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In this work, we applied the Markov chain Monte Carlo (MCMC) method for the estimation of parameters
appearing in the Pennes’ formulation of the bioheat transfer equation. The inverse problem of parameter
estimation was solved with the simulated transient temperature measurements. A one-dimensional (1D)
test case was used to explore the capabilities of using the MCMC method in bioheat transfer problems,
specifically for the detection of skin tumors by using surface temperature measurements. The analysis of
the sensitivity coefficients was performed in order to examine linear dependence and low sensitivity of the
model parameters. The solution of the direct problem was verified with a commercial code. The results
obtained in this work show the ability of using inverse heat transfer analysis for the detection of skin
tumors.
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NOMENCLATURE

c – specific heat [J/kgK],

h – heat transfer coefficient [W/m2K],

k – thermal conductivity [W/mK],

L – thickness of the slab [m],

P – vector of parameters,

q̇m – metabolic heat generation rate [W/m3],

r – random number,

t – time [s],

T – temperature of the tissue [K],

Ta – arterial blood temperature [K],

T∞ – ambient temperature [K],

w – maximum variation,

W – covariance matrix of the measurement errors,

Y – vector of measurements.
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GREEK SYMBOLS

ε – vector of measurements errors,

µ – mean value,

π(P) – prior density function,

π(P∣Y) – posterior density function,

π(Y) – marginal probability density of the measurements,

π(Y∣P) – likelihood function,

ρ – density [kg/m3],

σ – standard deviation,

ω – perfusion rate [1/s].

SUBSCRIPTS

b – blood,

j – parameter j,

max – maximum value of the parameter,

min – minimum value of the parameter,

t – healthy tissue,

tumor – tumor tissue,

posterior – posterior distribution function.

1. INTRODUCTION

Inverse heat transfer problems, making use of measured temperature, heat flux, radiation intensities,
etc., are used for the estimation of unknown quantities appearing in the mathematical formulation
of physical processes in thermal sciences. Inverse problems are mathematically classified as ill-posed
because their solution might not satisfy the requirements of existence, uniqueness and stability with
respect to the input data [25]. An inverse problem is approximately solved through its reformulation
to a well-posed problem using some kind of regularization (stabilization) techniques.
Although not always considered in such a way, the solution of inverse problems can be appropri-

ately formulated in terms of statistical inference [31]. Statistical inference refers to the process of
drawing conclusions or making predictions based on limited information, beyond the immediately
available data [60]. This is exactly what solving inverse problems is intended to do. Many techniques
of solving inverse problems are described in the literature, but the most general ones are usually
related to the minimization of an objective function depending on the difference between measured
and estimated responses to the physical problem [2, 3, 5–7, 9, 11, 28, 31–33, 39, 42, 44–46, 48, 50,
52, 56–59, 60, 62, 67, 69]. If the objective function is derived based on statistical hypotheses for
the measurement errors and unknown parameters/functions, the minimization procedure can be
related to statistical inference, thus resulting in point estimates for the unknowns that allow for es-
timations of their associated uncertainties [5, 31]. Unfortunately, this is seldom the case, especially
when the objective function is penalized with regularization terms.
In this paper, an inverse parameter estimation problem in bioheat transfer is solved within the

Bayesian framework of statistics by using an MCMC method. The term ‘Bayesian’ is commonly
used to refer to the techniques for the solution of inverse problems that fall within the framework
of statistics developed by the Presbyterian minister, Rev. Thomas Bayes (1702–1761) [35]. Such
framework was actually established after Bayes’ death, when his friend, Richard Price, published
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Bayes’ famous paper, which dealt with the following problem: “Given the number of times in which
an unknown event has happened and failed: Required the chance that the probability of its happening
in a single trial lies somewhere between two degrees of probability that can be named” [4]. On the
other hand, the mathematical formulation that is known today as Bayes’ theorem is attributed
to Laplace [54]. The term ‘Bayesian’ was first used by R.A. Fisher, but in a pejorative context.
Although born more than 120 years after the death of Bayes, Fisher was Bayes’ biggest intellectual
rival [54]. The Fisher’s major issue against Bayes and Laplace was that they used the concept
of a prior probability, which represents the information about an unknown quantity before the
measured data is available [54]. Fisher’s theory relies solely on the measured data and on the
modeling of their associated uncertainty, aiming at unbiased inference and/or decision; therefore,
it is usually referred to as the frequentist framework in statistics [54, 60, 67]. On the other hand,
within the Bayesian framework credit is also given to previous information, in addition to that
given to the measured data. Such previous information can even be qualitative, but needs to be
represented in terms of a probability distribution function and, regretfully, induces bias in the
results [35, 54, 60]. Nevertheless, the use of prior information in the Bayesian framework does not
mean that it completely overtakes the information provided by the measured data, unless the latter
one is too uncertain to be taken into account. The major source for the solution of inverse problems
within the Bayesian framework is the book by Kaipio and Somersalo [31]. In addition, the reader
is referred to the book by Gamerman and Lopes [21] for more details about the MCMC methods,
and to the books by Lee [35] and Winkler [64] for the fundamentals of Bayesian statistics.

