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In two-moment radiation transport, the closure is the constitutive relation that maps the
energy and momentum to the radiation-pressure tensor. Among available closures,
the maximum-entropy (ME) approach is the most reliable. However, it is associated with
a high computational cost. In this paper, we propose a machine-learning approach for
the rapid evaluation of the ME closure for bosonic, classical and fermionic radiation. We
generate ME reference data using Gauss–Legendre angular quadrature combined with
a robust bisection-based inversion of the moment constraints. Next, we train a small
physics-constrained multilayer perceptron (MLP) with output restricted to the physically
admissible range (between one third and one). Monotonicity in the reduced flux is enforced,
and the derivative is matched to the ME reference. The neural network (NN)-based closure
achieves a mean absolute error (MAE) of 9.0× 10−4 over the range ϕ ∈ [0, 0.98], which
yields a latency reduction of about ∼ 103× per closure evaluation. In the Marshak wave
benchmark the full simulation runs about 247 × faster while the hyperbolicity indica-
tor remains strictly positive (minimum 5.1 · 10−2). Compared with the analytic Kershaw
closure for bosonic and classical radiation, our model is substantially more accurate and
faster. For practical adoption, we also provide a lightweight rational approximation (MAE
1.01× ∼10−3), and in the bosonic and classical cases we confirm positivity of the hyper-
bolicity indicator for degeneracy parameters between −5 and 5.
Keywords: radiation transport, Eddington factor, maximum entropy, neural surrogate,
hyperbolicity, Marshak problem.
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1. Introduction

Moment models of radiative transport are a standard tool for reducing the
Boltzmann equations to systems of hyperbolic moment equations with a small
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number of macroscopic variables [1]. A key element of such models is the closure,
a relation connecting higher-order moments with lower-order moments [2]. In
the two-moment model, the closure is a constitutive relation expressed in terms
of an Eddington factor, which uniquely determines the pressure tensor. This
factor increases with the so-called reduced flux, ensuring the system remains
hyperbolic [3–5]. Among the possible closures, a special place is played by the
maximum-entropy (ME) closure [2]. It is obtained by maximizing the entropy
under given constraints [4], which ensures realizability and the hyperbolicity of
the system of the radiation hydrodynamics equations [2].
In a series of papers, several authors investigated the consistent derivations

and properties of 1D ME closures for bosonic and fermionic radiation, includ-
ing the two- and three-moment theories [6–8]. The proper choice of closure is
important not only for accuracy but also for well-posed dynamics and the ab-
sence of nonphysical instabilities. However, a practical problem remains: the
numerical cost of closing the ME [6, 7, 9]. In each cell and at every time step,
one must solve an inverse problem to obtain the Lagrange multipliers and then
compute the integrals. For comparison, the simple analytic Kershaw closure is
employed [6, 10, 11]. It is fast but can significantly deviate from the ME closure
and alter the wave properties of the system.
In recent years, a natural compromise between accuracy and computation

cost has emerged: learned surrogates, which replace expensive input-output
maps with a fast statistical model [12, 13]. In radiative transport, the simplest
and most crucial map is the relation from the field directivity measure to the
Eddington factor. In the fermionic variant, this map additionally depends on
the degeneracy parameter. If the surrogate provides accuracy comparable to the
ME closure, preserves basic physical properties (allowable range of values, mono-
tonicity, and preservation of hyperbolicity [1, 13]) and enables speedups of hun-
dreds to thousands of times, then in practice it can replace the ME closure
in a solver without losing the quality of solutions. This approach is consistent
with recent trends, ranging from learning moment closures with control over
hyperbolicity and characteristic velocities [12, 13], to data-driven models of the
variable tensor/Eddington factor in thermal radiative transfer [14], and to con-
temporary developments and tests of moment schemes in astrophysics [9, 15, 16].
In this paper, we propose an application of neural networks (NNs) for the fast

calculation of the Eddington factor in the two-momentum transport description.
We generate high-accuracy ME reference data and then train a compact neu-
ral surrogate on this dataset. Next, we train a small physics-constrained MLP
with output restricted to monotonicity and derivative matching. Motivated by
evidence that compact neural models can exhibit high information efficiency in
other domains [17, 18], we employ a small architecture and investigate whether
it can serve as a fast, physics-consistent approximation to the ME closure. For
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clarity and completeness of the paper, a brief characterization of two-moment
radiation hydrodynamics is included.
As for the unit system, throughout this paper, we set c = ℏ = kB = 1, where

c is the speed of light, ℏ is the Planck constant divided by 2π, and kB is the
Boltzmann constant. The summation convention over repeated upper and lower
indices is employed.

2. Preliminaries and theoretical background

The kinetic theory of radiation describes radiation as a gas of massless parti-
cles [19]. Each gas particle is equipped with a wave–vector k ∈ R3, identified with
a particle momentum, and with a particle energy ω = |k|, identified with its fre-
quency. The state of a gas is represented by the one-point distribution function
(phase density) f(t,x,k), where t ∈ R+ is the time and x = (x1, x2, x3) ∈ R3 is
the position in the assumed laboratory frame.
The evolution of f is governed by the kinetic equation:

∂tf + ki∂if = C[f ], (1)

where ∂t = ∂
∂t , ∂i = ∂

∂xi , i = 1, 2, 3, and C[f ] is the collision term. The unit

vector in the direction of k is denoted by g = k
|k| ∈ S

2, gi = ki

|k| .

