next paper, with a particular
focus on selected problems of the adaptive version of the meshless FDM.
One may distinguish four main steps of triangular mesh generation. They are described in the

following four subsections.

5.1. The Delaunay tessalation

First, the Matlab function delaunay is applied. It requires a set of nodes only (x and y coordinates
given by two vectors X nodes and Y nodes, respectively). It produces a set of integers, indicating
the number of nodes ascribed to each triangle. Direct results of this function for selected domains
are presented in Fig. 8.

Fig. 8. Examples of Delaunay tessellation in Matlab – direct application of delaunay function.

Eventually, the only proper result may be observed for convex, simply connected domain (Fig. 8,
left bottom graph). In the other cases, many bad triangles, located outside the domain, were
generated. Therefore, application of the function needs to be improved.

Development of simple effective cloud of nodes and triangular mesh generators... 171

5.2. Elimination of obsolete triangles located outside the domain

The author’s original concept is based on the presumption that for each proper triangle, its center
point is located inside the domain. Therefore, it is sufficient to examine the locations of the center
points of each triangle:

xs = x1 + x2 + x3

3
, ys = y1 + y2 + y3

3
(12)

and to determine whether they are located inside or outside the domain. The same ray-casting
algorithm and the function internal node, described in the previous section, may be applied here
as well, for (xs, ys) coordinates. All triangles, whose center points do not fulfill that condition (i.e.,
result in 0 function value), have to be removed.

5.3. Elimination of obsolete triangles, located inside the holes

Similarly to the previous subsection, the same assumption may be extended to the triangles located
inside the holes. If a proper triangle is located outside the hole (and inside the domain), its center
point (12) has to be located outside this hole (inside the domain). Therefore, if the condition for
location of a triangle’s central point inside the hole is fulfilled (i.e., results in 1 function value),
such triangle has to be removed.

5.4. Elimination of “too small” triangles

Due to truncation errors, the delaunay function may produce additional bad triangles for the nodes
located on the straight skew line. If node coordinates are inaccurate, obsolete triangles with almost
zero surface area are generated. Their elimination is crucial in order to keep the mesh free from
singularities and ill-conditioning in further calculations.
Surface area P may be evaluated by using the simple Heron formula (Fig. 9)

P =√p ⋅ (p − a) ⋅ (p − b) ⋅ (p − c), (13)

where

p = 1

2
(a + b + c) , a =√(x2 − x1)2 + (y2 − y1)2

b =√(x3 − x2)2 + (y3 − y2)2, c =√(x3 − x1)2 + (y3 − y1)2.
(14)

Fig. 9. Geometry of a Delaunay triangle.

172 S. Milewski

Whenever the following criterion is fulfilled:

P < 10−12, (15)

such triangle has to be removed. It is worth stressing here that the resultant matrix Triangles
stores surface area for each triangle in its fourth column. The first three columns contain the
nodes’ numbers of triangles vertices.
After applying additional elimination techniques, one obtains the quasi-final triangular meshes

for each selected domain (Fig. 10). For instance, there were four “zero” triangles in the case of the
first domain (right top graph). The appropriate text report is displayed in the Matlab Command
Window.

Fig. 10. Examples of proper triangular meshes.

5.5. Final mesh examination and addition of missing triangles

A series of executed tests indicated that the above described techniques may not be sufficient for
the generation of a proper triangular mesh. In some cases, there are some triangles missing from the
mesh, due to the defective application of the delaunay Matlab function near the domain boundary.
Moreover, this problem is not caused by the elimination of previous triangles as may be observed
for the domain and its mesh in Fig. 11. Figure 11a presents the domain geometry as well as the
cloud of nodes, generated according to the ascribed densities. Figure 11b presents direct results of
Delaunay tessellation, computed by means of the Matlab built-in function. It is clearly seen here
that one triangle is missing from the mesh near the boundary zone of the non-convex part of the
domain. Figure 11c shows the results of the elimination of all obsolete “external” triangles – the
mesh is still incomplete. Finally, Fig. 11d presents the result of mesh completion (one triangle has
been added).
The original algorithm applied here examines all the triangles whose vertex nodes are located on

the boundary. Whenever there is no triangle connection between two neighboring boundary nodes,
an additional new triangle is added to the mesh, with vertex points at those two nodes and one

