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Transfer relations, representing analytical solutions of the linear theory of slender circular arches, have
facilitated structural analysis of segmented tunnel linings. This is the motivation to apply such relations
to two examples of circular arch bridges in which the bridge deck is held from the arch by equally spaced
hangers. First, the number of hangers is optimized to minimize the maximum bending moment of the arch,
thus allowing the latter to come as close as possible to the desired thrust-line behavior. Next, analytical
solutions for a “uniform temperature change” are derived and used to demonstrate that a temperature
increase of 30 K results in minor redistributions of the inner forces but in significant additional deflections.
The two examples have shown that the transfer relations are useful for structural analysis of circular arch
bridges, because they reduce the complexity of the analysis to that of structural systems consisting of
straight beams.
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NOMENCLATURE

A – cross-sectional area of the arch,

b – thickness of the cross-section,

d
a – compliance vector of the arch with respect to a temperature change,

d
h – compliance vector of hangers with respect to a temperature change,

dap – p-th element of the compliance vector of the arch with respect to a temperature
change,

dhp – p-th element of the compliance vector of the hangers with respect to a temperature
change,

er, eϕ – base vectors,

EA – extensional stiffness of the arch,

EAh – extensional stiffness of the hangers,

EI – bending stiffness of the arch,

EId – bending stiffness of the bridge deck,

Fp – support force acting at the p-th support,

H – rise of the arch,

I – second moment of the cross-sectional area,
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k
d – stiffness matrix of the deck,

kdpq – element of kd,

ℓ – horizontal distance between neighboring hangers,

lp – length of the p-th hanger,

L – span of the arch,

M – bending moment of the arch,

Mi – bending moment at the initial cross-section of the arch,

ML – load integral for the bending moment,

Mdeck
p – bending moment of the deck at the connection with the p-th hanger,

n – number of hangers,

N – normal force of the arch,

Ni – normal force at the initial cross-section of the arch,

NL – load integral for the normal force,

P – point load imposed on the arch,

Pr – radial component of the point load P,

Pϕ – tangential component of the point load P,

PT – vector of hanger forces induced by a temperature change,

Pp – point load from the p-th hanger imposed on the arch,

Pp – value of the point load Pp,

Ppr – radial component of the point load Pp,

Ppϕ – tangential component of the point load Pp,

q – dead load of the arch,

qd – dead load of the bridge deck,

qh – dead load of the hangers,

qr – distributed load in the radial direction,

qϕ – distributed load in the tangential direction,

r – radial coordinate of the polar coordinate system,

R – radius of the axis of the circular arch,

S – first moment of the area,

Tref – reference temperature referring to the time instant of completion of the construction
of the arch,

u – displacement vector of the axis,

u – radial component of u,

ui – radial displacement of the axis at the initial cross-section,

uL – load integral for the radial displacements,

V – shear force,

v – tangential component of u,

vi – tangential displacement of the axis at the initial cross-section,

vL – load integral for the tangential displacements,

Vi – shear force at the initial cross-section of the arch,

V L – load integral for the shear force,

x – horizontal coordinate of the Cartesian coordinate system,

αT – coefficient of thermal expansion,

β – inclination angle of the initial cross-section relative to the x-axis,

δa – compliance matrix of the arch with respect to point loads,
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δd – compliance matrix of the deck with respect to hanger forces,

δh – compliance matrix of the hangers with respect to support forces,

δapq – element of δa,

δdpq – element of δd,

δhpq – element of δh,

∆T – uniform temperature change relative to the reference temperature,

∆lp – length change of the p-th hanger,

εe – eigenstrains,

γ – aperture angle of the circular arch,

ωa,p – vertical deflection of the arch at the connection with the p-th hanger,

ωd,p – vertical deflection of the deck at the connection with the p-th hanger,

σ – normal stress,

σv – von Mises stress,

τ – shear stress,

θ – cross-sectional rotation,

θi – rotation of the initial cross-section,

θL – load integral for the cross-sectional rotation,

ϕ – angular coordinate of the polar coordinate system,

ϕf – polar position of the final cross-section of the arch,

ϕi – polar position of the initial cross-section of the arch,

ϕp – polar position of a point load on the arch.

