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The present paper discusses mathematical barriers in the development of software for pre-
processing of atomistic models of dislocation networks. As a matter of fact, as yet, there
are neither analytical nor numerical methods nor programs available which can be used for
atomistic reconstruction of complex dislocation networks. Some of the problems to over-
come are discussed in this paper. In the previous papers discussed below it was shown that
a direct superposition of analytic formulae for displacements of atoms induced by single
dislocations does not give possibility to hold the essential geometric properties of the re-
sultant atomistic models. Namely, after the input of first dislocation, the lattice symmetry
required to input the next dislocations is usually broken. These inaccuracies compose the
mathematical barrier for atomistic reconstruction of advanced dislocation nets. A method
developed here has been applied to reconstruction of the dislocation nodes localized in
the copper/shaffire interface. In the present case, the partial dislocations are inserted by
slips. For comparison, the junction corresponding to the stacking faults obtained by the
rigid shifts of copper on the Burgers vector %(112) are discussed.
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1. Introduction

In the computer modelling of engineering structures, the preprocessing of
input data often plays a very important role. For example, to solve any Fi-
nite Element problem the structure must be discretized first into the FE mesh.
Such a mesh must comprise all important details concerning the geometry
and material properties. If the structure is more advanced then the meshing
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presents a more complex problem. As a result, the prices of good programs
for preprocessing of input data in some cases exceed the prices of programs used
to solve the main FE problem. How does the preprocessing of input data look like
in the atomistic modelling of dislocations? In fact, so far, there are no analytical
nor numerical programs available by the use of which a fixed dislocation network
with arbitrary chosen angles between dislocation segments can be preprocessed.
For example, in molecular dynamics a random dislocation net is obtained by
plastic deformation.

Dislocations play a very important role in prediction of various physical and
chemical properties of nanostructures. Despite the very promising electronic
properties of many semiconductor devices, the formation of crystal defects dur-
ing the growth compose a technological barrier for the use of such materials in
the production of electronic devices [19]. Recently, the analytic solutions ob-
tained by means of the linear theory of elasticity have been used in the prepro-
cessing of input data for atomistic modelling of many physical and/or chemical
properties of dislocations [3-5, 9, 12, 22, 25, 28, 31, 40, 42]. Various dislocations
are analysed by means of the ab-initio and atomistic methods. To compare the
properties of different dislocation networks, their atomistic models are indispens-
able. Unfortunately, by using two different interatomic potentials two mutually
different misfit dislocation patterns are often obtained. For many structures,
this is because there are no reliable interatomic potentials that can gather the
complex character of chemical bonding in a relatively simple form. Such a sit-
uation concerns among others the Cu/x-AlsO3 heterostructure considered in
this paper, cf. [10, 26, 30, 32]. Ab-initio calculations are considerably a much
more accurate method and provide essential information on the arrangement
of atoms and bonds occurring in structures with defects as well as in hetero-
structures such as metal/oxide interfaces. Unfortunately, ab-initio methods can
be applied only to small systems of atoms. Therefore, parallel studies for larger
systems are undertaken by means of the molecular dynamics, molecular statics
(MD/MS), Monte Carlo and other methods. The results obtained by MD/MS
often depend on the assumed initial configuration of atoms. Thus, the aim of
this paper is to develop a computational method which allows the preprocess-
ing of a given variant of an atomistic system of dislocations enabling mutual
fitting of two phases. There arises a question: Is it possible at all to prepare such
atomistic models of dislocation network in a deterministic manner? Over fifty
years ago, a similar question was stated in the context of the possibility of ob-
taining analytic formulae for lattice distortions induced by dislocations. Thanks
to papers by Burgers [7], Yoffe [38, 39] and others that problem has been solved,
first for isotropic elastic continuum, and thereafter step-by-step the analytical
problems were solved also for anisotropic materials. Recently, for an arbitrarily
chosen dislocation network composed of a finite number of dislocation elements,
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the respective stress/distortion tensor field can be obtained using analytical
methods.

