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Singular and hypersingular integral equations appear frequently in engineering problems. The approxi-
mate solution of these equations by using various numerical methods is well known. Here we consider
the case where these equations are supplemented by inequality constraints-mainly parametric inequality
constraints, but also the case of singular/hypersingular integral inequalities. The approach used here is
simply to employ the computational method of quantifier elimination efficiently implemented in the com-
puter algebra system Mathematica and derive the related set of necessary and sufficient conditions for the
validity of the singular/hypersingular integral equation/inequality together with the related inequality
constraints. The present approach is applied to singular integral equations/inequalities in the problem
of periodic arrays of straight cracks under loading- and fracture-related inequality constraints by using
the Lobatto-Chebyshev method. It is also applied to the hypersingular integral equation/inequality of
the problem of a single straight crack under a parametric loading by using the collocation and Galerkin
methods and parametric inequality constraints.

Keywords: singular integral equations/inequalities, hypersingular integral equations/inequalities, bound-
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1. INTRODUCTION

Singular integral equations (related to Cauchy-type principal value integrals) and hypersingular
integral equations (related to Hadamard-type finite-part integrals or equivalently to derivatives
of Cauchy-type integrals) are of a great practical importance in applied solid and fluid mechanics,
where they are also frequently called singular BIEs (boundary integral equations) and hypersingular
BIEs respectively since they are valid on the boundary of the medium. Their importance is due to
the fact that these integral equations permit the solution of many related problems such as crack
problems and many general elasticity problems in solid mechanics as well as many problems in fluid
mechanics of ideal fluids, such as aerofoil problems. For this reason, several efficient approximate
methods for their numerical solution appeared long ago.
More explicitly, with respect to singular integral equations reference can be made to the results

by Kalandiya [44; 45, pp. 95–117], Erdogan and his collaborators [14–16], Ioakimidis and Theocaris
[29, 30, 43, 58], Tsamasphyros and Theocaris [59, 61], Chrysakis and Tsamasphyros [7], Gerasoulis
and Srivastav [19], Gerasoulis [17, 18], Golberg [22], Elliott [13] and many other researchers with
significant contributions to the field. Analogously, with respect to hypersingular integral equations
reference can be made to the results by Multhopp [51], Williams [63], Bueckner [5], Golecki [23–26],
Ioakimidis [31–33], Kaya and Erdogan [46], Golberg [20, 21], Sladek, Sladek and Tanaka [55], Sladek
and Sladek [54], Zhang, Sladek and Sladek [66], Linkov and Mogilevskaya [47], Mogilevskaya [49, 50],
Guiggiani [27], Guiggiani et al. [28], Ang and Noone [3], Ang [1, 2], Ashour [4], Tweed, John and
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Dunn [62] and many other researchers with significant contributions to the field. A related review
by de Klerk [12] is also of interest.

The aim of this paper is to show the usefulness of a computational method called quantifier
elimination and based on symbolic computations to supplement the methods of numerical solution of
singular/hypersingular integral equations. This method is based on symbolic computations available
in computer algebra systems, which have been of great interest in applied mechanics long ago, see,
e.g., the interesting review by Pavlović [52]. Despite that, quantifier elimination is a specialized
computational method with very few implementations in computer algebra systems so far. In most
cases, it is based on cylindrical algebraic decomposition, an efficient algebraic algorithm originally
devised by Collins [8]. Many extensions of the method appeared since its introduction. Among a very
large number of related papers see, e.g., those by Collins and Hong [9] and Strzeboński [56, 57]. Still,
the classical reference on quantifier elimination and cylindrical algebraic decomposition remains the
interesting book edited by Caviness and Johnson [6].

The most powerful, user-friendly and modern implementation of quantifier elimination seems
to be that prepared by Strzeboński and available in the popular computer algebra system Math-
ematica [64], and this is the implementation that will be exclusively used here. Details of this
implementation can be found in the related tutorial [65] as well as in the book on symbolics in
Mathematica by Trott [60, pp. 62–78].

On the other hand, a bibliography of the applications of quantifier elimination was prepared by
Ratschan [53]. In computational and applied mechanics, some applications of quantifier elimination
were suggested by Ioakimidis [34–40].