1. INTRODUCTION

Because of the curvature of arches, their structural analysis is more challenging and expensive
than that of straight beams. Therefore, the development of methods facilitating structural analysis
of arches is a topic of ongoing scientific research. Existing methods in bridge engineering include
classical approaches, see, e.g., Fox [5], who reviewed the method of consistent deformations for
pinned arches, representing structures that are statically indeterminate to the first degree, and
Melbourne [8] who presented a method based on Castigliano’s second theorem, according to which
the partial derivative of the strain energy with respect to a force gives the displacement in the
direction of this force. However, such analytical methods are easily applicable only to arches with
low degrees of statical indeterminacy and specific types of external loads, as was shown by Dym
[4] for arches with pinned or clamped supports under radial and gravitational line loads, as well
as by Dym and Williams [2] for shallow arches subjected to a concentrated axial load acting
at the end of the arch. As a remedy, most bridge designers use numerical methods, particularly
for structural optimization [1, 7] and ultimate load analysis [10, 14]. However, the application of
numerical methods may involve significant pre-processing efforts. This is the case, in particular, for
sensitivity analysis of arch bridges, frequently involving several changes of the geometric dimensions
of the arch and the number and arrangement of the hangers or the columns.
In order to improve this situation, transfer relations, representing analytical solutions of the

linear theory of slender circular arches are considered herein. These relations are particularly valu-
able for hybrid analysis of displacement-monitored segmented tunnel rings, because they facilitate
structural analysis of arches and allow for consideration of discontinuities of static and kinematic
variables, resulting, e.g., from point loads and interfacial dislocations, respectively, in a straightfor-
ward manner [15]. This was the motivation to employ transfer relations also for structural analysis
of arch bridges. The transfer relations used in this study are taken from [15]. They include solu-
tions for unloaded parts of an arch, representing the main part of the transfer matrix, as well as
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solutions for dead load and point loads, resulting in so-called load integrals. Load integrals for a
uniform temperature change are, for the first time, reported in this paper. The transfer relations
reduce the complexity of structural analysis of circular arches to the one encountered in systems
consisting of straight beams. This is shown exemplarily by analyzing an arch bridge, consisting of
a bridge deck, which is connected, via hangers, to two circular arches above. Two load cases are
investigated: a dead load and a uniform temperature change.
The paper is organized as follows. Analytical solutions of the fundamental equations of the linear

theory of slender circular arches and the corresponding transfer relations are presented in Sec. 2.
Thereafter, these relations are applied to structural analysis of an arch bridge, including (i) sensi-
tivity analysis with regard to the number of hangers and (ii) analysis of a uniform temperature rise
in a statically indeterminate arch bridge, see Sec. 3. Results are discussed in Sec. 4. Conclusions
are presented in Sec. 5.

2. TRANSFER RELATIONS: ANALYTICAL SOLUTIONS OF THE LINEAR THEORY
OF SLENDER CIRCULAR ARCHES

2.1. Governing equations

Slender arches with constant radius R, extensional stiffness EA, and bending stiffness EI, sub-
jected to radial and tangential distributed loads, qr and qϕ, are considered (Fig. 1). The governing
equations, describing their mechanical behavior, involve six state variables: the cross-sectional ro-
tation θ, the radial and the tangential displacement components of the axis of the arch, u and v,
the normal force N , the shear force V , and the bending moment M . They read as [15]

θ = 1

R

du

dϕ
−

v

R
, (1)

N = EA( u
R
+

1

R

dv

dϕ
− εe), (2)

M = −EI ( 1

R2

d2u

dϕ2
−

1

R2

dv

dϕ
) , (3)

a) b)

Fig. 1. a) Circular arch of radius R, loaded by radial and tangential distributed loads, qr and qϕ, b) dis-
placements and internal forces at an arbitrary cross-section; u and v denote the radial and the tangential
component of the displacement of the axis, θ is the cross-sectional rotation, and N , M , and V are the normal

force, the bending moment, and the shear force, respectively [15].
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−
N

R
+

1

R

dV

dϕ
+ qr = 0, (4)

1

R

dN

dϕ
+
V

R
+ qϕ = 0, (5)

V −
1

R

dM

dϕ
= 0, (6)

where εe denotes stress-free strains [11], also called eigenstrains [9]. These strains may, e.g., result
from temperature changes.

The radial and tangential displacement components of the axis of the arch, u and v, provide
access to the displacement field u as [3]

u = uer + [v − (r −R)( 1
R

du

dϕ
−

v

R
)]eϕ, (7)

where er and eϕ are base vectors in the radial and the tangential direction, respectively. Normal
stresses σ and shear stresses τ are [6]

σ = N

A
+
M

I
(r −R), (8)

τ = −V
I

S

b
, (9)

where S is the first moment of area and b stands for the thickness of the cross-section in the
direction normal to the axis.