It is worth emphasizing that despite the richness of analytical solutions avail-
able for anisotropic elasticity, and despite that most crystals demonstrate an
anisotropic behaviour, in practice the most popular analytical equations in use
concern the isotropic continuum, cf. [2, 18, 21]. Usually, the reason for this situa-
tion is rationalized by a small difference between the stress/strain fields obtained
for isotropic and anisotropic continua. No less important for this situation is the
complex analytical form of the equations obtained for anisotropic materials.

In this paper, our attention is focused on preprocessing of atomistic models
by means of computational methods. It concerns the interfacial regions con-
taining dislocations and stacking faults. The next section briefly presents the
mathematical foundations of the nonlinear continuum theory of dislocations. In
the literature, a term the nonlinear theory of dislocations is understood differ-
ently, and different notations are used. Our approach refers back to the papers
by Kroner [24] and Teodosiu [37] where the so-called local relaxed configuration
is employed to refer all crystallographic parameters to the perfect lattice. The
transition between the current and the local relaxed configurations is carried
out locally for material points. Such an approach is based on the use of immo-
bile coordinate systems, Lagrangian and Eulerian, that are related to the initial
and the current configurations, respectively. An alternative formulation, which
is not used here, is based on the idea of a coordinate system being convected
together with the crystal lattice. Then, the components of lattice deformation
gradient form a unit matrix, while the role of deformation measures is taken by
the metric tensor and asymmetric connection coefficients, cf. [6, 23].

2. Continuum theory of discrete dislocations

In the linear theory of dislocations, the gradient of crystal deformation is de-
composed additively into the lattice and plastic distortion tensors, according to

gradu =B + B, (1)

cf. [24] and [15]. By assumption, the lattice distortion B is composed of the
antisymmetric tensor of crystal lattice rotation and the symmetric tensor of
elastic strain, respectively,

P=w-+c¢. (2)

The plastic distortion 3 is identified with an asymmetric strain tensor that be-
ing isoclinic with the lattice rotation. This nomenclature comes from the theory
of elasto-plastic Cosserat continua where the particle rotation x and its elastic/
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plastic strains are identified, respectively with: x = w, € = ¢, and €, = By;
which gives

gradu=x+ €+ €. (3)

Contrary to the Cosserat continua, in the classical continuum theories of dislo-
cations it is assumed that the material particles cannot rotate independently of
the displacement field. This leads to the symmetry of the elastic strain tensor,
and therefore a simplified notation gathering together the elastic strain and crys-
tal lattice rotation into a common lattice distortion tensor, 3, is more convenient.
According to the notation used in this paper, the multiplicative decomposition
of the (total) deformation gradient into the lattice and the plastic deformations
can be rewritten in the following form

Fiot = FF. (4)

For chemically homogeneous crystals, F is identical to the elastic deformation
tensor. For heterostructures, the situation is more complex, cf. [14].

The integration of lattice distortions over Burgers circuits can be performed
over the spatial (deformed) or reference (perfect lattice) configurations according
to the formulae

b:ggdx:gngX:?é(l+ﬁ)dX:§£EdX,
I N — 17, _ - _
b de ZgF dx 25(1 B)dx Zgﬁdx,

where 1 is the metric tensor of the Euclidean space; b and b are the spatial and
so-called true Burgers vectors, respectively; the symbols ¢, C and o, O mean the
open and closed Burgers circuits situated in the spatial (Eulerian) and refer-
ence configurations, respectively. In our approach the reference configuration is
a counterpart of the local relaxed isoclinic configuration introduced by Teodo-
siu [37]. It is worth emphasising that the lattice distortion tensor B is related to
the lattice spacings in the current configuration. Alternatively, the distortions
can be pulled back by differentiation over the lattice spacings in the perfect lat-
tice, which gives the following, mathematically strict and mutually reversible,
transformation rule

()

B=(1-p) "' -1 (6)

In the linear theory, the difference between differentiation over the spatial and

reference configurations are neglected, i.e. it is assumed that 3 = % R~ g—)‘z =B,
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F~F '~ 1, O=o, etc. For such a simplification, the differential equations
reduce to the linear equation set and, through the analytical methods avail-
able, many very useful formulae can be derived. On the other hand, most of
the analogical nonlinear problems have not yet been solved analytically for dis-
locations. According to the finite deformation theory developed for immobile
coordinate systems the deformation and distortion tensors satisfy the following
mathematically strict and mutually reversible relations

F=1+38, F'=(1-8)" (7)

Unusually, the relationship on the left hand is employed to the operation on ten-
sors referred to the local relaxed configuration while the relationship on the right
is applied to tensor fields performed on the spatial configuration.