There are two basic formulations of the macroscopic description of radiation.
The spectral (frequency-dependent) formulation treats the particle frequency k
(equivalent to particle energy) as a fixed parameter. Hence, macroscopic quanti-
ties at (t,x) are defined as weighted integrals (angular moments) of the angular
distribution of particles of the same energy. In the gray (frequency-integrated)
formulation, macroscopic quantities are weighted integrals (moments) of f(t,x,k)
over k ∈ R3. It is convenient to decompose this integration into radial inte-
gration over k ∈ R+ and angular integration over g ∈ S2 (spherical coordi-
nates), i.e.,

d3k = k2 dk d2g, (2)

and to define the spectral radiation intensity

Ĩ(t,x, k,g) := k3f(t,x, kg), (3)

and the angular radiation intensity

Î(t,x,g) :=

∞�

0

k3f(t,x, kg)dk =

∞�

0

Ĩ(t,x, k,g)dk. (4)
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Multiplying kinetic equation (1) by k3, we obtain the spectral radiative equa-
tion of transfer for Ĩ(t,x, k,g). Similarly, multiplying Eq. (1) by k3 and integrat-
inh over k ∈ R+ results in the gray radiative equation of transfer for Î(t,x,g).
These equations of transfer take the form:

∂tI + gi ∂iI = C, (5)

where C = k3C[k−3Ĩ] for I = Ĩ, C =
∞�
0

k3C[Î] dk for I = Î. The simplest two-

moment formulation of radiation hydrodynamics involves the energy density E,
the momentum F, and the radiation pressure tensor P. In view of Eqs. (2)–(5)
these quantities are defined as the following spectral angular moments in the
spectral formulation [3, 4, 7, 20]:

Ẽ(t,x, k) :=
�

S2

kf(t,x, kg) k2 d2g =

�

S2

Ĩ(t,x, k,g) d2g, (6)

F̃ i(t,x, k) :=
�

S2

kgif(t,x, kg) k2 d2g =

�

S2

giĨ(t,x, k,g) d2g, (7)

P̃ ij(t,x, k) :=
�

S2

kgigjf(t,x, kg) k2 d2g =

�

S2

qigj Ĩ(t,x, k,g) d2g. (8)

In the gray (frequency-integrated) formulation, they read [21, 22]:

Ê(t,x) :=
�

R3

kf(t,x,k) d3k =

�

S2

Î(t,x,g) d2g, (9)

F̂ i(t,x) :=
�

R3

kgif(t,x,k) d3k =

�

S2

giÎ(t,x,g) d2g, (10)

P̂ ij(t,x) :=
�

R3

kgigjf(t,x,k) d3k =

�

S2

gigj Î(t,x,g) d2g. (11)

Multiplying the radiative equation of transfer (5) by the weights {1, gi}, per-
forming the angular integration over q ∈ S2 and taking into account Eqs. (6)–(11),
we arrive at the system of two-moment equations:

∂tE + ∂iF
i = S, (12)

∂tF
i + ∂jP

ij = Si. (13)
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For the spectral formulation, we put (Ẽ, F̃ i, P̃ ij , S̃, S̃i) in place of (E,F i, P ij ,

S, Si) in Eqs. (12) and (13). Replacing (E,F i, P ij , S, Si) with (Ê, F̂ i, P̂ ij , Ŝ, Ŝi)
in Eqs. (12) and (13), we have the gray (frequency-integrated) system of moment

equations. Here, (S̃, Ŝ) and (S̃i, Ŝi) are the angular moments of C taken with
weights 1 and gi, respectively.
The moment equations (12) and (13), which may be considered to be either

spectral (frequency-dependent) or gray (frequency-integrated), require a closure
relation that relates P ij to E and F i in order to obtain a closed system of
equations for E and F i.
It follows from Eqs. (6), (8), (9) and (11) that

P i
i = E, (14)

since g is a unit vector. Assuming that the sought closure relation is a sufficiently
smooth function P ij(E,F k), and employing Eq. (5), along the representation of
an isotropic tensor function, we can use the following general form of the closure
relation:

P ij = E

[
1− f(E, |F|)

2
δij +

3f(E, |F|)− 1

2

F iF j

|F|2

]
. (15)

The scalar function f(E, |F|) is called the variable Eddington factor. Then,
the term Eddington tensor is used for the normalized counterpart of P ij [3]:

pij := E−1P ij =
1

2

[
(1− f)δij + (3f − 1)

F iF j

|F|2

]
. (16)

In the case of two-moment radiation hydrodynamics, the so-called ME clo-
sure plays a special role. It involves the distribution F (ω) that maximizes the
entropy functional under the constraints corresponding to a fixed value of energy
E and momentum F.
Specifically, entropy functionals of the following form are considered:

S[f ] :=

�

D

[
τ(1 + τf) ln(1 + τf)− f(τ(x)− 1 + ln f)

]
dmL, (17)

where τ = 0,+1,−1 corresponds to Maxwell–Boltzmann, Bose–Einstein and
Fermi–Dirac statistics, respectively.
The maximization procedure involves Lagrange multipliers α and ai corre-

sponding to the constraints E and Fi, respectively, and concerns the functional

Υ[f ] := S[f ] + α

E − �

D

λ f dmL

+ ai

F i −
�

D

λ g i f dmL

. (18)



390 A. Pregowska et al.

Variation of Υ(f) leads to the formula

δΥ[f ] =

�

D

[
ln

(
1 + τf

f

)
− ω

]
δf dmL, (19)

which gives the solution

f(ω) =
1

eω − τ
, (20)

where ω = (α+ ai g
i)λ.