2.2. Existing solutions for an unloaded part of the arch, for dead load,
and for a point load [15]

Transfer relations are a “matrix-vector form” representation of analytical solutions of the set of
differential equations (1)–(6). In more detail, the transfer relations relate the state vector at any
tangential position ϕ to the vector of the state variables at the initial cross-section (index “i”) by
means of a matrix-vector product. These relations read as [15]

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

u(ϕ)
v(ϕ)
θ(ϕ)
M(ϕ)
N(ϕ)
V (ϕ)
1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

cosϕ sinϕ T13(ϕ) T14(ϕ) T15(ϕ) T16(ϕ) ∑uL(ϕ)
− sinϕ cosϕ T23(ϕ) T24(ϕ) T25(ϕ) T26(ϕ) ∑ vL(ϕ)

0 0 1 T34(ϕ) T35(ϕ) T36(ϕ) ∑ θL(ϕ)
0 0 0 1 T45(ϕ) T46(ϕ) ∑ML(ϕ)
0 0 0 0 cosϕ − sinϕ ∑NL(ϕ)
0 0 0 0 sinϕ cosϕ ∑V L(ϕ)
0 0 0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ui

vi

θi

Mi

Ni

Vi

1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (10)
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where

T13(ϕ) = R sinϕ,

T14(ϕ) = R2

EI
(cosϕ − 1),

T15(ϕ) = R

EA

1

2
ϕ sinϕ +

R3

EI
(1
2
ϕ sinϕ + cosϕ − 1) ,

T16(ϕ) = R

EA
(1
2
ϕ cosϕ −

1

2
sinϕ) + R3

EI
(1
2
ϕ cosϕ −

1

2
sinϕ) ,

T23(ϕ) = R (cosϕ − 1),
T24(ϕ) = R2

EI
(ϕ − sinϕ),

T25(ϕ) = R

EA
(1
2
ϕ cosϕ +

1

2
sinϕ) + R3

EI
(ϕ − 3

2
sinϕ +

1

2
ϕ cosϕ),

T26(ϕ) = R

EA
(−1

2
ϕ sinϕ) + R3

EI
(1 − cosϕ − 1

2
ϕ sinϕ),

T34(ϕ) = − R

EI
ϕ,

T35(ϕ) = R2

EI
(sinϕ − ϕ),

T36(ϕ) = R2

EI
(cosϕ − 1),

T45(ϕ) = R (1 − cosϕ),
T46(ϕ) = R sinϕ.

(11)

The top-left six-by-six submatrix of the transfer matrix in (10) represents the solution for an
unloaded part of an arch, referring to the homogeneous solution of the differential equations (1)–(6).
The top six elements of the last column of the transfer matrix refer to the superposition of all load
integrals (marked by the superscript L). They represent solutions for external loads, such as dead
load, point loads, and a uniform temperature change. The static and kinematic variables at the
initial cross-section, ui, vi, θi, Mi, Ni, and Vi, represent integration constants that have to be
determined with the help of boundary conditions.

The load integrals for dead load q read as [15]

uL(ϕ) = R2q

4EA
[ϕ2

sin(ϕ + β) +ϕ cos(ϕ + β) − cosβ sinϕ]
+
R4q

4EI
[(ϕ2

− 4) sin(ϕ + β) + 3ϕ cos(ϕ + β) + 2 sinϕ cosβ + 4 sinβ], (12)
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vL(ϕ) = R2q

4EA
[ϕ2

cos(ϕ + β) + ϕ sin(ϕ + β) − sinβ sinϕ]
+
R4q

4EI
[(ϕ2

− 8) cos(ϕ + β) − 5ϕ sin(ϕ + β) + (sinϕ − 4ϕ) sinβ + 8cos β] , (13)

θL(ϕ) = R3q

EI
[ϕ sinβ + ϕ sin(ϕ + β) + 2cos(ϕ + β) − 2cosβ] , (14)

ML(ϕ) = R2q [sin(ϕ + β) −ϕ cos(ϕ + β) − sinβ] , (15)

NL(ϕ) = Rqϕ cos(ϕ + β), (16)

V L(ϕ) = Rqϕ sin(ϕ + β). (17)

In Eqs. (12)–(17), β denotes the inclination angle of the initial cross-section relative to the x-axis,
see Fig. 1.