In this paper, we will study a new way of applying quantifier elimination to computational
mechanics. This new approach consists in studying singular/hypersingular integral equations ac-
companied by appropriate inequality constraints. Here both these equations and the accompanying
inequality constraints appear in parametric forms with one or more than one parameter. For the
numerical solution of these integral equations, classical numerical methods (such as the quadrature
method, the collocation method and the Galerkin method) can be used. Similarly, singular integral
inequalities will also be studied in brief. Quantifier elimination can be used simultaneously with
the numerical solution of the integral equation or just after the completion of this numerical solu-
tion. The present applications concern crack problems in fracture mechanics, which traditionally
constitute an interesting field of application of singular/hypersingular integral equations, although
such equations appear in several additional problems of computational mechanics, e.g., in fluid
mechanics of ideal fluids.

This paper is organized as follows. In Sec. 2 quantifier elimination is applied to singular inte-
gral equations under parametric inequality constraints. In Sec. 3 singular integral inequalities are
considered in a similar way. In Sec. 4 quantifier elimination is applied to a hypersingular integral
equation again under parametric inequality constraints. Similarly, in Sec. 5 the related hypersin-
gular integral inequality is considered. Finally, in Sec. 6 the conclusions on the obtained results
are mentioned in brief, followed by a short discussion. In all cases, the applications concern singu-
lar/hypersingular integral equations/inequalities and parametric inequality constraints appearing
in classical crack problems in fracture mechanics, an area where the usefulness of both singular and
hypersingular integral equations was demonstrated in the past. Nevertheless, the present computa-
tional approach based on quantifier elimination is also obviously applicable to many more problems
related to integral equations/inequalities, including parametric inequality constraints both in solid
and fluid mechanics.

2. APPLICATION OF QUANTIFIER ELIMINATION TO SINGULAR INTEGRAL
EQUATIONS UNDER INEQUALITY CONSTRAINTS

In this section, we will illustrate the use of the computational method of quantifier elimination
in singular integral equations with a Cauchy-type kernel accompanied by parametric inequality
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constraints. The singular integral equations that will be used here are those of periodic arrays of
collinear and parallel cracks in an infinite plane isotropic elastic medium.

2.1. A periodic array of collinear cracks

First, we consider the classical problem of a periodic array of collinear cracks along the real axis Ox

(Fig. 1). Each crack has length 2a and the period of the array (the distance between the midpoints
of two consecutive cracks) is b (Fig. 1). The related Cauchy-type singular integral equation (singular
BIE) on each crack was derived by Datsyshin and Savruk [10] and can be written in the following
slightly modified and more convenient final form [29, 41]:

c −
1

∫
−1

1√
1 − t2 Ks(t, x)g(t)dt = p(x), −1 < x < 1. (1)

Fig. 1. A periodic array of collinear cracks.

Here the singular kernel Ks(t, x) is given by [10, 29, 41]

Ks(t, x) = cot[πc(t − x)]. (2)

In these equations, c denotes the ratio a/b. Moreover, in the singular integral equation (1) g(t) is
the unknown function with g(t)/√1 − t2 being proportional to the slope v ′(t) of the crack opening
displacement v(t) and the known function p(x) on the right-hand side is the normal pressure
distribution (the compressive loading) applied to both edges of each crack of the periodic array.
This pressure distribution p(x) is assumed to be the same on all the cracks of the present periodic
array of cracks. The above singular integral equation (1) is accompanied by the related condition
of single-valuedness of displacements [10, 29, 41]

1

∫
−1

1√
1 − t2 g(t)dt = 0. (3)

For the numerical solution of the singular integral equation (1) together with the condition (3)
we can use the well-known related quadrature method and more explicitly the Lobatto-Chebyshev
method based on the corresponding almost Gaussian quadrature (numerical integration) rule. For
ordinary integrals, the Lobatto-Chebyshev quadrature rule with n nodes has the well-known simple
form [11, p. 104]

1

∫
−1

1√
1 − t2 g(t)dt ≈

n

∑
i=1

Ai,n g(ti,n). (4)