Development of simple effective cloud of nodes and triangular mesh generators... 173

a) b)

c) d)

Fig. 11. Example of mesh completion with missing triangle: a) the domain and the cloud of nodes, b) direct
result obtained from the “delaunay” function, c) result after the elimination of obsolete triangles, d) result

after the mesh completion.

node from the inside of the domain, which is closest to the boundary line. This is the most complex
and time-consuming algorithm applied here, since it needs to examine all pairs of boundary nodes,
which, in general, do not have to be numbered subsequently. Therefore, the appropriate Matlab code
was moved to another function file, named complete mesh. It is called out from the generate mesh
function, if the appropriate flag (see elim binary vector) is up.

6. MERGING OF MESHES

In this case, there are several subdomains considered (e.g., example #1), the non-conforming meshes
are generated by means of the Matlab software, discussed in this paper. This means that on the
common edges of two adjacent subdomains, nodes and triangles of those two subdomains may
be completely independent from one another. Such approach is becoming increasingly popular
nowadays, given that many researchers combine various approximation schemes or even various
computational approaches (e.g., MFDM/FEM) in one domain simultaneously. It is then required
for both subdomains to have non-conforming clouds of nodes and/or meshes. Afterwards, many
various coupling techniques are applied to keep the approximation consistent on all common edges,
such as special finite elements in the transition zone, hanging/fictitious nodes or additional inte-
grals calculated along the common edges that join two approximations together with the ascribed
accuracy.
Therefore, non-conforming clouds of nodes in different subdomains are left without any modifi-

cations although information concerning the common parts may be still obtained. The appropriate
Matlab function common edges.m is provided, in which all subdomains are examined and one addi-

174 S. Milewski

tional topological matrix is determined. This matrix stores the information concerning all boundary
parts, which are common for two or more adjacent subdomains.
The above discussion does not concern domains with holes. Although the main domain and its

holes are defined as separate subdomains, all the nodes generated on the boundary of a hole are
ascribed to the main domain and together with its nodes, they constitute one consistent cloud of
nodes.
Selected results are presented in Fig. 12. Figure 12a shows two non-conforming meshes, related

to two adjacent subdomains, whereas Fig. 12b shows one consistent mesh for the entire domain
at once. In the first case, two subdomains (rectangle and triangle) have to be defined separately,
whereas in the second case, only one polygon has to be defined.

a) b)

Fig. 12. Examples of non-conforming meshes and one consistent mesh: a) example #1 – two independent
meshes, b) example #2 – one consistent mesh.

7. NUMERICAL ANALYSIS OF THE BOUNDARY VALUE PROBLEMS

Software for cloud of nodes and triangular mesh generation, considered in this paper, is especially
dedicated to numerical analysis of the boundary value problems of mechanics and civil engineer-
ing. It applies variety of computational methods and commercial packages. However, to keep all
benchmark tests consistent, cloud of nodes and mesh generator were examined on the MFDMtool
Matlab toolbox, which was designed and developed by the author of this paper. The MFDMtool
toolbox is available on-line – the details are given in the introductory section (Sec. 1) of this paper.
The MFDMtool is a Matlab toolbox [36], based upon MFDM [18, 34] for the numerical deter-

mination of shear stresses

τ =√τ2zx + τ
2
zy, τzx = ∂F

∂y
, τzy = −∂F

∂x
(16)

in a prismatic bar of the specified cross-section subject to a torsional moment. Such problem may
be posed in local formulation

{ ∇2F = −2Gθ in Ω,

F = 0 on ∂Ω,
(17)

as well as in the (weak) variational (Galerkin) one: Find such (trial) function F ∈ H1
0 that for any

(test) function v ∈H1
0 is satisfied

∫
Ω

(∂F
∂x

∂v

∂x
+
∂F

∂y

∂v

∂y
)dΩ = 2Gθ∫

Ω

vdΩ. (18)

Development of simple effective cloud of nodes and triangular mesh generators... 175

Here, F = F (x, y) is a scalar Prandtl function (unknown primary solution), G is a Kirchhoff
modulus (material parameter) and θ is a torsional angle (load). The local formulation (17) may be
directly applied to MFDM (no mesh is required then). However, for FEM and variational MFDM
(both using (18)) analyses, additional integration mesh/element mesh is required.