3. Analytical equations for mixed dislocation

The displacement vector field forming a mixed straight-line dislocation in an
isotropic elastic material was determined first by Love [27]. The vector equations
were presented in a few different forms, cf. [13, 34]. For the needs of the present
paper, the respective equations can be rewritten in the following form

u(x) = f(x) = £(x) + f(x), (8)

where the sequential components of the vector fields added are:

b
fo = ﬁ (atanQ (%) ToT1 + %2(1 — 1/)(:1:% + x%))
- H (atan2 <£> Tox1 — @)a
x

fo = b1(1—21/1 x%+x§+ 22 — 23 >
4 )

2T x \a =) 2 T a1 - )@+ 4d)
b
fi= i atan?2 (%) ToX1;

o= —bi H(—p),

f3=0, (10)

The variables 31 and 33 are the edge and screw components of the true Burgers
vector. The symbols v and ¢ denote the Poisson ratio and the angle between
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the edge component and the crystal plane along which the partial dislocation is
introduced into the perfect lattice. The radius r. is used here to normalize the
vertical shift of atoms in dislocation core, cf. (9)2 and Table 1 with (3-46) in [21].
The present formula allows one to introduce a perfect or partial dislocation by
slip, climb or in the mixed path, cf. Fig. 1. The Heaviside step function and
atan2 (%) are defined according to the following convention:

a ]l x>0,
H(x):{o 2 <0

arctang x>0,
x
11
arctang—kﬂ y>0, <0, (11)
x

arctang—ﬂ y <0, <0,
T

0 z = 0.

Those definitions differ significantly from that mainly used in mathematics.
Namely, the most well known definitions are:

1 x>0,
H@) €30 2=0
0 z<0,
(arctan% x>0,
y (12)

arctan = +7m y >0, <0,
T

atan?2 (g) 4 arctang -7 y<0, <0,
x

_l’_

ST

It is also worth mentioning that the function atan2 (%) depends not only on

the factor £ but also on the signs of z and y. Thus the bar separating = and y in
atan?2 (%) is an inherent part of the notation applied.
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Y

FiG. 1. Partial dislocation and stacking fault.

TABLE 1. Length scale effect on vertical displacement [A] of points situated
in vicinity of dislocation core.

Distance (X,Y) from dislocation core (in A)
Measure (17 Wlo) (17 %o) (1,1)
[m] 3.19571 3.15737 2.89209
[0 m] 0.76848 0.73015 0.46484
[A] 0.49879 0.46045 0.19516
o = by 0.63462 0.59628 0.33099

Differentiation of (9) gives the following functions for lattice distortion:

—b1 (3 —2v)a2wy + (1 — 2v)a3

=52 2(1 —v)(23 +23)2
By = b1 (3 - 2v)23 + (1 — 2v) 223
P70 20— v)@2+ad)?
5 —by (1-2v)2} + (3 —2v)my22
21 = ’
27 2(1 — v)(z? + 23)2
(- )+ 3 )
Byy = b (14 2v)x2ze — (1 — 2v)3
27 on 2(1 —v)(2? +23)2
—bs  x9
B o Tt
bg Tl
faz = 2m 2?2 + 23’

The plastic distortion tensor field obtained by differentiation of the Heaviside
and atan2 functions is not discussed here. It is worth noting only that for angle
@ = 0 the non vanishing components are:

Boi12 = —b1 6(y) H(—x),

R (14)
Bpizz = —b3 d(y) H(—x),
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where § denotes the Dirac function. More details on the decomposition of the
total distortion gradient into the lattice curvature and dislocation tensor fields
have been discussed recently in [15].