These solutions reproduce the constraints and thus make the Lagrange mul-
tipliers α and ai implicit functions of E and F i. Resolving this relation and
substituting f(ω) into the moment integral formula for P ij provides the closure
relation. We set D = S2,m = 2, L = g, λ = 1, E = Ẽ and F i = F̃ i in Eqs. (17)–
(20) for the spectral formulation, while we set D = R3, m = 3, L = k, λ = k,
E = Ê and F i = F̂ i for the gray formulation.
In the bosonic case for the gray formulation, the maximum entropy closure is:

P̂ ij
(
Ê, F k

)
:=

1

3

(√
4Ê2 − 3|F̂|2 − Ê

)
δij

+ 3
(√

4Ê2 − 3|F̂|2 + 2Ê
)−1

F̂ iF̂ j . (21)

It was derived in [21], and it is proved in [22] that this formula also applies to
the gray formulation of fermionic and classical radiations. The radiation pressure
tensor (21) was also proposed in [5] motivated by the covariance of the strain-
energy tensor and the isotropy of radiation in some inertial frame. In [3, 4] and
[20], the ME closures in the spectral formulation were investigated. In contrast to
the gray case, they are different for the different statistics. None of the Maxwell–
Boltzmann, Bose–Einstein and Fermi–Dirac spectral maximum entropy closures
is expressible in terms of elementary functions. For computational purposes,
series expansions and approximate formulae were developed. The simplest exact
closure relation for the Maxwell–Boltzmann statistics is

P̃ ij(Ẽ, F̃) =
|F̃|

L−1
(
|F̃|/Ẽ

) δij + [Ẽ − 3
|F̃|

L−1
(
|F̃|/Ẽ

)] F̃ iF̃ j

|F̃|2
. (22)

Here L−1( · ) denotes the inverse of the Langevin function,

L(x) := cothx− x−1, (23)

and

L−1(y) ≈ 15y

(1− y)
(
5 + 5y + 2y2 + 3y3

) (24)
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is an empirical approximation proposed in [4]. In view of Eqs. (15) and (16), the
closure relations of the bosonic and fermionic ME spectral hydrodynamics are
entirely determined by the variable Eddington factor f

(
Ẽ, |F̃|

)
.

For the bosonic case, it takes the following form:

fBE =
1

3
+

2(1 + Ẽ)(1 + 2Ẽ)

3
αBE

(
Ẽ,
|F̃ |
E

)
, (25)

fFD =
1

3
+

2(1− Ẽ)(1− 2Ẽ)

3
αFD

(
Ẽ,

|F̃ |
(1− Ẽ)E

)
(26)

for the fermionic radiation. In [4], it is assumed that both αBE and αFD do not
depend on Ẽ and can be expressed in terms of L−1(x). However, as shown in [20],
this assumption is not valid. Nevertheless, the results of [4] may serve as a good
approximation. Approximate formulae for αBE and αFD can also be found in [20].
The simplest setting for radiation hydrodynamics is slab geometry. We intro-

duce a fixed Cartesian frame (x1, x2, x3) and assume that the radiation depends
only on x := x1 and is rotationally symmetric with respect to the Ox1-axis.
It is convenient to employ spherical coordinates with the following basis:

{g1, g2, g3} = {cosΘ, sinΘ sinφ, sinΘ cosφ}, where Θ ∈ [0, π], φ ∈ [0, 2π], and
µ = cosΘ ∈ [−1, 1].
The differential solid angle element is d2g = sin θ dθ dφ = −d (cos θ)dφ =

−dµdφ. The azimuthal angle Θ is the angle between a photon wave vector
k = k g (on the axis Ox1). Rotational symmetry implies independence of the
polar angle φ. In this case, the distribution function is f(t, x, k, µ) and, according
to Eqs. (3) and (4), the radiation intensities assume the form:

Ĩ(µ) := Ĩ(t, x, k, µ) = k3f(t, x, k, µ), (27)

Î(µ) := Î(t, x, µ) :=

∞�

0

k3f(t, x, k, µ) dk. (28)

It follows from Eqs. (6)–(15) and (16) that the moments read:

E := 2π

1�

−1

I(µ) dµ, (29)

F := F 1 = 2π

1�

−1

µ I(µ)dµ, F 2 = 0, F 3 = 0, (30)
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P := P 11 = 2π

1�

−1

µ2 I(µ) dµ,

P 22 = P 33 =
1

2
E − 1

2
P 11, P ij = 0 for i ̸= j,

(31)

where Ĩ(µ) and Î(µ) stand for I in the spectral and gray formulations, respec-
tively.
The ME closures specified to the case of a slab geometry are obtained simply

by substituting Eqs. (27) and (29) into the general three-dimensional formulae.
For the gray formulation, formula (21) simplifies to the form:

P̂ (Ê, F̂ ) = Ê

5

3
− 2

3

√√√√4− 3

(
F̂

Ê

)2
, (32)

and it holds for all radiation statistics. Also, the approximate formulae for the
spectral ME closures significantly simplify when Eq. (29) is taken into account,
since

P̃ (Ẽ, F̃ ) = f(Ẽ, |F̃ |), (33)

in view of Eq. (15). Substituting E = [F, 0, 0] into the formulae for classical,
bosonic, and fermionic approximate spectral Eddington factors yields the sought
closures.
Besides the ME closures, the Kershaw closures ([10, 11] for the bosonic case,

and [23] for the fermionic case) are of particular interest since they ensure mo-
ment realizability and imply the domain of admissible values for the primi-
tive moments E and F .
In the case of bosonic and classical radiation, f(t, x, k, µ) ≥ 0 and, according

to Eqs. (26) and (27), Ĩ(µ) ≥ 0 and Î(u) ≥ 0. Since E, F , and P are the first
three moments of I(u), the solution of the truncated Hausdorff moment problem
determines the lower and the upper bounds of E, F , and P [10, 11]:

E > 0, (34)

FL(E) := −E < F < E =: FU (E), (35)

PL(E,F ) := E−1F 2 < P < E =: PU (E,F ). (36)

Then, the closure P (E,F ) is sought as a convex combination:

P (E,F ) = ξ PL(E,F ) + (1− ξ)PU (E,F ), ξ ∈ [0, 1]. (37)
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In order to determine the value of the parameter ξ, the condition that
Eq. (36) recovers the equilibrium radiation pressure Peq := 1

3E = P (E, 0) is
imposed [10]. Then, the classical and bosonic Kershaw closure reads

P (E,F ) =
1

3
E

[
1 + 2

(
F

E

)2
]
, (38)

which applies to both spectral and gray formulations.
It should be noted that inequalities (34) and (36) determine an open convex

domain of admissible values for the primitive fields E and F in one-dimensional
classical and bosonic radiation hydrodynamics.
The fermionic case is significantly different because the Pauli exclusion prin-

ciple imposes bounds on the distribution function f(µ) := f(t, x, k, µ),

0 ≤ f(µ) ≤ 1. (39)

As a consequence, the problem of moment realizability can be exploited only
for the spectral formulation (fixed k, 0 < k < +∞) of fermionic radiation
hydrodynamics [7, 23]. In this case, the lower and the upper bounds on the
moments follow from the solution of the truncated Markov moment problem
[7, 23]:

0 < Ẽ < 1, (40)

FL(Ẽ) := −Ẽ(1− Ẽ) < F̃ < Ẽ(1− Ẽ) =: FU (Ẽ), (41)

PL(Ẽ, F̃ ) :=
1

3
Ẽ3 +

F̃ 2

Ẽ
< P̃ < Ẽ

(
1− Ẽ +

Ẽ2

3

)
− F̃ 2

1− Ẽ
, (42)

which determine the convex domain of admissible values of (Ẽ, F̃ ). The spectral
fermionic Kershaw closure is obtained similarly, as a convex combination of
P̃L(Ẽ, F̃ ) and P̃U (Ẽ, F̃ ) under the same condition P̃ (Ẽ, 0) = 1

3Ẽ [23]:

P̃ (Ẽ, F̃ ) =
Ẽ

3
+

2(1− 2Ẽ)

3(1− Ẽ)Ẽ
F̃ 2. (43)

It can be rearranged into a form similar to the spectral fermionic maximum-
entropy closure:

P̃K(Ẽ, z) :=
Ẽ

3
+

2

3
Ẽ(1− Ẽ)(1− 2Ẽ)ΘK(z), (44)
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where

ΘK(z) = z2, z :=
F̃

Ẽ(1− Ẽ)
. (45)

In summary, this section introduced the kinetic description of radiation, the
two-moment system, and the main classes of closures (ME and Kershaw) that
will be used as references in the subsequent analysis.

3. Modeling setup and applicability of the numerical procedure

All computations in this work are performed in the “gray” (frequency-
integrated) formulation of the two-moment radiation-hydrodynamics model in
1D slab geometry. The applied closures, ME and Kershaw, are evaluated in this
integrated setting. The ME pressure relation (Eq. (32)) retains the same form
for all particle statistics (classical, bosonic, fermionic). The fermionic variant
is analyzed only through the degeneracy parameter a in ∆(ϕ, a) tests, without
retraining f(ϕ, a). Thus, the numerical procedure corresponds to the frequency-
integrated (“gray”) model, with all benchmarks and the Marshak wave test
carried out in this configuration.
The fermionic variant considered here is intended primarily as an illustration

of the flexibility of the proposed approach: the same numerical pipeline can
be applied when the Eddington factor depends on both ϕ and the degeneracy
parameter a. In this work we focus on verifying that the resulting fermionic
closures preserve hyperbolicity over a wide range of a, while a full quantitative
error analysis and dynamic benchmarks for the fermionic case are left for future
investigations.
The measure of directivity (anisotropy) is the reduced flux:

ϕ =
|F|
E
∈ [0, 1). (46)

In this paper, we consider two closure maps: the classical f(ϕ) and the fermionic
f(ϕ, a) with the degeneracy parameter a [4, 20].
We construct the ME closure by solving the Lagrange multiplier problem for

the angular intensity w∗(µ), which depends on the linear combination α+βµ and
additionally on the parameter a in the fermionic variant [4, 20]. We determine
the moments from the integrals in the direction µ ∈ [−1, 1]:

E(α, β[, a]) =

1�

−1

w∗(µ;α, β[, a])dµ, (47)
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|F|(α, β[, a]) =
1�

−1

µw∗(µ;α, β[, a])dµ, (48)

P

E
; f(α, β[, a]) =

1�

−1

µ2w∗(µ;α, β[, a])dµ

1�

−1

w∗(µ;α, β[, a])dµ

. (49)

For a given ϕ (and optionally a), we solve the monotonic mapping ϕ 7→ β
using the bisection method. We approximate the angular integrals by Gauss–
Legendre quadrature using the number of nodes (quadrature points) in the
Gauss–Legendre rule used to integrate over the angular cosine µ ∈ [−1, 1], i.e.,
NGL = 512 nodes, which stabilizes the accuracy near ϕ → 1. The derivative
of the ME closures with respect to ϕ, ∂ϕfME, is determined on a dense mesh
using finite differences. We assign weights to samples closer to the radiation
limit [24]:

w(ϕ) = 1 + βedge ϕ
kedge (βedge = 5, kedge = 6), (50)

which improves the approximation in the zone of the fastest changes of f(ϕ).
The resulting dataset D = {(ϕ[; a], fME, ∂ϕfME, w)} is then partitioned into
training and validation subsets using an 80/20 ratio. Without this edge weight-
ing, preliminary experiments showed noticeably larger errors and oscillations in
the vicinity of ϕ ≈ 1, especially in the derivative, which is critical for correct
wave-speed predictions.