All details concerning the numerical aspects of the MFDM solution approach, along with the
detailed description of all Matlab files included in the MFDMtool are given in [36] as well as in the
instruction manual attached to it. The appropriate Matlab code, which is responsible for running
the numerical calculations, is given in the TEST MFDM.m script file, assuming that the cloud of
nodes and mesh are already generated. Afterwards, numerical solution of the Prandtl problem is
obtained and plotted, according to the desired formulation (formulation = 1 – local (17) and 2 –
variational (18)). The following command lines are executed here in the same way, as prepared in
the appropriate testing m-file, attached to the originalMFDMtool.m toolbox. Moreover, all original
functions of this toolbox (star, mwls, localMFDM, varMFDM) are provided here once again as well,
for the sake of convenience for the potential users.

A number of selected results of the application of the considered nodes-mesh generator to the
analysis of problems (17) and (18) are presented in Figs. 13–16. Calculations were performed for four
examples, considered in the previous sections, i.e., example #1 (the second subdomain with straight
skew edges, Fig. 13), example #2 (domain with a curved side and one hole, Fig. 14), example #3
(U-shaped domain, Fig. 15) as well as example #4 (domain with sine-like part of the boundary,
Fig. 16), though with much denser discretizations (Fig. 17). Figures 13 and 15 present results for
the local formulation (17), whereas Figs. 14 and 16 show results for the variational formulation (18).
The MFD solution approach was applied in all the cases. In each figure, the following graphs are
presented: primary solution F (x, y) (Prandtl function, top left), shear stress components (16) (top
right and bottom left) and the total stress (bottom right). The nodal solution was continued and
smoothed by using the MWLS approximation [3, 11, 18]. For graphical purposes, mesh of triangles
and Matlab function patch were successfully applied.

Fig. 13. Results of the Prandtl problem (local formulation) for example #1.

176 S. Milewski

Fig. 14. Results of the Prandtl problem (variational formulation) for example #2.

Fig. 15. Results of the Prandtl problem (local formulation) for example #3.

Development of simple effective cloud of nodes and triangular mesh generators... 177

Fig. 16. Results of the Prandtl problem (variational formulation) for example #4.

Fig. 17. Discretized domains applied to the Prandtl problem analysis.

178 S. Milewski

8. CONCLUSIONS

In this paper, the Matlab toolbox nodes mesh tool was proposed and tested. It is designed for
effective generation of both clouds of nodes (without any imposed structure) and triangular meshes
for 2D cases. This toolbox may be applied in numerical analysis of the boundary value problems in
mechanics and civil engineering. The most important features of the applied generation algorithms
are:

● Parallel analysis of several disjoint or adjacent subdomains is possible.

● Boundary representation and topological information are required only.

● Generation of nodes is performed according to the ascribed densities.

● Regular nodes distributions and randomly disturbed clouds of nodes may be applied.

● Domain boundary may consist of straight lines and curved edges of any type. In the case of
curved edges, nodes are determined with constant angle length.

● Domains with holes may be analyzed as well.

● All techniques are based on simple geometrical derivations.

The underlying assumption of all provided Matlab codes is that they are based on the well-known
Matlab functions (meshgrid, delaunay) which are extended here to more general cases. All m-files
may be applied to larger parts of codes without any difficulties. They produce vectors and matrices
with clear geometrical interpretations. All procedures were examined on the selected examples.
Both generation algorithms and numerical analysis of the 2D Poisson problem were taken into
consideration. Future work may include

● Cloud of nodes/mesh generator for 3D domains, applying most techniques derived in this paper
with improved implementation of curves and surfaces, given in more general parametric manner.