Each human organ has different thermophysical properties, and in almost all organs and tissues
(except bones and epidermis) the metabolic heat is produced [17, 29, 49, 53]. The human body,
despite the complicated heat transfer processes that occur within it, is kept at a nearly constant
core temperature, normally between 36.5○C and 37.1○C, by active thermoregulation [17]. The tem-
perature of the skin depends on the environmental conditions, such as the ambient temperature as
well as heat transfer by convection and radiation with the surroundings. The mean temperature
of the skin varies from 33.0○C to 34.5○C for men and from 32.2○C to 35.0○C for women. Local
skin temperature varies over the body, within the range from 32.0○C to 35.5○C [23, 26]. A classical
model for bioheat transfer was proposed by Pennes in 1948 [51]. It involved heat transfer in tissues
perfused by blood in small vessels (i.e., without accounting for the heat transfer to/from blood in
main arteries and veins). Although various extensions of Pennes’ model have been proposed in the
literature, its classical model is still used in many cases nowadays. Examples of the of Pennes model
extensions were presented, for example, in [10, 16, 18, 20, 63, 66, 68].

Cancerous cells in a solid tumor behave differently from normal cells. The blood perfusion coef-
ficient can be 50 times higher in a tumor than in a healthy tissue, while metabolic heat generation
can be respectively 65 times higher [12]. Large tumors which are located in a favorable location can
be detected by infrared thermography. Some benefits of using this technique for the detection of
tumors in the early stages of growth are described in [33]. In fact, reports can be found where the
qualitative analysis of the skin temperature is used for the detection of cancer in the skin [11, 14,
47], breast [8], and thyroid [36, 61, 65]. An extensive review of medical infrared imaging is presented
in [15].

Temperature measurements can also be applied together with mathematical modeling in inverse
analyses for tumor detection, which is then used for the estimation of the bioheat transfer model
parameters [1, 8, 13, 19, 30, 37, 60, 64]. Agnelli et al. [1] used non-invasive thermal diagnostics
to estimate unknown thermophysical and geometrical parameters of a tumor. Das et al. [8, 13]
estimated the size and location of the tumor described by the classical Pennes equation for 1D, 2D
and 3D geometries. However, for the detection of surface tumors the variation of the temperature at
the skin surface usually is very small, with changes around 0.55○C or even 0.0077○C [12]. Such small
differences make the detection process very difficult because of high probability of false-negative
results. Souza et al. [55] solved a function estimation problem, by using the conjugate gradient
method with adjoint problem formulation, to identify the blood perfusion coefficient. The authors
obtained good results for cases with a low perfusion coefficient. The effective thermal conductivity
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and the volumetric heat capacity of a living tissue were simultaneously estimated by Huang and
Huang in [30]. Figueiredo and Guimarães [19] used the sequential function specification method
for estimating the location and magnitude of a metabolic heat generation term of a 6 cm tissue
(1D problem) containing a breast tumor. Umadevi [60] used the Metropolis-Hastings algorithm
for estimating the position, size and temperature of a breast tumor and reached very promising
results. Inverse methods of state estimation related to the hyperthermia treatment of cancer were
addressed in [36, 39, 61].
In this work, we apply an MCMCmethod [21, 31, 35, 60] within the Bayesian framework, in order

to identify parameters appearing in a 1D bioheat transfer problem that involves a single tissue. The
objective is the detection of a cancerous tissue, with the initial hypothesis that it is a normal healthy
tissue. Bioheat transfer is modeled in terms of Pennes’ equation and the simulated temperature
measurements are used for the solution of the present inverse parameter estimation problem. The
sensitivity coefficients with respect to the different parameters of the model are examined in order
to detect small sensitivities and linear dependency in the parameters [38].

2. SOLUTION OF INVERSE PROBLEMS WITHIN THE BAYESIAN FRAMEWORK

Let us consider the vector of parameters appearing in the mathematical formulation of a bioheat
transfer problem given by:

P
T = [P1, P2, ..., PN ] , (1)

where N is the number of parameters. Let us consider also that the transient measurements are
available within the medium or at its surface, where the heat transfer processes are being mathe-
matically formulated. The vector containing the measurements is written as

Y
T = (Ð→Y 1,

Ð→
Y 2, ...,

Ð→
Y I) , (2)1

where
Ð→
Y i contains the data of M sensors at time ti, i = 1, . . ., I, that is,

Ð→
Y i = (Yi1, Yi2, ..., YiM ) for i = 1, . . ., I, (2)1

so that there are D =MI measurements in total.
We assume that the measurement errors are additive, that is,