4. Atomistic reconstruction of dislocations

The linear theory of deformation, as a simplified theory, does not distinguish
between the differentiation displacements over the reference and spatial config-
urations. One can check that in order to hold the symmetry of lattice distortion
in the spatial (real) configuration, the distortion tensor field for atoms forming
a given dislocation must be related to the spatial configuration. Unfortunately,
the process of atomistic reconstruction of a dislocation cannot start from the
spatial (wanted) configuration but from the reference one. In other words, with
respect to the missing the current configuration, instead of pull back displace-
ment field, u = f(x), the mentioned analytic formulas are applied to push for-
ward the atoms from a perfect lattice configuration. This corresponds to the
following scheme

u = f(X), (15)

where X = x — u, cf. (8), (9). This results in a broken symmetry of the lattice
distortion field in such obtained spatial configuration of atoms. Obviously, the
deviation from the correct positions, holding the symmetry of analytical fields
applied is weekly visible in such reconstructed models of a single dislocation. The
problem is that the errors usually accumulate with the sequential introduction
of next dislocations into the atomistic model. To avoid these errors, another dis-
placement function being consistent with analytical ones (8), (9) must be used.
From the mathematical point of view, in order to introduce a dislocation di-
rectly from the perfect lattice, instead of (15), the wanted analytical function
u(X) should satisfy the following formula

u=f(X)=f(X+u). (16)

The analytical solution of the implicit equation set (16) with respect to f(*) ob-
tained for a given f(x) is not a trivial analytical problem. For the present authors
it is unknown whether the analytical form of f(*) has ever been derived and how
such a solution does look like. Anyway, Eq. (16) can be solved numerically by
means of iterative methods. Let us consider the iteration of the displacement
vector for the atom occupying the initial position X. The displacement vector
can be determined by using the iterative formula

u'tl =u' + At (17)
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In case of use of the Newton—Raphson method the correction is

-1
Au = — <‘I’<X’ u)> ¥(u'), (18)
u u=u't
where
U(X,u) iu—f'(X—i—u). (19)
o (X,u)

Taking into account that locally B = grad u, it is easy to prove that —5= =
%g—ﬁ =1 — B(x), which gives the following resultant formula for iterating

the position of a given atom in the spatial configuration
Aut! = —[1-B(X +u)] o — £(X +u?)], (20)

where f(x) and B(x) are identified with (8), (9), and (13) stated in the spatial
configuration.

In our case the proposed nonlinear equation set, ¥(u) = 0, was solved using
a modified version of the Powell hybrid method [33]. In each iteration, the al-
gorithm first determined the standard Newton step. If this step fell within the
“trusted region” it was used as a trial step. Otherwise, linear combinations
of the Newton and gradient directions were employed. In the previous papers
the calculations have been performed for reconstruction of different positions of
a perfect edge dislocation cores in hexagonal GaN and 4H-SiC crystals [12, 42].

Below we present another application of this approach to the reconstruction
of atomistic models of misfit dislocation network between the copper layer and
corundum substrate.

5. Reconstruction of dislocation networks

In the linear theory of dislocations the stress, strain and lattice distortion
tensor fields corresponding to elemental dislocations are superposed in the spa-
tial configuration. Such an obtained stress field holds the equilibrium equation,
while the total distortion field satisfies the conditions stated for the true Burgers
vectors. Namely, for two arbitrarily chosen dislocations differing each other from
in their position and orientation, the integration of the total distortion field in
the spatial configuration holds the following formulae:

b = 515 (B1 + By) dx,

o1

b1 + by = 95(51 + Bs) dx,

0142
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where 01,0142 denote Burgers contours circled around the first and both dis-
locations in the spatial configuration, Bl and BQ are the true Burgers vectors
which by definition satisfy (5)2 for B, (x) and B,(x), respectively. Unfortunately,
the summation of the respective displacement fields, f;(x) and fa(x), can result
in formation of voids or overlapping atoms. In some cases such artifacts can
be avoided, for example by glide of all dislocations on the same slip plane, if
possible. Such an example is considered further.

Consider the reconstruction of a set of misfit dislocations formed between
the copper layer and the corundum substrate [16, 17, 20, 29]. A mechanism of
formation the misfit dislocations suggested by Dimitriev et al. [16, 17] is shown
in Fig. 2. The authors considered the dissociation of initially perfect misfit dis-
locations into the partial ones and of formation of stacking-fault regions; see
shaded triangles in Fig. 2. The corundum lattice can be terminated either by an
aluminium (stoichiometric case) or an oxygen layer (oxygen rich interface) [35].