4. Materials and methods

The reference set was constructed according to the procedure for determin-
ing the maximum entropy proposed in [2, 3], as shown in Algorithm 1. For
given moments (E,F), after scaling, we reduce it to ϕ = |F|/E). We then
solve the monotonic inverse problem using the bisection method to determine
the Lagrange multipliers. The higher-order moment is calculated using Gauss–
Legendre quadrature with NGL = 512 nodes, which provides stable accuracy
near ϕ→ 1. The derivative with respect to ϕ is obtained from finite differences
on a grid. Samples closer to the free-streaming (ϕ → 1) are weighted more
strongly to better capture the sharp geometry of the function. Ablation runs
performed without this weighting resulted in visibly larger errors near ϕ → 1,
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confirming that edge weighting is necessary to control the asymptotic behav-
ior in the free-streaming regime. We use an analogous scheme in the fermionic
variant, where the degeneracy parameter a appears [4]. We divide the resulting
dataset into training and validation sets using an 80/20 ratio.

Algorithm 1. Generate ME reference dataset.

Require: Grid {ϕi}Mi=1 on [0, ϕmax]; optional {ai}; NGL nodes

Ensure: Dataset D = {(ϕi, ai, fME,i, (∂ϕf)ME,i, wi)}

1: for i = 1, . . . ,M do

2: Invert ϕi 7→ (α, β) by robust bisection (monotone map)

3: Integrate angular moments with GL (NGL nodes): obtain fME,i

4: Differentiate over ϕ on the grid → (∂ϕf)ME,i (finite diff.)

5: Edge weight wi ← 1 + βedgeϕ
kedge
i ▷ higher weight near ϕ→1

6: end for

7: Split D → train/val

Compact neural models are known to achieve strong information efficiency
across widely differing problem areas [17, 18]. On this basis, we employ a small
MLP and assess whether it can act as a fast, physics-constrained approximation
to the ME closure. We use a small MLP to approximate the map ϕ 7→ f(ϕ) (and
(ϕ, a) 7→ f(ϕ, a) for fermions). To enforce the physical range, we parameterize
the output with a smooth squashing function to (1/3, 1), making fθ ∈ (1/3, 1)
independent of the weights. The objective function is the sum of three terms:
(i) the error of f with respect to the ME reference, (ii) the error of the deriva-
tive ∂ϕf with respect to the ME calculated by automatic differentiation, and
(iii) a non-monotonicity penalty max(0,−∂ϕf), which softly enforces the growth
of f with ϕ. Samples from the region ϕ → 1 are weighted higher. We optimize
the network using Adam with the following parameters: a constant learning rate
10−3 and a mini-batch size 1024. After each epoch, we evaluate on a held-out
validation split and report two metrics: the MAE and the maximum absolute er-
ror (L∞). We retain the checkpoint that attains the lowest validation MAE and
employ early stopping with a patience of 50 epochs to avoid overfitting. All re-
ported numbers (errors, timings) correspond to this best-validation checkpoint.
Experiments use fixed random seeds and double precision. In the final phase of
training, the validation MAE varies only slightly between successive checkpoints
(typically by less than 10−4). Preliminary reruns with different random seeds
produced final-validation MAE values within approximately 5% of each other,
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indicating low sensitivity of the surrogate to initialization. A full multi-seed
variance analysis is left for future work.
To enforce the physical range, the output is parameterized through a mono-

tone squashing nonlinearity σ : R→ (0, 1): we set fθ = 1
3 + 2

3 σ(gθ(·)), which
guarantees fθ ∈ (1/3, 1) independently of the weights, see Algorithm 2. This
construction is consistent with key properties of the ME closure, as it keeps
the Eddington factor in the physically admissible interval (1/3, 1) and promotes
a globally increasing dependence on the reduced flux. At the same time, the
ME curvature χ′′(φ) and the full realizability structure are not enforced ana-
lytically but are instead reproduced numerically by training on ME reference
data. The loss is the weighted sum of three terms: (i) the MAE of f against
the ME reference, (ii) the MAE of the derivative ∂ϕf against the ME computed
by automatic differentiation (autograd), and (iii) a non-monotonicity penalty
max(0,−∂ϕf), which softly enforces that f increases with ϕ. Samples near the
free-streaming edge are emphasized by w(ϕ) = 1 + βedgeϕ

kedge . We optimize
using Adam with the following parameters: a constant learning rate 10−3 and
a mini-batch size 1024. The loss weights are λder = 5× 10−3 and γmono = 10−2.
After each epoch we evaluate on a held-out validation split and report MAE

Algorithm 2. Train the physics-constrained neural Eddington closure.