Y =T(P) + ε, (3)

where T(P) is the solution of the mathematical formulation of the physical problem, obtained with
the vector of parameters P, that is,

T
T (P) = [Ð→T 1(P),Ð→T 2(P), ...,Ð→T I(P)] , (4)1

where

Ð→
T i(P) = [Ti1(P), Ti2(P), ..., TiM (P)] for i = 1, . . ., I. (4)2

By further assuming that the measurement errors ε are Gaussian random variables with zero
means, known covariance matrixW and independent of the parameters P, their probability density
function is given in [5, 9, 21, 31, 32, 44, 46, 56] as

π(ε) = π(Y ∣ P) = (2π)−D/2 ∣W∣−1/2 exp{−1
2
[Y −T(P)]TW−1[Y −T(P)]}, (5)
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which is the likelihood function for the studied case. The likelihood function gives the relative
probability density of different measurement outcomes Y with a fixed P [5, 9, 21, 31, 32, 44,
46, 56].
For the solution of inverse problems within the Bayesian framework, all variables included in the

mathematical formulation of the physical problem are modeled as random variables. Techniques for
the solution of inverse problems within the Bayesian framework can be summarized in the following
steps [31]:

1. Based on all information available for the parameters P before the measured data Y is taken,
select a probability distribution function π(P) that appropriately represents the prior informa-
tion.

2. Select the likelihood function π(Y ∣ P) that appropriately models the measurement errors and
involves a relationship between the observations and the mathematical model of the physical
problem under study, cf. Eq. (5).

3. Develop methods to explore the posterior density function which is the conditional probability
distribution of the unknown parameters given the measurements π(P ∣ Y).
The formal mechanism to combine the new information (measurements) with the previously

available information (prior) is known as Bayes’ theorem [5, 9, 21, 31, 32, 44, 46, 56]. Let P and Y
be continuous random variables. Then, we can write [60]:

π(P ∣ Y) = π(P,Y)
π(Y) , (6)

that is, the conditional density of the random variable P given a value of the random variable Y
is the joint density of P and Y divided by the marginal density of Y, where

π(Y) = ∫
RN

π(P,Y)dP. (7)

The joint density π(P,Y) is not generally known, but it can be written in terms of the likelihood
and the prior as [60]:

π(P,Y) = π(Y ∣ P)π(P). (8)

By substituting Eq. (8) into Eq. (6) we obtain Bayes’ theorem, which is given by

πposterior(P) = π(P ∣ Y) = π(Y ∣P)π(P)
π(Y) . (9)

Since the computation of π(Y) with Eq. (7) is in general difficult, and usually not needed for
practical calculations as will be apparent below, Bayes’ theorem is commonly written as

πposterior(P) = π(P ∣ Y)∝ π(Y ∣ P)π(P). (10)

Analytical posterior distributions might be obtained when the prior is conjugate to the likelihood
[21, 31, 35, 60], which would allow for the solution of the inverse problem in terms of a point estimate
for P through an optimization problem that maximizes the posterior distribution, that is,

PMAP = arg max
P∈RN

π(P ∣ Y), (11)

which is usually referred to as a maximum a posteriori estimation.
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On the other hand, other point and confidence estimates from the posterior distribution typically
require numerical integration. For example, one common point estimate is the conditional mean
defined as [31]:

PCM = E(P) = ∫
RN

Pπ(P ∣ Y)dP, (12)

where E(.) denotes the expected value. In general, the dimension N of the parameter space is large
enough to make the numerical integration in Eq. (12) impractical. Besides that, the computation
of the normalizing constant in the denominator of π(P ∣ Y) (see Eq. (9)) already constitutes a
challenging problem by itself. For the cases in which the posterior is not analytical and/or numerical
integrations required for estimates are not practical, the MCMC methods can provide a solution of
the inverse problem, so that inference on the posterior probability becomes inference on its samples
[1, 9, 21, 31, 32, 44, 46, 56, 60]. For example, the Monte Carlo integration of Eq. (12) can be
approximated by [31]:

PCM = E(P) = ∫
RN

Pπ(P ∣ Y)dP ≈ 1

n

n

∑
t=1

P
(t), (13)

where P(t), for t = 1, . . ., n, are the samples from π(P ∣ Y). The MCMC methods are used to obtain
such samples.
Due to the simplicity of the application of MCMC methods, such a technique for the solution

of inverse problems has recently become quite popular, being applied even for the cases in which
a maximum a posteriori probability (MAP) estimate is feasible. One clear disadvantage of the ap-
plication of Monte Carlo methods is the required long computational time. On the other hand, the
use of computationally fast reduced models of the physical problem can be appropriately accom-
modated within the Bayesian framework [31], so that the application of MCMC methods for many
practical problems is nowadays possible.
The most common MCMC algorithms are the Gibbs sampler and the Metropolis-Hastings al-