● Further examination and development of Matlab functions for geometrical applications (e.g.,
voronoi Matlab function).

● Development of the irregular clouds of nodes generator, with node distribution, controlled by
the a-posteriori error estimation [16] of the solution of the boundary value problem. Such case
assumes extension of the software discussed here to cloud of nodes/mesh refinement according
to the desired accuracy related to the analyzed problem.

AKNOWLEDGEMENTS

This research was supported by the National Science Centre, Poland, under the scientific project
2015/19/D/ST8/00816 (“Computational coupled FEM/meshless FDM analysis dedicated to engi-
neering nonstationary thermo-elastic and thermo-plastic problems”).

REFERENCES

[1] M. Shimrat. Algorithm 112: position of point relative to polygon. Communications of the ACM, 5(8), 434 pages,
1962.

[2] T. Liszka, J. Orkisz. The finite difference method at arbitrary irregular grids and its applications in applied
mechanics. Computers & Structures, 11: 83–95, 1980.

[3] P. Lancaster, K. Salkauskas. Surfaces generated by moving least squares method. Mathematics of Computation,
155(37): 141–158, 1981.

[4] T. Liszka. An interpolation method for an irregular net of nodes. Int. J. Num. Meth. Eng., 20: 1599–1612, 1984.

Development of simple effective cloud of nodes and triangular mesh generators... 179

[5] Matlab C Math Library. User’s Guide. The MathWorks Inc., 1984-2015.

[6] F.P. Preparata, M.I. Shamos. Computational Geometry: An Introduction. Springer-Verlag Berlin- Heidelberg,
1985.

[7] K.E. Atkinson. An Introduction to Numerical Analysis. Wiley Ed., NewYork, 1988.

[8] B.A. Barsky, T.D. DeRose. Geometric continuity of parametric curves: three equivalent characterizations. IEEE
Comput. Graph. and Appl., 9: 60–68, 1989.

[9] L. Piegl. Modifying the shape of rational B-splines. Part 1: curves. Computer-Aided Design, 21(8): 509–518,
1989.

[10] J. Krok, J. Orkisz. A unified approach to the FE and generalized variational FD methods in nonlinear mechanics,
concepts and numerical approach. Discretization Methods in Structural Mechanics, 1: 353–362, 1990.

[11] P. Lancaster, K. Salkauskas. Curve and Surface Fitting. Academic Press Inc., 1990.

[12] K. Weiler. An incremental angle point in polygon test. [In:] Paul S.Heckbert [Ed.], Graphics Gems IV, pp. 16–23.
Academic Press Professional Inc., San Diego, CA, USA, 1994.

[13] T. Belytchko, Meshless methods: an overview and recent developments. Comp. Meth. Appl. Mech. Engng., 139:
3–47, 1996.

[14] D. Hegen. Element-free Galerkin methods in combination with finite element approaches. Comp. Meth. Appl.
Mech. Engng., 135: 143–166, 1996.

[15] J.R. Shewchuk. Triangle: Engineering a 2D quality mesh generator and Delaunay triangulator. Applied Compu-
tational Geometry Towards Geometric Engineering, Springer, Berlin-Heidelberg, pp. 203–222, 1996.

[16] M. Ainsworth. J.T. Oden. A-posteriori error estimation in finite element analysis. Comp. Meth Appl. Mech
Engng., 142: 1–88, 1997.

[17] F. Hecht. BAMG: bidimensional anisotropic mesh generator. INRIA Report, 1998.

[18] J. Orkisz. Finite Difference Method (Part III). [In:] M. Kleiber [Ed.], Handbook of Computational Solid Mechan-
ics, pp. 336–431, Springer-Verlag, Berlin, 1998.

[19] J. Alberty, C. Carstensen, S.A. Funken. Remarks around 50 lines of Matlab: short finite element implementation.
Numerical Algorithms, 20: 117–137, 1999.

[20] N. Gershenfeld. The Nature of Mathematical Modeling. Cambridge University Press, ISBN 0-521-57095-6, 1999.