Require: MLP gθ : (ϕ[, a]) 7→ R with two hidden layers (64,64), SiLU

1: Output clamp: fθ ← 1
3+

2
3 σ
(
gθ(·)

)
▷ σ maps to (0, 1)

2: Hyperparams: Adam(lr = 10−3), batch=1024, λder = 5×10−3, γmono = 10−2

3: while not early-stopped do

4: for minibatch B ⊂ Dtrain do

5: (ϕ, a, fME, (∂ϕf)ME, w)← B

6: fθ ← MLP output; ∂ϕfθ ← autograd wrt ϕ

7: Lval ← MAE(fθ, fME; w)

8: Lder ← MAE(∂ϕfθ, (∂ϕf)ME; w)

9: Lmono ← mean(w ·max(0,−∂ϕfθ))

10: L← Lval + λderLder + γmonoLmono

11: Backprop(L); Adam.step(); zero grad()

12: end for

13: Evaluate on Dval (MAE, L∞); update best model / patience

14: end while
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and L∞. The derivative penalty promotes a faithful reconstruction of ∂φfθ and
improves the smoothness of the closure, while the monotonicity term suppresses
small unphysical oscillations. The weights λder and γmono were chosen to improve
the match to the ME derivative without noticeably degrading the MAE of fθ
itself; a more systematic optimization of these weights is left for future work.
Then, we retain the checkpoint with the lowest validation MAE and apply early
stopping with a patience of 50 epochs (i.e., training stops if the validation MAE
fails to improve for 50 consecutive epochs by at least a small tolerance ε, and
the best-performing checkpoint is restored). All reported numbers, including
errors and timings, correspond to this best-validation checkpoint. Experiments
use fixed random seeds and double precision. This physics-constrained approach
complements classical entropy closure and two-moment models [2].
In the next step, we evaluate the accuracy of fθ using the MAE and L∞

with respect to fME on ϕ ∈ [0, 0.98] and, separately, in the boundary window
ϕ ≥ 0.95, see Algorithm 3. We verify the hyperbolicity of the system using
the discriminant ∆(ϕ) =

(
∂ϕf

)2
+ 4
(
f − ϕ∂ϕf

)
and report minϕ∆(ϕ) > 0.

We also measure the per-call speedup of the closure invocation (the ratio of
the ME evaluation time to the NN evaluation time for a set of queries), and
examine the impact on the equations using the canonical Marshak wave test
[25, 26]. Specifically, we compare ∥E(·, T )∥L1 , ∥E(·, T )∥L∞ , and the end-to-end
simulation time. As a benchmark, we include the analytical Kershaw closure
[11, 27] and a lightweight rational fit to the ME data. In the fermionic variant,
we scan a ∈ [−5, 5] and plot the map minϕ∆(ϕ, a).

Algorithm 3. Physical checks and performance benchmarks.

Require: Best θ; dense grid ϕ ∈ [0, ϕmax]

1: Accuracy: report MAE, L∞ of fθ vs. fME; edge-window stats for ϕ≥0.95

2: Hyperbolicity: compute ∆(ϕ) from fθ and ∂ϕfθ; record minϕ ∆ > 0

3: Per-call timing: compare N batched calls of ME vs. NN (speedup)

4: Marshak test (end-to-end): run solver with ME/NN/Kershaw; report L1/L∞

vs. ME and wall-clock speedup

5: Baselines: Kershaw closure; rational fit (report MAE vs. ME)

6: Fermions: scan a ∈ [−5, 5]; map minϕ ∆(ϕ, a)

Table 1 summarizes the key hyperparameters and numerical settings used
in the calculations, including the MLP architecture, optimization scheme, loss
term weights, sample boundary weighting, precision, reduced flux range, ME
reference parameters, and benchmark configuration.
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Table 1. Hyperparameters and numerical settings applied in the calculations.

Component Value / Setting

Architecture MLP, 2 hidden layers, 64 units each

Activation SiLU (hidden), output clamped to (1/3, 1)

Optimizer Adam (learning rate 10−3)

Batch size 1024

Loss weights λder = 5× 10−3, γmono = 10−2

Edge weighting w(ϕ) = 1 + βedgeϕ
kedge , βedge = 5, kedge = 6

Early stopping patience = 50 (best validation MAE)

Training / validation split 80% / 20%

Precision float64

Random seed fixed (reported in code)

Reduced flux range ϕ ∈ [0, 0.98]

ME quadrature Gauss–Legendre, NGL = 512 nodes

ME inversion monotone bisection (per point)

Baselines Kershaw closure; rational fit (a2, a4, b2)

Benchmarks Marshak wave (1D): L1/L∞ vs. ME; end-to-end timing

5. Results

We propose and evaluate a compact, physically consistent NN closure that
replaces the ME closure in three-moment transport without compromising its
essential properties while providing significant speedup. As a high-fidelity ref-
erence, we compute the ME Eddington factor on a dense grid using Gauss–
Legendre angular quadrature and monotonic inversion. In the next step, we
train a small MLP whose output is smoothly constrained to a physically feasi-
ble range, regularized to grow monotonically with anisotropy, and correspond to
the derivative of the ME closure. We compare this NN-based closure with the
ME and a standard analytical basis, i.e., the Kershaw closure [11, 27] in terms of
local accuracy, hyperbolicity compliance, delay per evaluation, and performance
on the Marshak wave benchmark [25, 26].

5.1. The quality of the closure

Apart from pointwise errors f(ϕ), we quantify the local geometry by compar-
ing ∂ϕf to the ME reference, see Table 2. The NN-based closure matches the ME
slope to within a few percent most of the range and remains competitive even in
the rapid-variation region near ϕ→ 1, where the absolute error peaks yet stays
localized. This derivative control is important for preserving the eigen-speeds
of the flux Jacobian and, consequently, hyperbolicity. The NN-based closure
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Table 2. Accuracy of the closures against the ME reference for f(ϕ), on the grid ϕ ∈ [0, 0.98].