The load integrals for the components Pr and Pϕ of a point load P, acting at the tangential
position ϕp, read as [15]

uL(ϕ) = 1

2

PrR

EA
[sin(ϕ −ϕp) − (ϕ − ϕp) cos(ϕ − ϕp)]H(ϕ − ϕp)

+
1

2

PϕR

EA
[−(ϕ − ϕp) sin(ϕ − ϕp)]H(ϕ − ϕp)

+
1

2

PrR
3

EI
[sin(ϕ −ϕp) − (ϕ − ϕp) cos(ϕ − ϕp)]H(ϕ − ϕp)

+
1

2

PϕR
3

EI
[−(ϕ −ϕp) sin(ϕ −ϕp) − 2cos(ϕ −ϕp) + 2]H(ϕ − ϕp), (18)

vL(ϕ) = PrR

EA
[1
2
(ϕ − ϕp) sin(ϕ − ϕp)]H(ϕ − ϕp)

+
PϕR

EA
[−1

2
(ϕ −ϕp) cos(ϕ − ϕp) − 1

2
sin(ϕ − ϕp)]H(ϕ − ϕp)

+
PrR

3

EI
[1
2
(ϕ −ϕp) sin(ϕ −ϕp) + cos(ϕ − ϕp) − 1]H(ϕ − ϕp)

+
PϕR

3

EI
[3
2
sin(ϕ − ϕp) − 1

2
(ϕ − ϕp) cos(ϕ − ϕp) − (ϕ −ϕp)]H(ϕ −ϕp), (19)

θL(ϕ) = PrR
2

EI
[1 − cos(ϕ − ϕp)]H(ϕ −ϕp) − PϕR

2

EI
[sin(ϕ − ϕp) − (ϕ −ϕp)]H(ϕ −ϕp), (20)

ML(ϕ) = −R {Pr sin(ϕ −ϕp) +Pϕ [1 − cos(ϕ − ϕp)]}H(ϕ − ϕp), (21)

NL(ϕ) = [Pr sin(ϕ −ϕp) −Pϕ cos(ϕ −ϕp)]H(ϕ −ϕp), (22)

V L(ϕ) = − [Pr cos(ϕ − ϕp) + Pϕ sin(ϕ − ϕp)]H(ϕ − ϕp). (23)

In Eqs. (18)–(23), H(ϕ − ϕp) stands for the Heaviside function.



206 J.-L. Zhang, Ch. Hellmich, H.A. Mang, Y. Yuan, B. Pichler

2.3. Deriving load integrals for a uniform temperature change

A uniform temperature change ∆T relative to a reference temperature Tref is considered. Tref refers
to the time instant of completion of the construction of the arch. By denoting the thermal expansion
coefficient of the arch material as αT , the load variables read as

εe = αT∆T, (24)

qr = qϕ = 0. (25)

The corresponding load integrals NL(ϕ), V L(ϕ), and ML(ϕ) follow from the coupled system of
differential equations obtained by specializing Eqs. (4)–(6) for Eqs. (24) and (25):⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 −
1

R

1

R

d

dϕ

0
1

R

d

dϕ

1

R

−
1

R

d

dϕ
0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

ML

NL

V L

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

0

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (26)

Solving the above system of differential equations by considering homogeneous boundary conditions
NL(0) = V L(0) =ML(0) = 0, see [15], delivers

NL(ϕ) = V L(ϕ) =ML(ϕ) = 0. (27)

The load integrals uL(ϕ), vL(ϕ), and θL(ϕ) follow from the coupled system of differential equations
obtained by specializing Eqs. (1)–(3) for Eqs. (24) and (27):⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

R

d

dϕ
−
1

R
−1

1

R

1

R

d

dϕ
0

d2

dϕ2
−

d

dϕ
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

uL

vL

θL

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

αT∆T

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (28)

Solving the above system of differential equations by considering homogeneous boundary conditions
uL(0) = vL(0) = θL(0) = 0, see [15], delivers

uL(ϕ) = αT ∆T R(1 − cosϕ), (29)

vL(ϕ) = αT ∆T R, (30)

θL(ϕ) = 0. (31)