[21] W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P. Flannery. Numerical Recipes in Fortran 90. The Art of
Parallel Scientific Computing. Cambridge Univ. Press, 1996.

[22] A. Huerta, S. Hernandez-Menez. Enrichment and coupling of the finite element and meshless methods. Int. J.
Numer. Methods Eng., 48: 1615–1630, 2000.

[23] X.Y. Li, S.H. Teng, A. Üngör. Point placement for meshless methods using sphere packing and advancing front
methods. [In:] Proceedings of ICCES’00 – International Conference on Computational Engineering Science, Los
Angeles, 2000.

[24] S. Teng, X.Y. Li, A. Üngör. Generating a good quality point set for the meshless methods. Comput. Model. Eng.
Sci., 1(1): 1017, 2000.

[25] T.P. Fries, H.G. Matthies. Classification and Overview of Meshfree Methods. Technische Universität Braun-
schweig, 2004.

[26] R. Löhner, E. Oñate. A general advancing front technique for filling space with arbitrary objects. International
Journal for Numerical Methods in Engineering, 61(12): 1977–1991, 2004.

[27] O.C. Zienkiewicz, R.L. Taylor. Finite Element Method: Its Basis and Fundamentals, Elsevier, 6th edition, 2005.

[28] C. Carstensen, S. Bartels, A. Hecht. P2Q2Iso2D= 2D Isoparametric FEM in Matlab. J. Comput. Appl. Math.,
192: 219–250, 2006.

[29] C. Drumm, S. Tiwari, J. Kuhnert, H.-J. Bart. Finite pointset method for simulation of the liquid-liquid flow
field in an extractor. Computers and Chemical Engineering, 32(12): 2946–2957, 2008.

[30] J.A. Cottrel, T.J.R. Hughes, Y. Bazilevs. Isogeometric Analysis: Toward Integration of CAD and FEA. John
Wiley and Sons, ISBN 978-0-470-74873-2, 2009.

[31] Y. Nie, W. Zhang, Y. Liu, L. Wang. A node placement method with high quality for mesh generation. IOP
Conference Series: Materials Science and Engineering, Vol. 10, IOP Publishing, 2010.

[32] C. Pearce, L. Kaczmarczyk, J. Novak. Multiscale modelling strategies for heterogeneous materials. Comuputa-
tional Technology Reviews, 2: 23–49, 2010.

[33] S. Funken, D. Praetorius, P. Wissgott. Efficient implementation of adaptive P1-FEM in MATLAB. Computa-
tional Methods in Applied Mathematics, 11(4): 460–490, 2011.

[34] S. Milewski. Meshless finite difference method with higher order approximation-applications in mechanics.
Archives of Computational Methods in Engineering, 19(1): 1–49, 2012.

[35] I. Jaworska. On the ill-conditioning in the new higher order multipoint method. Computers and Mathematics
with Applications, 66(3): 238–249, 2013.

[36] S. Milewski. Selected computational aspects of the meshless finite difference method. Numerical Algorithms, 63:
107–126, 2013.

180 S. Milewski

[37] Z. Ullah, W. Coombs, C. Augarde. An adaptive finite element/meshless coupled method based on local maxi-
mum entropy shape functions for linear and nonlinear problems. Computer Methods in Applied Mechanics and
Engineering, 267: 111–132, 2013.

[38] S. Kumar, I. Singh, B. Mishra. A coupled finite element and element-free Galerkin approach for the simulation
of stable crack growth in ductile materials. Theoretical and Applied Fracture Mechanics, 70: 49–58, 2014.

[39] Y. Nie, W. Zhang, N. Qi, Y. Li. Parallel node placement method by bubble simulation. Computer Physics
Communications, 185(3): 798–808, 2014.

[40] P.O. Persson, G. Strang. A simple mesh generator in MATLAB. SIAM Review, 46(2): 329–345, 2014.
[41] J. Jaśkowiec, S. Milewski. The effective interface approach for coupling of the FE and meshless FD methods and
applying essential boundary conditions. Computers and Mathematics with Applications, 70(5): 962–979, 2015.