gorithm [9, 21, 31, 32, 35, 41, 46, 56, 60]. The Metropolis-Hastings algorithm, which was used in
this work, was first proposed by Metropolis et al. [41] in 1953, who aimed at the calculation of the
properties of substances composed of interacting molecules. It was, therefore, a work focused on
statistical mechanics, and not on statistics itself. Although the paper has five co-authors [41], only
the name of the first author became popular to designate the developed algorithm, which was later
generalized by Hastings in 1970 [27].
The implementation of the Metropolis-Hastings algorithm starts with the selection of a candidate

or proposal distribution q(P∗ ∣ P(t)), which is used to draw a new candidate state P∗, given the
current state P(t) is of the Markov chain. The balance (reversibility) condition of the Markov chain
of interest is given by:

πposterior(P(t))q(P∗ ∣ P(t)) = πposterior(P∗)q(P(t) ∣ P∗). (14)

In order to avoid possible cases in which πposterior(P(t))q(P∗ ∣ P(t)) > πposterior(P∗)q(P(t) ∣ P∗),
that is, the process moves from P

(t) to P∗ more often than the reverse, a probability α(P∗ ∣ P(t))
is introduced in Eq. (14), so that [35]:

πposterior(P(t))q(P∗ ∣ P(t))α(P∗ ∣ P(t)) = πposterior(P∗)q(P(t) ∣ P∗). (15)

Therefore,

α(P∗ ∣ P(t)) =min [1, πposterior(P∗)q(P(t) ∣ P∗)
πposterior(P(t))q(P∗ ∣ P(t))], (16)
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where α(P∗ ∣ P(t)) = 1 holds/remains valid when the balance (reversibility) condition is satisfied.
Equation (16) is also called the Metropolis-Hastings ratio. For the computation of Eq. (16), we
notice that there is no need to know the normalizing constant that appears in the definition of the
posterior distribution (see Eq. (9)).
In the Metropolis-Hastings algorithm, a candidate P

∗ is accepted based on the probability
α(P∗ ∣ P(t)). The Metropolis-Hastings algorithm is summarized in the following steps [9, 21, 31,
32, 35, 41, 44, 46, 56, 60]:

1. Let t = 1 and start the Markov chain with the initial state P(1).
2. Sample a candidate point P∗ from a proposal distribution q(P∗ ∣ P(t)).
3. Calculate the probability α(P∗ ∣ P(t)) with Eq. (16).
4. Generate a random value U ∼ U(0,1), which is uniformly distributed in (0,1).
5. If U ≤ α(P∗ ∣ P(t)), set P(t+1) = P∗. Otherwise, set P(t+1) = P(t).
6. Make t = t + 1 and return to step 2 in order to generate the sequence {P(1),P(2), . . . ,P(n)}.
In this way, a sequence is generated to represent the posterior distribution and inference on

this distribution is obtained from inference on the samples {P(1),P(2), . . . ,P(n)}. We note that
the values of P(t) must be ignored until the chain has not converged to equilibrium (the burn-in
period).
The proposal distribution plays a fundamental role for the success of the Metropolis-Hastings

algorithm. Typical choices for q(P∗ ∣ P(t)) are random walk processes or independent moves based
on the priors, but adaptive proposal distributions can also be used, as proposed by Haario [24].

3. PHYSICAL PROBLEM AND MATHEMATICAL FORMULATION

The physical problem examined here is related to the studies in [11], in which skin cancer is detected
through the qualitative analysis of the transient superficial skin temperature, after a thermal per-
turbation is imposed. Typically, the thermal perturbation is caused by a cooling of the skin surface,
which can be performed by different means, and then measuring the skin surface temperature with
an infrared camera [47]. The mathematical model of local skin cooling was validated in [47], being
part of a larger project of temperature measurements during reheating, with a target to distinguish
malignant from non-malignant tumors [47]. Reheating occurs naturally, due to the heat conduction
in the tissue, metabolic heat generation, blood perfusion and heat transfer of the skin with the
surrounding environment.
A 1D case is analyzed in this work, representing heat transfer in a skin layer. The medium is

considered as a slab of thickness L, with the internal surface maintained at the constant temperature
Ta (the arterial blood temperature). The other surface is exposed to the surrounding, at the ambient
temperature T∞. Heat is transferred between the skin surface and the surrounding by convection and
linearized radiation, with the heat transfer coefficient h. Such steady-state solution is used as initial
state of cooling process. The skin layer is perturbed from its steady-state temperature through the
perfect contact of its surface with a thermal reservoir at 0○C, during 15 seconds (−15 s < t < 0 s).
The temperature distribution in the skin layer after this cooling period, represented by F (x),
serves as the initial condition for the reheating period, which is the subject of the current analysis.
Measurements of the temperature evolution of the skin surface are assumed to be available during
50 seconds in the reheating period.
For the present 1D problem, Pennes’ model for bioheat transfer is given by:

ρc
∂T

∂t
= ∂

∂x
(k∂T

∂x
) + ωbρbcb (Ta − T ) + q̇m in 0 < x < L for t > 0. (17)1
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The boundary and initial conditions are given by:

T = Ta at x = 0 for t > 0, (17)2

k
∂T

∂x
+ hT = hT∞ at x = L for t > 0, (17)3

T = F (x) in 0 < x < L for t = 0. (17)4

In the direct problem, all parameters appearing in Eq. (17) are considered as known; the objective
of the direct problem is to determine the transient temperature variation in the skin layer. The
inverse problem examined here is focused on the estimation of the thermal parameters appearing
in Eq. (17)1 by using the transient temperature measurements taken at the surface x = L. The
inverse problem solution is recast as statistical inference in the Bayesian framework of statistics,
by using the Metropolis-Hastings algorithm described earlier in this paper and by assuming that
the temperature measurement errors follow the Gaussian distribution given by Eq. (5).

4. RESULTS AND DISCUSSION

For the results presented below, the thermal parameters for the tissue layer were considered to be
constant. The values used for the model parameters, in order to perform the sensitivity analysis
and generate the simulated measurements, are presented in Table 1 [11, 17, 47]. For the tumor, the
blood perfusion coefficient was assumed as five times larger and the metabolic heat generation rate
as ten times larger than those of the healthy tissue [11]. The initial condition for the problem was
assumed as the solution of problem (17) after the skin surface at x = L was maintained at 0○C for
15 seconds.

Table 1. Model parameters [11, 17, 44].

Parameter Value

L 0.005 m

Ta 37○C

h 10 Wm−2K−1

T∞ 23○C

ρt = ρtumor 1085 kgm−3

ct = ctumor 3680 Jkg−1K−1

kt = ktumor 0.47 Wm−1K−1

cb 3617 Jkg−1K−1

ρb 1060 kgm−3

ωb,t 0.00105 s−1

ωb, tumor 0.00525 s−1

q̇m, t 631.0 Wm−3

q̇m, tumor 6310.0 Wm−3

In this work, the solution of the direct problem was computed by using the central difference,
fully implicit finite volume method, which was implemented in the MATLAB platform [40]. A grid
independency analysis was made and 27 volumes were chosen for the spatial discretization, while
a time step of 0.05 s was used, for a final time of 50 s. The results obtained for the direct problem
with the code developed in this work were verified with the numerical solution of the ANSYS
package.
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Before the estimation of the model parameters is attempted, the analysis of the sensitivity
coefficients needs to be performed in order to detect the linearly dependent parameters as well
as the parameters with small sensitivities with respect to the measurements [5]. The analysis of
the sensitivity coefficients is more appropriately performed with the reduced sensitivity coefficients
that are defined as [5]:

JPj
= Pj

∂T

∂Pj

, (18)

where Pj , j = 1, . . . ,N , are the unknown parameters. In Eq. (18), we note that the unit of the reduced
sensitivity coefficients is the same as unit of T ; hence, the magnitude of the sensitivity coefficients
can be compared to the magnitudes of the temperature measurements, which are considered to be
non-invasively taken at the skin surface (x = L). Before performing the analysis of the sensitivity
coefficients, we note in Eqs. (17)1–(17)4 that not all the parameters appear independently in the
mathematical formulation, for example, the parameters in the groups (ρc) and (ωbρbcb). Therefore,
the model parameters for this problem are written as

P
T = [A,B,C,D,h,T∞, Ta] , (19)

where

A = (ρc), B = k, C = (ωbρbcb) and D = q̇m.

The analysis of the sensitivity coefficients is focused on the parameters of main interest for the
problem, which are the skin thermophysical properties represented by A, B, C and D. Figures 1a
and 1b show the sensitivity coefficients with respect to these parameters, as a function of time, for
the case involving healthy and tumorous tissues, respectively. The surface temperatures are also
presented in Fig. 1. As it can be noticed, the sensitivity coefficients with respect to the parameters
A, B and D are practically null and much smaller than those for the parameter C, in both cases
of healthy and tumorous tissues. Therefore, the estimation of the parameter C, which is related
to the blood perfusion in the tissue, should be the focus for the detection of a skin cancer in the
problem examined in this work.

a) b)

Fig. 1. Sensitivity coefficients at x = L for: a) healthy skin tissue, b) tumorous skin tissue.

From the analysis of the sensitivity coefficients, which revealed that the surface temperature is
practically not affected by A, B and D, prior densities in the form of truncated Gaussian distribu-
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tions were assumed for these parameters. For a single parameter Pj , the truncated Gaussian prior
with mean µj and variance σ

2
j is given by:

π(Pj)∝ ⎡⎢⎢⎢⎣−
1

2

(Pj − µj)2
σ2
j

⎤⎥⎥⎥⎦ for Pj,min ≤ Pj ≤ Pj,max,

π(Pj) = 0 for Pj < Pj,min or Pj > Pj,max.