2.4. Determination of the integration constants from boundary conditions

The six integration constants, see ui, vi, θi, Mi, Ni, and Vi in Eq. (10), are determined by means of
six boundary conditions. Three of them refer to the support conditions at the initial cross-section
of the arch and the remaining three to its final cross-section (index “f”). The three boundary
conditions at the initial cross-section of the arch provide direct access to three integration constants.
The remaining three integration constants follow from the formulation of boundary conditions at
the final cross-section. This requires a relationship between the state variables at the initial and
the final cross-section of the arch. To this end, the transfer relations (10) are specified for ϕ = ϕf

such that the vector on the left-hand side of (10) contains the state variables at the final cross-
section of the arch. Considering the three boundary conditions in this vector delivers three algebraic
equations for the remaining three integration constants. After obtaining the integration constants,
the state variables at any cross-section of interest can be determined simply by evaluating the
transfer relations (10) for the corresponding value of ϕ.
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3. EXEMPLARY STRUCTURAL ANALYSIS OF AN ARCH BRIDGE

The transfer relations (10) are used for structural analysis of an arch bridge similar to the one
investigated in [12]. The considered bridge consists of two parallel circular arches, carrying the
bridge deck via two pairs of equally-spaced vertical hangers, see Fig. 2a. Both arches are circular
box girders, resting on pinned supports. Therefore, the boundary conditions are as follows:

ϕ = 0
ϕ = ϕf

⎫⎪⎪⎪⎬⎪⎪⎪⎭ ∶ u = v =M = 0. (32)

a) b)

Fig. 2. Through arch bridge: a) dimensions of the bridge and distributed dead-load of both the arch and
the deck, b) cross-section of the arch.

The width of the cross-sections of the steel arches is 2.20 m and the height is 3.60 m, see Fig. 2b.
The thickness of the flanges and the webs is 0.04 m and 0.05 m, respectively. Thus, the exten-
sional stiffness EA, the bending stiffness EI, and the dead load q of each of the two arches are
obtained as

EA = 110460 MN, (33)

EI = 191478 MNm2, (34)

q = 0.0413 MN/m. (35)

The span L and the radius R of the arches, see also Fig. 2a, are given as

L = 255 m, (36)

R = 200 m. (37)

Thus, the rise of the arch is H = 45.91 m. The aperture angle γ(= ϕf) is equal to 79.21○, see Fig. 2a.
The inclination angle β of the initial cross-section is equal to 50.40○. In the following, one half of the
bridge is analyzed. It consists of one arch, one half of the bridge deck, and the connecting hangers.
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The bridge deck is simply supported at both ends. It is connected to the arches above via two
pairs of n hangers. Consistent with the investigation of one half of the bridge, the dead load qd and
the bending stiffness EId refer to one half of the bridge deck. Thus,

qd = 0.0679 MN/m (38)

and

EId = 574434 MNm
2. (39)

All hangers have the same cross-sectional properties. The dead load qh and the extensional
stiffness EAh are given as

qh = 0.0025 MN/m (40)

and

EAh = 6597 MN. (41)

The thermal expansion coefficient of steel is given as

αT = 10.8 ⋅ 10−6 K−1. (42)

In the following, the sensitivity of the load-carrying behavior of the arch with respect to the
number of equally spaced hangers will be investigated, considering the dead load of the arch, the
hangers, and the bridge deck, see Subsec. 3.1. Thereafter, a uniform temperature change of the
structure will be considered. This involves quantification of the redistribution of the internal forces
and of changes of the deformations of the arch, see Subsec. 3.2.

3.1. Sensitivity of the response of the arch with respect to the number of hangers

Considering the dead load of the arch, the bridge deck, and the hangers, the maximum bending
moments of the arch are computed as a function of the number of the hangers, n. The horizontal
distance between neighboring hangers ℓ is given as

ℓ = L

n
. (43)

The length of the p-th hanger is obtained as

lp =√R2 − (pℓ −L/2)2 −R sinβ. (44)

The hanger forces depend on the construction strategy. Typically, the lengths of the hangers are
adjusted so that the deck deflections vanish at the positions of the hangers. In other words, the
deck behaves like a continuous beam with n intermediate supports, see Fig. 3a. The support forces
of this beam are equal to the forces imposed from the bridge deck on the hangers. Determination of
these forces represents a problem that is statically indeterminate to the n-th degree. It is solved by
means of Clapeyron’s three-moments equations [13]. The statically indeterminate forces are chosen
as the bending moments of the deck at the positions of the intermediate supports, see Fig. 3b.
Formulation of the three-moments equation for the p-th intermediate support gives

ℓ

6
Mdeckp−1 +

2ℓ

3
Mdeckp +

ℓ

6
Mdeckp+1 = −qdℓ3

12
. (45)
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a)

b) c)

Fig. 3. Structural analysis of the deck: a) statically indeterminate continuous beam with n intermediate
supports, b) three neighboring supports in the context of Clapeyron’s three-moments equations, and c) support

force Fp.