Closure MAE Max error MAE (edge ϕ ≥ 0.95)

Kershaw (analytic) 4.346× 10−2 8.464× 10−2 2.160× 10−2

NN 8.917× 10−4 2.608× 10−2 1.217× 10−2

Rational fit (a2, a4, b2) 1.012× 10−3 – –

achieves MAE = 8.917 × 10−4 on the entire grid ϕ ∈ [0, 0.98], which is ∼ 50×
more accurate than the analytical Kershaw closure (4.346×10−2). In the difficult
boundary ϕ ≥ 0.95, the error increases due to the rapid variation of f . However,
the NN remains significantly better than Kershaw. An analytic rational baseline
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Fig. 1. Eddington factor comparison: a) Kershaw closure departs visibly from the ME reference,
especially near extreme ϕ, b) NN-based closure overlaps the ME curve across almost the entire
admissible range, while Kershaw shows systematic bias; color/line coding: blue solid – ME,

orange dotted – Kershaw; green dashed – NN-based.
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givesMAE = 1.012×10−3, which is a useful compromise between simplicity and
accuracy. Beyond scalar errors, the surrogate provides a smoother and more ac-
curate approximation of ∂ϕf near ϕ→ 1 than the Kershaw closure, which tends
to underpredict the steepness of the ME Eddington factor in the free-streaming
regime. This improved control of the slope is important for obtaining physically
consistent characteristic speeds in the moment system.
Figure 3a summarizes the trade-off between accuracy and computational

cost. The NN-based closure maintains near-ME accuracy while delivering sub-
stantial speedups, outperforming the Kershaw closure in both quality and ef-
ficiency. Learning dynamics are presented in Fig. 3b. The error drops rapidly
during the first ∼50 epochs (from ∼2×10−1 to ∼10−2), then decays slowly and
stabilizes at ∼9×10−4. Validation closely tracks training, and the monotonicity
term decays to ∼ zero, consistent with f(ϕ) being globally increasing over the
discretized training domain.
Figure 1 compares Eddington factors across closures. Figure 1a shows that

the Kershaw closure departs from the ME reference, with the largest devia-
tions near the edges of the admissible domain. Figure 1b includes the NN-based
closure. This curve essentially overlaps the ME reference over almost the entire
range of ϕ. By contrast, Kershaw exhibits a persistent systematic bias. This indi-
cates that the NN-based closure has learned the structure required to reproduce
the ME mapping f(ϕ) with correct asymptotics near the boundaries.

5.2. Hyperbolicity

As shown in Fig. 2a, the discriminant remains non-negative across the admis-
sible domain, in agreement with ME, thereby ensuring a physically consistent
hyperbolic formulation. This satisfies a key physical-consistency requirement
that purely heuristic closures may violate.
In Table 3, we report the minimum discriminant for the NN-based closure

minϕ∆(ϕ) for NN: 5.1 · 10−2 > 0, implying no hyperbolicity violations over the
tested range. The fermionic variant also exhibits zero violations across a ∈ [−5, 5]
on the (ϕ, a) lattice. A positive margin of ∆ is critical for stable hyperbolic
dynamics.
To quantify the hyperbolicity margin across thermodynamic regimes, we re-

portminϕ∆ as a function of the degeneracy a, see Fig. 2b. Across a ∈ [−5, 5], the
minimum discriminant remains strictly positive (≈ 0.5–1.3), indicating hyper-
bolicity throughout all regimes considered. The above configuration was selected
after preliminary experiments, indicating qualitatively similar learning dynamics
and final errors for nearby choices of learning rate and batch size, suggesting lim-
ited sensitivity of the method to these hyperparameters. Although the present
analysis is based on discrete sampling and numerically evaluated derivatives,
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Fig. 2. a) Minimum discriminant minϕ ∆ versus degeneracy a. The horizontal line at y = 0
would mark the hyperbolicity boundary, b) hyperbolicity check across the admissible range

of ϕ. The horizontal line at y = 0 marks zero error relative to ME.

Table 3. Hyperbolicity checks.

Case minϕ ∆(ϕ) Fermions: minϕ ∆(ϕ, a) for a ∈ [−5, 5]

NN-based closure 5.1 · 10−2 > 0 > 0 (no violations)

the positive discriminant margin (minϕ∆ ≈ 5× 10−2) suggests robustness with
respect to small perturbations. A systematic perturbation study is deferred to
future work.

5.3. Efficiency

Table 4 shows per-evaluation times for a batch of N = 20 000 samples/
points. The ME procedure is a baseline. The Kershaw closure is ∼ 64× faster,
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Table 4. Per-evaluation timing of the closure f(ϕ) (batch N = 20 000).

Method Runtime Speedup vs. ME

ME (reference) 16.51 s 1×
Kershaw (analytic) 0.2572 s 64.2×
NN-based closure 0.01573 s 1049.6×

while the NN-based model is ∼ 1050×, due to its constant cost of O(1) (ma-
trix multiplications) instead of integration and map inversion. These speedups
translate into real-time savings in the solvers, see Fig. 3a.
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Fig. 3. Eddington factor: a) accuracy–efficiency trade-off, b) learning dynamics
for the NN-based Eddington closure.