(20)

For each parameter A, B and D, µj was taken as the exact value used to generate the simu-
lated measurements obtained from Table 1, σj = 0.0005µj , Pj,min = 0.9µj , and Pj,min = 1.1µj . In
order to challenge the estimation procedure used in this work, the prior distribution for the pa-
rameter C was taken as a uniform distribution in 0 < C < 40257.21 Wm−3K−1, where the upper
bound corresponds to twice the exact value for the tumorous tissue. Therefore, the uniform prior
encompasses the exact values for the healthy tissue (C = 4025.72 Wm−3K−1) and the tumor tissue
(C = 20128.61 Wm−3K−1). The parameters h, T∞, Ta were assumed as deterministically known for
the results presented below.

Simulated temperature measurements were used in this paper, obtained from a Gaussian uncor-
related distribution, with a zero mean and a constant standard deviation σ = 0.3 K. The simulated
measurements are presented in Fig. 2, together with the exact temperatures obtained from the so-
lution of problem (17) with the parameters specified in Table 1, for the cases of healthy tissue and
tumorous tissue, respectively. We notice that, at the 99% confidence level, the measurement errors
may reach 3% of the maximum temperature difference observed during the reheating process.

a) b)

Fig. 2. Exact temperatures and simulated measurements: a) in the healthy skin tissue, b) in the tumorous
skin tissue.

For the implementation of the Markov chains, a random walk proposal was used in this work in
the following form:

P ∗j = P (t)j +wj(2rj − 1) for j = 1, . . .,N = 4, (21)

where rj is a random number with uniform distribution in (0,1), that is, rj ∼ U(0,1), while wj is
the maximum variation for the parameter Pj that is given in Table 2.

The convergence of the Markov chain to an equilibrium distribution can be verified by plotting

the chains of each parameter {P (1)j , P
(2)
j , . . . , P

(
j n), j = 1, . . .,N , and the posterior distribution
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Table 2. Maximum variation for the proposal distributions of each parameter.

Parameter A [Jm−3K−1] B [Wm−1K−1] C [Wm−3K−1] D [Wm−3]

For healthy skin tissue 79.86 9.4× 10−6 0.28 0.081

For tumorous skin tissue 79.86 9.4× 10−6 1.41 0.403

πposterior(P(t)), t = 1, . . ., n. The convergence of the Markov chain can also be verified by the
method proposed by Geweke [22]. Let

P
a

j = 1

sa

sa

∑
r=1

P
(r)
j (22)

and

P
b

j = 1

sb

n

∑
r=s∗

P
(r)
j (23)

be the means of the samples taken at the beginning and at the end of the supposedly converged
chain. Geweke [22] recommended:

s∗ = n − sb + 1, sa = 0.1n, sb = 0.5n, (17)

so that (P a

j −P
b

j)→ 0 when the chain {P (1)j , P
(2)
j , . . . , P

(n)
j } approaches equilibrium.

The results presented below for each parameter are relative to their exact values; hence, an
accurate estimation of the parameters is represented by mean values close to unity. We start with
the estimation of parameters for the healthy tissue. The Markov chains were started at the mean
values of the priors for the parameters, and 200 000 states were simulated in the Markov chains,
with a burn-in period of 60 000 states. The converged Markov chains for parameters A, B, C
and D are shown in Figs. 3a, 4a, 5a and 6a, respectively, while Figs. 3b, 4b, 5b and 6b present
the histograms of the converged states for these parameters. We notice in these figures that the
marginal posterior distributions resemble Gaussian distributions. Figure 5 show that the posterior
distribution for parameter C for the healthy tissue is not centered around the expected value of
unity, but around 1.381. In fact, although the chain was started at the exact value, it converged to
a value 38% larger, probably due to the large measurement errors used for the simulations. In any

a) b)

Fig. 3. a) Converged Markov chain for parameter A for the healthy tissue, b) marginal posterior
for parameter A for the healthy tissue.
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a) b)

Fig. 4. a) Converged Markov chain for parameter B for the healthy tissue, b) marginal posterior
for parameter B for the healthy tissue.

a) b)

Fig. 5. a) Converged Markov chain for parameter C for the healthy tissue, b) marginal posterior
for parameter C for the healthy tissue.

a) b)

Fig. 6. a) Converged Markov chain for parameter D for the healthy tissue, b) marginal posterior
for parameter D for the healthy tissue.
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case, the value estimated for C is still much smaller than that related to a tumorous tissue, which is
at least five times larger than that of the healthy tissue. Hence, the estimated parameter C would
still not suggest the existence of a tumor instead of the healthy tissue. The whole Markov chain for
parameter C, including the burn-in period, is presented in Fig. 7.