Formulation of n deformation conditions according to (45) results in the following system of
linear algebraic equations for the bending moments Mdeckp , p = 1,2, . . . , n:
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

4 1 0 0 ⋯ 0 0 0 0

1 4 1 0 ⋯ 0 0 0 0

0 1 4 1 ⋯ 0 0 0 0

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

0 0 0 0 ⋯ 1 4 1 0

0 0 0 0 ⋯ 0 1 4 1

0 0 0 0 ⋯ 0 0 1 4

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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Mdeck1

Mdeck2

Mdeck3

⋮

Mdeckn−2

Mdeckn−1

Mdeckn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= −qdℓ2
2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

1

1

⋮

1

1

1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (46)

After solving (46), the support forces follow from equilibrium considerations as

Fp = qdℓ + Mdeckp−1 − 2M
deck
p +Mdeckp+1

ℓ
, p = 1,2, . . . , n, (47)

see also Fig. 3c. Adding the dead load of the hangers to Fp yields the hanger forces as

Pp = Fp + qh lp. (48)

For determination of the corresponding load integrals, see (18)–(23), the hanger forces are decom-
posed into their radial and tangential components. This requires knowledge of the position angle
ϕp. This angle is obtained as (see also Fig. 4)

ϕp = arccos(p ℓ −L/2
R

) − β, p = 1,2, . . . , n. (49)
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Fig. 4. Polar position ϕp of hanger force Pp.

The radial and the tangential components of the hanger force Pp are obtained as

Ppr = −Pp sin(ϕp + β), (50)

Ppϕ = −Pp cos(ϕp + β), p = 1,2, . . . , n. (51)

Structural analysis of the arch with n hangers is accomplished by means of the transfer rela-
tions (10). At first, the transfer matrix is formulated for the set of load integrals that refer to the
dead load of the arch, see (12)–(17), and for n sets of load integrals, referring to n different point
loads at n positions, see (18)–(23), such that the summation symbols in the last column of the
transfer matrix (10) extend over n + 1 load cases. The resulting transfer relations are specialized
for the numerical values of the stiffness and the dead load of the arch, see (33)–(35), its radius, see
(37), and for point loads and their positions, obtained from the combination of (36)–(38), (40), and
(43)–(51). Finally, the integration constants are determined by means of the boundary conditions
(32), as described in Subsec. 2.4. Thereafter, the transfer relations can be simply evaluated for any
cross-section in order to quantify the static and kinematic variables of the arch.
The described mode of structural analysis is repeated 49 times in order to study 50 arch bridges,

differing in the number of hangers from n = 1 to n = 50. From the 50 solutions, the maximum bending
moments maxϕ ∣M(ϕ,n)∣ are determined, see Fig. 5. Using the maximum bending moment of the
arch in the special case of just one hanger (n = 1) as the reference, the maximum bending moment

Fig. 5. Maximum bending moment of an arch as a function of the number of hangers.
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decreases by 88% if the hanger number is increased up to n = 8. A further increase of the hanger
number, however, results in a moderate increase of the maximum bending moment.
Similar results are obtained from stress analysis. The normal stress, σ, is computed from the

normal force and the bending moment, see (8). The shear stress, τ , is obtained from the shear force,
see (9). Knowledge of σ and τ allows for determination of the von Mises stress:

σv =√σ2 + 3 τ2. (52)

Increasing the hanger number from 1 to 3, and further to 8 and 30, results in a change of the
maximum von Mises stress from 378 MPa to 122 MPa, 86 MPa, and 93 MPa, the maximum
displacement from 0.704 m to 0.198 m, 0.171 m, and 0.196 m, and the maximum cross-sectional
rotation from 0.0163 rad to 0.0045 rad, 0.0032 rad, and 0.0037 rad, see Fig. 6. The obtained results
will be discussed in more detail in Sec. 4.

a) b)

c) d)

Fig. 6. Distribution of the von Mises stress in the deformed configuration of the arches with different numbers
of hangers: a) n = 1, b) n = 3, c) n = 8, d) n = 30; the magnification factors of the cross-sectional dimensions

and the displacements are 5 and 100, respectively.