The learning dynamics are presented in Fig. 3b. Both training and validation
MAE drop sharply in the first ≈50 epochs and then flatten near 10−3.
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5.4. Marshak wave test

In the Marshak wave test, we compare the profile of E(x, T ) in the L1 and
L∞ norms and the total computation time, see Table 5. The NN-based closure
remains very close to the ME (L1 = 8.928× 10−4) and speeds up the entire run

Table 5. Marshak benchmark.

Closure in solver L1 against ME L∞ vs. ME Speedup (end-to-end)

ME (reference) – – 1×
Kershaw (analytic) 1.490× 10−2 7.419× 10−2 48.2×
NN-based closure 8.928× 10−4 1.473× 10−2 247.4×
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Fig. 4. Marshak benchmark: a) NN closure reproduces E(x, T ) from the ME reference, while
Kershaw deviates more strongly, b) pointwise differences show near-zero error for NN across

most of the slab and larger, structured errors for Kershaw.
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by ∼ 247×. The Kershaw closure is faster than the ME closure, but generates
larger deviations (L1 = 1.49×10−2, L∞ = 7.419×10−2) and a smaller time gain
of∼48×. Figures 4a and 4b assess solution quality for the Marshak problem. The
NN-based closure reproduces the reference E(x, T ) profile (Fig. 4a) and yields
pointwise errors close to zero across most of the slab (Fig. 4b), while Kershaw
exhibits larger, structured discrepancies. These results confirm that closure-level
enhancements propagate to higher-quality solutions for the canonical Marshak
benchmark. In particular, the NN-based closure reproduces both the position
and the shape of the Marshak wave front at the final time, with only small
deviations from the ME profile. The Kershaw closure, while still capturing the
overall behavior, yields a more diffuse and slightly displaced front, consistent
with its larger L1 and L∞ errors. The trajectory of the Marshak front, esti-
mated as the position where E(x, T ) drops to half of its peak value, matches the
ME reference within the grid resolution, whereas the Kershaw closure exhibits
a slightly delayed and more diffuse front.

5.5. Ablation study

We quantify the contribution of each component in Table 6. FULL denotes
the complete training objective (DERIV + MONO + EDGE), no DERIV re-
moves the derivative regularization term, no MONO removes the monotonicity
penalty, and EDGE removes the edge-weighted error term near domain bound-
aries. We consider the following metrics: MAE, MAE edge: MAE computed on
edge regions only, dMAE: MAE of the first derivative (shape fidelity), min∆:
minimum discriminant over the scan (hyperbolicity margin), neg∆: count (or
fraction) of sampled points with ∆ < 0 (hyperbolicity violations), and speedup:
computational speedup relative to the ME reference. Disabling regularization,
including the monotonicity penalty, increases the MAE. Architectural improve-
ments that increase expressivity reduce error while maintaining stability. Abla-
tion runs performed without this edge-weighting resulted in visibly larger errors
near ϕ → 1, confirming that edge-weighting is necessary to control the asymp-
totic behavior in the free-streaming regime.

Table 6. Ablation study.

Name min ∆ neg∆ MAE MAE edge dMAE Speedup

No DERIV 0.119 0 0.002 0.040 0.076 748

No MONO 0.108 0 0.003 0.039 0.082 922

FULL 0.166 0 0.004 0.043 0.088 1178

No EDGE 0.265 0 0.005 0.069 0.106 2299
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6. Limitations

The results presented here concern an energetically integrated, one-dimensional
test case and the range ϕ ≤ 0.98, where the boundary ϕ → 1 is particularly
challenging numerically. Training is performed on ME data generated for a fixed
class of problems; changes in medium properties would require regenerating the
reference data set and/or performing a short fine-tuning stage. Although no
violations of hyperbolicity were observed, this guarantee is currently numerical,
based on verifying minϕ∆(ϕ) > 0 on a dense grid, rather than an analytical
proof for the continuous NN model.

7. Conclusions

The presented NN-based Eddington closure achieved a MAE of 9.0 ×10−4

on the reduced flux ϕ ∈ [0, 0.98] and provided a ∼ 103× speedup for a single
closure invocation. In the Marshak wave test, i.e., a canonical 1D transient
test that combined closure with wave speeds and front shape, it speeds up the
entire simulation by ∼247× while maintaining hyperbolicity, with minϕ∆(ϕ) =

5.1× 10−2 > 0. Compared to the analytic Kershaw closure f(ϕ) = 1
3 +

2
3 ϕ

2, our

model is clearly more accurate (MAE 4.35× 10−2 for Kershaw) and faster end-
to-end. For simplicity of implementation, we also provided a lightweight rational
fit (MAE 1.01×10−3) and showed that in the fermionic variant minϕ∆(ϕ, a) > 0
for a ∈ [−5, 5]. Thus, a small, physically constrained NN trained on ME data
can practically replace the ME closure in the three-moment model, preserving
hyperbolicity and accuracy of the order of MAE ∼ ×10−3, while speeding up
computations from ∼ ×102 to ∼ ×103 times, as confirmed by the Marshak wave
test. The model can be directly used in three-moment solvers in place of the ME
procedure, achieving orders-of-magnitude savings in computational time with-
out losing the quality of the solutions. It should be emphasized that the same
numerical approach can be employed for radiation hydrodynamics in the spec-
tral formulation, where different ME closures correspond to different statistics
(Maxwell–Boltzmann, Bose–Einstein, and Fermi–Dirac). Moreover, the method
naturally extends to three-moment radiation hydrodynamics. This extension is
of special interest, since there are no closed analytic formulae for ME closures of
the three-moment theories [6–8].
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