N g o1 =

/3 0i0] = éu_gu T ém}zﬂ

Cu (111) out of the paper

. ‘e . L Cu[0T1](111)
F1c. 2. Misfit dislocations in AL, 03[1100](0001)

copper. Green parallelogram denotes the periodicity cell of the heterostructure with misfit dis-
location network. Dashed lines on the right denote the transient position of partial dislocations
taken in the dissociation process.

zone related to crystallographic directions in

TABLE 2. Dislocations from Fig. 2 related to crystallographic directions in AlyOs.

Dislocation Burgers Line
number vector direction
A %[1?10] [1010]
1 - _
B 5[1120] [1100]
1 __ _
C 5[2110] [0110]
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In this example, in order to introduce misfit dislocations, the copper lattice
has been stretched coherently to the corundum by coinciding the [011] direc-
tion in copper with [1100] in corundum. In such an assumed coherent junction,
the outer copper atoms were situated on top of oxygen atoms at a distance of
1.827A from the outer aluminum layer [36, 41]. A misfit dislocation recognized
as a perfect one %[011] in copper, and is found to be a partial one in terms of
the corundum unit cell. Nevertheless, the physical length of the Burgers vector
is independent of the structure referred to, that is

~ V2 V3.
b = —(—QaCu = 7CLA12037 (22)
2 3
where @ denotes the size of the copper unit cell stretched to the relaxed corun-
dum lattice, i.e., V3acy = ﬂaAb%. Thus, the dissociation considered can be
related to the copper or corundum unit cells, which gives:
N 1

(011) = =(112) + —(121) (23),

1
2 6 6

as referred to copper,

1 j 1
—(1100) = —=(1210) + —(2110) (23)2
3 9 9
as referred to corundum.

Taking into account the parameters of the perfect lattices Gcy = 3.615A,
QA1,05 = 4.7587A, the misfit related to the common reference configuration is

5~ ~
% aA1203 — QCu

- = 0.0748167. (24)
aCu

. . . . 1 ~
Thus, the distance between the perfect dislocations is 0 07IsTET AL 05 A

14 aa1,04. In our example, all partial dislocations were inserted simultaneously
by the glide on the interfacial crystal plane intersecting the copper and corun-
dum. Each family of mutually parallel partial dislocations is represented by
a single dislocation piercing the chosen nodal point. Contrary to many atomistic
methods which work only on periodic volume cells, this method does not impose,
by default, the periodicity on resultant atomistic models. The method can work
with an arbitrary chosen subregion of a perfect lattice to which the dislocations
are inserted. In our example, a region with 2820 + 1880 + 2820 atoms of Cu, Al
and O was chosen for visualization and to check how the reconstructed regions
look like in the sequential cells, respectively. In order to show what patterns of
atomic bonds have been formed on the border of the stacking fault region and
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coherent region, the considerably smaller numbers of atoms have been chosen for
visualization in Figs. 3 and 4. The Love analytic solution for single dislocations
applied here concerns a single straight-line dislocation in an infinite large elastic
continuum. The superposition of all elemental tensor fields caused by elemental
dislocations forms a total lattice distortion tensor field, which is used next to
reconstruction of an atomistic model. Inserting a periodic bundle of mutually
parallel misfit dislocations into perfect lattice (space), a semi-periodic volume
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//\\/’\5/ /\ N /.\‘/’\/ ’//A ~L‘ \\ /\‘ & (\‘.'/\;;’//-:'g 7 "N
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‘ nve B o L8 om0
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Fiac. 4. Cu/AlyOg3 interface: a, e) the copper lattice stretched coherently to corundum spac-
ings — initial configuration; b, f) after the input of first dislocation; c, g) the copper lattice
stretched coherently to corundum spacings in the region of stacking fault; d, h) dislocation
node formed by input of three partial dislocations. At the top, the crystallographic z-axis of
corundum parallel to the paper; at the bottom, pointing out of the paper.
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cells between the dislocations are formed. As was mentioned in the paper the
distance between dislocations was about 14 aa1,0,. To reconstruct the periodic
boundary conditions in preprocessed unit cell, it is assumed here that each nodal
dislocation is associated with the next 5 dislocations situated on the left- and
right-hand sides, cf. [8]. In result, the effect of 33 partial dislocations have been
taken into account in the reconstruction (the sequence Aa, —Ab, Ac, —Ae, Ba,
—Bc, Bg, Ca, —Ch, Cg, Ce, ...). This corresponds to the resultant displacements
determined by solving iteratively the following implicit formula