Fig. 7. Markov chain for parameter C for the healthy tissue with the burn-in period.

In order to verify Geweke’s criterion for the convergence of the Markov chains, the means of the
states were computed at the beginning and at the end of the chains, as given by Eqs. (22) and (23).
The results obtained for the four parameters are presented in Fig. 8, where the parameter indexes
refer to P1 = A, P2 = B, P3 = C, and P4 =D. This figure shows that, at the graph scale, the means
at the beginning and at the end of the chains are perfectly coincident.

Fig. 8. Means of the states at the beginning and at the end of the Markov chains for the healthy tissue to
verify Geweke’s criterion.

After estimating the healthy tissue parameters, we examine the possibility of estimating the
parameters of the tumorous tissue by starting the Markov chains with the values of the healthy
tissue, that is, the tissue is initially assumed as healthy and it is expected that the information
provided by the measurements is capable of actually identifying a tumorous tissue. As for the case
involving the healthy tissue presented above, 200 000 states were simulated in the Markov chains
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and 60 000 states were discarded in the burn-in period. The estimations are presented relative to
their exact parameter values.
The Markov chain for parameter C for the tumorous tissue is shown in Fig. 9. In this figure,

let us note that the chain, which starts from the value for the healthy tissue, gradually approaches
the value of the tumorous tissue that is about five times larger. The converged Markov chains for
parameters A, B, C, and D are presented in Figs. 10a, 11a, 12a and 13a. The histograms of the
converged marginal posteriors can be found in Figs. 10b, 11b, 12b and 13b. As for the case with
the healthy tissue, the histograms of the parameters estimated for the tumorous tissue resemble
Gaussian distributions. The convergence of the Markov chains for the tumorous tissue can be
verified through the analysis of Geweke’s criterion, as shown in Fig. 14.

Fig. 9. Markov chain for parameter C for the tumorous tissue.

a) b)

Fig. 10. a) Converged Markov chain for parameter A for the tumorous tissue, b) marginal posterior
for parameter A for the tumorous tissue.

The means and the standard deviations of the states of the converged Markov chains for the
estimated parameters for the tumorous tissue are shown in Table 3. This table and Figs. 10 to 13
show that all the states in the Markov chains exhibit small standard deviations, although the
estimated means are less than 4% off the exact values. In fact, despite the fact that the value of the
parameter C was not exactly recovered, the estimated mean for this parameter clearly indicates
the tissue with a tumor.
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a) b)

Fig. 11. a) Converged Markov chain for parameter B for the tumorous tissue, b) marginal posterior
for parameter B for the tumorous tissue.

a) b)

Fig. 12. a) Converged Markov chain for parameter C for the tumorous tissue, b) marginal posterior
for parameter C for the tumorous tissue.

a) b)

Fig. 13. a) Converged Markov chain for parameter D for the tumorous tissue, b) marginal posterior
for parameter D for the tumorous tissue.
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Fig. 14. Means of the states at the beginning and at the end of the Markov chains for the tumorous tissue
to verify Geweke’s criterion.

Table 3. Means and standard deviations (SD) of the states of the converged Markov chains
for the tumorous tissue.

Parameter A (SD) B (SD) C (SD) D (SD)

Relatives values
0.9784
(4× 10−4)

1.0343
(4× 10−4)

0.9607
(3× 10−4)

1.0023
(4× 10−4)

Dimensional values
3 906 436

(1582) Jm−3K−1
0.4861

(0.0002) Wm−1K−1
19 338

(6) Wm−3K−1
6 325
(3) Wm−3

The results for the healthy and tumorous tissues presented above show that the parameters A, B
and D were accurately estimated, despite the fact that their sensitivity coefficients are quite small.
This can be explained by using informative priors for the estimation procedure. Nevertheless, the
analysis of the sensitivity coefficients shows that the surface temperature is not significantly affected
by such parameters, for the values examined in this work, which fairly represent skin properties
reported in the literature [11, 17, 44].
Although the estimated mean for the parameter C of the healthy tissue was 38% larger than

its exact value, in the case involving the tumorous tissue the mean was only 4% smaller than its
exact value. For both cases, the Markov chains were started with the value for the healthy tissue.
Therefore, the results presented above reveal that, although the exact value for the healthy tissue
could not be recovered, the parameter C estimated in this case was much smaller than the one
associated with a tumorous tissue, thus correctly suggesting that the tissue was not tumorous (that
is, a false positive detection of cancer is not likely). In the case involving the tumorous tissue,
the Markov chain for the parameter C correctly evolved from the initial value associated with
the healthy tissue to the value of the tumorous tissue, which was five times larger. Hence, the
tumorous tissue could be appropriately detected with the present approach for the solution of
inverse parameter estimation problems in bioheat transfer.