3.2. Uniform temperature change of the structure

The arch bridge is loaded by a uniform temperature change ∆T . Determination of the resulting
hanger forces requires formulation of n deformation conditions. The p-th condition involves (i) the
vertical deflection of the arch at the connection with the p-th hanger ωa,p, (ii) the change of the
hanger length ∆lp, and (iii) the deflection of the deck at the connection with the p-th hanger ωd,p.
Defining the vertical deflections ωa,p and ωd,p as positive when oriented downward, the deformation
conditions read as

ωa,p +∆lp = ωd,p, p = 1,2, . . . , n. (53)

The vertical arch displacements follow from the radial and the tangential displacement compo-
nents as

ωa,p = −u(ϕp) sin(β + ϕp) − v(ϕp) cos(β + ϕp), p = 1,2, . . . , n. (54)
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The vertical arch displacements are functions of the temperature change and of the hanger forces
resulting from the temperature change:

ωa,p = n∑
q=1

δapqPq + d
a
p∆T, p = 1,2, . . . n, (55)

where δapq is an element of an n × n compliance matrix, dap is an element of an n-dimensional
compliance vector, and Pq is an element of an n-dimensional vector, PT (the subscript T stands for
the temperature change), containing the sought hanger forces. In order to compute the compliances
occurring in (55), it is noted that δapq is equal to the vertical displacement ωa,p resulting from
Pq = 1 MN, whereas all other hanger forces and ∆T are equal to zero. It is also noted that dap is
equal to the vertical displacement ωa,p if all Pq are equal to zero and ∆T = 1 K. Therefore, (n + 1)
load cases of the arch are treated, using the transfer relations. Load case 1 consists of a vertical unit
point load at the connection of hanger 1 to the arch, load case 2 consists of a vertical unit point
load at the connection of hanger 2 to the arch, and so on. The (n + 1)-st load case is the uniform
temperature change. For all load cases, the displacement components u and v are computed at all
points connecting the arch with the hangers. This allows for computation of the arch displacements
ωa,p, see (54).
The length changes of the hangers contain two contributions. The first one is related to the

hanger forces Pp and the second one to the temperature change ∆T

∆lp = lp

EAh

Pp + lpαT∆T, p = 1,2, . . . , n. (56)

Analogous to (55), the length changes of the hangers ∆lp can be expressed as

∆lp = n∑
q=1

δhpqPq + d
h
p∆T, p = 1,2, . . . , n, (57)

where δhpp = lp/EAh with δ
h
pq = 0, p ≠ q, and dhp = lpαT .

The deflections of the deck at the connections with the hangers are functions of the hanger
forces, given as

ωd,p = n∑
q=1

δdpqPq, p = 1,2, . . . , n, (58)

where δdpq represents an element of an n × n compliance matrix. This matrix is obtained with the
help of Clapeyron’s three-moments equations, considering displacements which are imposed at the
supports of a continuous beam (see also Fig. 7). This yields

ℓ

6
Mdeckp−1 +

2ℓ

3
Mdeckp +

ℓ

6
Mdeckp+1 = −ωd,p−1 − 2ωd,p + ωd,p+1

ℓ
EId, p = 1,2, . . . , n. (59)

Fig. 7. Displacements imposed at the supports within the framework
of Clapeyron’s three-moments equations.



Application of transfer relations to structural analysis of arch bridges 213

Formulation of (59) for all intermediate supports and solution for the bending moments result in

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Mdeck1

Mdeck2

Mdeck3

⋮

Mdeckn−2

Mdeckn−1

Mdeckn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= −

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

4 1 0 0 ⋯ 0 0 0 0

1 4 1 0 ⋯ 0 0 0 0

0 1 4 1 ⋯ 0 0 0 0

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

0 0 0 0 ⋯ 1 4 1 0

0 0 0 0 ⋯ 0 1 4 1

0 0 0 0 ⋯ 0 0 1 4

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

−1

⋅

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 −2ωd,1 +ωd,2

ωd,1 −2ωd,2 +ωd,3

ωd,2 −2ωd,3 +ωd,4

⋮

ωd,n−3−2ωd,n−2+ωd,n−1

ωd,n−2−2ωd,n−1+ωd,n

ωd,n−1−2ωd,n +0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

6EId

ℓ2
. (60)

In the present case of temperature loading, the support forces are equal to the hanger forces.
Analogous to (47), they follow as

Pp = Mdeckp−1 − 2M
deck
p +Mdeckp+1

ℓ
, p = 1,2, . . . , n. (61)

Inserting the bending moments (60) into (61) gives

Pp = n∑
q=1

kdpqωd,q, p = 1,2, . . . , n, (62)

where kdpq denotes a known element of the n×n stiffness matrix. Rewriting (62) in symbolic notation
gives