n
u(X) = 3 6(X + u(X)). (25)
j=1
At the first step, the initial displacement of atoms was assumed to be
n
u’ = Z u;(X), (26)
j=1

where u;(X) = f; (X + u; (X)) was the resultant displacement obtained from
the iteration process performed for a single j-th dislocation, cf. (17)-(20),

Auf(X) = —[1 ;X u))] " [u — (X 4w 27

The method has been used for reconstruction of the partial dislocation in-
serted by slips, see the stacking fault terminating the partial dislocations in
Fig. 4b. Making the use of the method discussed above, a periodic cell of the
interfacial zone of copper-corundum was reconstructed, see the green rhombus
composing the base for a prism depicted in Fig. 2. For comparison, the junction
corresponding to a stacking fault obtained by the rigid shift of copper on the
Burgers vector %(1 12) is shown in Figs. 4c and 4g.

In Fig. 4a, a fragment of the structure in the vicinity of a single dislocation
node is shown. The structure has been generated by means of the Visual Editor
of Crystal Defects [11], the atomic bonds have been generated by means of the
Open Babel program [1].

In Fig. 3 only a fragment of the reconstructed interface with visible triangles
of a coherent junction separated by triangles of stacking faults is shown. As
a matter of fact, the introduction of three elemental stacking faults resulted in
the formation of another ordering of copper atoms in relation to that initially
assumed. Namely, at the beginning it was assumed that the copper atoms were
situated on the top of oxygen atoms, see Figs. 4a and 4e. After introduction of
partial dislocations the resultant junction in the all triangles of stacking faults
corresponds to the location of interfacial copper atoms on top of aluminium
atoms, see Figs. 4c and 4g.
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The numerical solutions of the problem considered above were obtained in
4-5 iteration steps, with the accuracy identified with the norm of displacement

i+1
vector change calculated for atoms in the given iteration step, % < 1079,

In the previous papers, a detailed analysis of convergence tests for the method
used here were carried out. For example, in [12], such an analysis was carried
out for single dislocations in 4H-SiC.

6. Conclusions

In this paper, a nonlinear method for preprocessing the atomistic models
of dislocations is discussed and tested. The key proposition of the new method
was the observation that the analytical solutions obtained from the linear the-
ory of dislocations hold the symmetry of lattice distortions in the spatial (real)
configurations, while the reconstruction of atomistic models starts not from
the deformed but from the perfect lattice. The iterative scheme for solving ma-
trix equation sets implemented to preprocessing atomistic structures gives pos-
sibility for preparation of input data free of errors given by the previous method.
On one hand, the iterative scheme starts from the analytical solutions available
for dislocations, and on the other hand, the iterative scheme (16)—(20) limits
as much as possible the inaccuracies of the direct use of the linear theory in
preprocessing atomistic models of dislocations.

In the linear theory of dislocations, when writing € = du/dx, it is not speci-
fied as to which configuration the differential form dx is related to. In practice,
the elastic strains observed on the macro scale are usually so small that the
difference between the Lagrangian and Eulerian configurations of the elastic
body is negligibly small. Bearing in mind that the elastic limit in strain for
the most engineering structures is below 0.1%, such an assumption often makes
good sense. On the other hand, in the atomistic reconstructions of dislocations,
the local lattice deformation is very large which resulted in the inaccuracies
discussed in this paper.

From the viewpoint of the multiscale modelling, the nonlinear computational
method presented in the paper can be used as a method for the preprocessing
of input data for more accurate methods applied to the analysis of the physical
and/or chemical properties of given variants of misfit dislocations arrangement.
As a result, initial atomistic configurations near local energy minima are ob-
tained, which enables the efficient reaching of the final non-random microstruc-
tures.
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