5. CONCLUSIONS

This paper dealt with the solution of an inverse parameter estimation problem in bioheat trans-
fer, which aims at the detection of cancer in a single, tumorous or non-tumorous, skin layer. This
simplification has caused preliminary investigation and the MCMC testing for those applications.
The physical problem under the analysis involved the cooling of the surface of the skin and mon-
itoring its temperature during the reheating caused by perfusion, metabolism and surface con-
vective/radiative heat transfer. The parameters were estimated within the Bayesian framework by
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using the Metropolis-Hastings implementation of the MCMC method. The results obtained with the
simulated transient measurements of the surface temperature show that the estimates of a parame-
ter associated with the perfusion rate could characterize a cancerous tissue, even when starting the
Markov chains at the values of a healthy tissue. More realistic cases involving a multidimensional
problem and the actual surface temperature measurements with an infrared camera are currently
being undertaken. However, the results obtained with the simple cases examined in this work are
encouraging, because the false positive detection of cancer could be avoided and, more importantly,
a tumorous tissue could be appropriately detected.

ACKNOWLEDGEMENTS

The authors would like to acknowledge the financial support provided by CNPq, CAPES, FAPERJ,
the Ministry of Science and Higher Education of Poland (within statutory research funding scheme)
and the Brazilian agency for the fostering of sciences. In addition, we would like to extend our thanks
to COPPE/UFRJ and to the Institute of Thermal Technology/SUT. The access provided to the
computational facilities of the Division of Physics/SUT is greatly appreciated.

REFERENCES

[1] J.P. Agnelli, A.A. Barrea, C.V. Turner. Tumor location and parameter estimation by thermography. Mathemat-
ical and Computer Modelling, 53: 1527–1534, 2011.

[2] O.M. Alifanov. Inverse Heat Transfer Problems, Springer-Verlag, New York, 1994.
[3] O.M. Alifanov, E. Artyukhin, A. Rumyantsev. Extreme Methods for Solving Ill-Posed Problems with Applications
to Inverse Heat Transfer Problems. Begell House, New York, 1995.

[4] T. Bayes. An Essay towards solving a problem in the doctrine of chances, by the late Rv. Mr. Bayes, F.R.S.
Communicated by Mr. Price in a letter to John Cannon. A.M.R.F.S., Phil. Trans., 53: 370–418, 1763.

[5] J. Beck, K.J. Arnold. Parameter Estimation in Engineering and Science. Wiley Interscience, New York, 1977.
[6] J.V. Beck, B. Blackwell, C.R. St. Clair. Inverse Heat Conduction: Ill-Posed Problems. Wiley Interscience, New
York, 1985.

[7] M. Bertero, P. Boccacci. Introduction to Inverse Problems in Imaging. Institute of Physics Publishing, 1998.
[8] L.A. Bezerra, M.M. Oliveira, T.L. Rolim, A. Conci, F.G.S. Santos, P.R.M. Lyra, R.C.F. Lima. Estimation of
breast tumor thermal properties using infrared images. Signal Processing, 93: 2851–2863, 2013.

[9] D. Calvetii, E. Somersalo. Introduction to Bayesian Scientific Computing, Springer, New York, 2007.
[10] C.K. Charny. Mathematical models of bioheat transfer. [In:] Advances in Heat Transfer, Young Cho [Ed.], 22:
19–156, Boston: Academic Press, 1992.

[11] Tze-Yuan Cheng, C. Herman. Analysis of skin cooling for quantitative dynamic infrared imaging of near-surface
lesions. International Journal of Thermal Sciences, 86: 175–188, 2014.

[12] K. Das, S.C. Mishra. Estimation of tumor characteristics in a breast tissue with known skin surface temperature.
Journal of Thermal Biology, 38: 311–317, 2013.

[13] K. Das, S.C. Mishra. Non-invasive estimation of size and location of a tumor in a human breast using a curve
fitting technique. International Communications in Heat and Mass Transfer, 56: 63–70, 2014.

[14] K. Das, R. Singh, S.C. Mishra. Numerical analysis for determination of the presence of a tumor and estimation
of its size and location in a tissue. J. Therm. Biol., 38: 32–40, 2013.

[15] M. Diakides, J.D. Bronzino, D.R. Peterson. Medical Infrared Imaging: Principles and Practices, CRC Press,
2013.

[16] J.H. Randrianalisoa, L.A. Dombrovsky, W. Lipiński, V. Timchenko. Effects of short-pulsed laser radiation on
transient heating of superficial human tissues. International Journal of Heat and Mass Transfer, 78: 488–497,
2014.

[17] D. Fiala. Dynamic Simulation of Human Heat Transfer and Thermal Comfort. PhD Thesis, Institute of Energy
and Sustainable Development De Montfort University Leicester, UK, 1998.
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