PT = kd
⋅ωd. (63)

Solving this system of linear equations for ωd yields

ωd = [kd]−1 ⋅PT = δd ⋅PT , (64)

where δd denotes the compliance matrix according to (58).
In order to compute the sought hanger forces, (55), (57), and (58) are inserted into (53). Using

symbolic notation, this gives

δa ⋅PT + d
a
∆T + δh ⋅PT +d

h
∆T = δd ⋅PT . (65)

Solving (65) for the vector of hanger forces yields

PT = [δd − δa − δh]−1 ⋅ [da
+ d

h]∆T. (66)

As an example, an arch bridge with the optimum number of hangers, n = 8, and a uniform
temperature change of

∆T = 30 K (67)

is considered. The maximum values of the von Mises stress, the displacement, and the cross-sectional
rotations are 5 MPa, 0.102 m, and 0.0011 rad, respectively, see also Fig. 8. Comparing these results
with the ones from the load case dead load, characterized by the maximum value of the von Mises
stress of 86 MPa, the displacements of 0.171 m, and the cross-sectional rotations of 0.0032 rad, it is
seen that a uniform temperature change of 30 K results in rather small redistributions of the load
but in a significant change of the deformed configuration.
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Fig. 8. Distribution of von Mises stresses induced by a uniform temperature change of ∆T = 30 K; the
magnification factors of the cross-sectional dimensions and the displacements are 5 and 100, respectively.

4. DISCUSSION

The connection of a bridge deck to the arch via hangers results in bending of the arch. The maximum
bending moment can be minimized by choosing the optimum number of hangers. The existence
of such an optimum for the load case dead load is the consequence of two counteracting effects.
Increasing the number of hangers results in:

1) less concentrated loading of the arch, entailing a reduction of the maximum bending moment,
and

2) an increase of the total hanger mass and, therefore, in an increase of the loading of the arch,
resulting in an increase of the maximum bending moment.

With regard to the investigated bridge, it was found that an increase of the number of hangers up
to eight results in a reduction of the maximum bending moment. If this number is further increased,
the increase of the maximum bending moment due to the increased mass of the hangers overcom-
pensates the reduction of the maximum bending moment, caused by the improved distribution of
the deck weight.
The derived transfer relations are not restricted to arch bridges with vertical hangers and pinned

supports. They can be also used for any arrangement of the hangers, provided that the radial and the
tangential components of the point loads are known. These relations can also be used for arbitrary
support conditions.
The transfer relations are appealing for structural analysis of arch bridges. This conclusion is

based on the following findings:

● The transfer relations reduce the amount of preprocessing in a comparative analysis of bridges
that differ in the number of hangers, because there are no discretization efforts. Hanger forces
and their load points are considered simply via corresponding load integrals. This is different
from mesh-based numerical simulation methods, where each connection of a hanger to the
arch requires node-to-node connectivity. In other words, the discretization of an arch must be
customized for specific hanger arrangements of interest, and this frequently requires re-meshing
of the arch when changing the number of hangers or the locations of their connection to the
arch. In this context, it is noteworthy that preprocessing (including mesh generation) generally
dominates the time spent for performing structural analysis.

● Transfer relations are analytical solutions of the underlying differential equations of the linear
theory of slender circular arches, i.e. the computed solutions do not suffer from discretization
errors. Therefore, there is no need for convergence analysis. This is different from discretization-
based numerical solutions, where the same problem needs to be analyzed with meshes of different
fineness, in order to be able to assess the discretization error. There is no need for such a con-
vergence study if automatic remeshing based on error analysis is available which, however, is
frequently not the case.
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● Transfer relations are computationally inexpensive means to obtain a numerical solution of the
given problem, because they always involve only a 7× 7 transfer matrix (which is identical to
the situation encountered in straight beams subjected to both axial loading and bending).

5. CONCLUSIONS

The following conclusions are drawn from this investigation:

● Transfer relations reduce the complexity of structural analysis of circular arches to the level of
complexity of such analysis of systems consisting of straight beams.

● The transfer relations are attractive for sensitivity analysis regarding, e.g., the number of hangers
of arch bridges, because the transfer relations can be easily specialized for different numbers of
hangers.

● A uniform temperature change of 30 K causes rather small redistributions of internal forces but a
significant change of the deformed configuration resulting from dead load. This is a consequence
of the slenderness of the investigated arch.
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