Here the nodes ti,n and the weights Ai,n are given in [11, p. 104]

ti,n = cos
(i − 1)π
n − 1 , i = 1,2, . . . , n, (5)
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A1,n = An,n =
π

2(n − 1) , Ai,n =
π

n − 1 , i = 2,3, . . . , n − 1. (6)

The Lobatto-Chebyshev quadrature rule (4) holds also true for Cauchy-type principal value
integrals of the form

I(x) = −
1

∫
−1

1√
1 − t2

g(t)
t − x dt, −1 < x < 1. (7)

This happens provided that the variable x in the integral I(x) takes one of the n − 1 concrete
values [29, 41, 58]

xk,n = cos
(2k − 1)π
2(n − 1) , k = 1,2, . . . , n − 1. (8)

Under these circumstances, on the basis of Eqs. (1) and (3) the Lobatto-Chebyshev method with
n nodes leads to the following well-known approximate system of n linear algebraic equations [29,
41, 58]:

c
n

∑
i=1

Ai,nKs(ti,n, xk,n)gn(ti,n) = p(xk,n), k = 1,2, . . . , n − 1, (9)

n

∑
i=1

Ai,ngn(ti,n) = 0, (10)

where gn(t) denotes an approximation to the unknown function g(t). We denote the set of the
above (n − 1) + 1 = n equations by the symbol En or eqs[n] in Mathematica.
Of course, in fracture mechanics we are generally interested in the values of the stress intensity

factors K(±1) at the crack tips x = ±1. These factors are determined (here for convenience in
dimensionless form) by using the very simple equations [29, 41, 58]

K(1) = g(1) and K(−1) = −g(−1). (11)

Next we also consider the following inequality constraints:

K(1) <Kf and K(−1) <Kf with Kf > 0. (12)

Here Kf is an upper bound of the stress intensity factors allowing the avoidance of fracture.
This bound is called the fracture toughness of the elastic material (although here we are using
dimensionless length variables). The fracture toughness Kf is assumed to be a material constant.
Because of Eqs. (11), the inequality constraints (12) take their final forms

gn(1) <Kf and − gn(−1) <Kf with Kf > 0, (13)

now with the approximation gn(t) (which will be used below during quantifier elimination) to the
unknown function g(t).
Here we also permit the normal compressive loading p(x) of the cracks of the periodic array of

collinear cracks to be a variable loading but satisfying the inequality constraint

∀x ∈ [−1,1] p(x) ≥ pmin with pmin > 0 (14)

defining a lower bound pmin of the loading p(x).
Under these conditions, we first define the assumptions

A0 =Kf > 0 ∧ pmin > 0 (15)
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denoted by ass0 in Mathematica. Here the symbol ∧ denotes the logical “and”. Next, on the
basis of the inequality constraint (here the quantified formula) (14) we define the additional n − 1
assumptions Ap,n concerning the normal compressive loading p(x) at the collocation points xk,n
(with k = 1,2, . . . , n − 1) determined by Eqs. (8), which are
Ap,n = p1,n ≥ pmin ∧ p2,n ≥ pmin ∧ ⋯ ∧ pn−1,n ≥ pmin (16)

(with pk,n ∶= p(xk,n) with k = 1,2, . . . , n − 1). These assumptions Ap,n constitute a discretization
of the quantified formula (14) and therefore an approximation to this formula. The set of all the
above assumptions A0 or ass0 and Ap,n is denoted by An or ass[n] in Mathematica, i.e., we have
An = A0 ∪Ap,n. These are the assumptions that will be actually used during quantifier elimination
in Mathematica.
Moreover, as far as the quantified variables are concerned, which will be eliminated during

quantifier elimination, these are the 2n − 1 variables
Vn = {p1,n, p2,n, . . . , pn−1,n, g1,n, g2,n, . . . , gn,n} (17)

(with gi,n ∶= gn(ti,n) with i = 1,2, . . . , n) denoted by var[n] in Mathematica. Now we will proceed
to quantifier elimination with respect to the existentially (i.e., related to the existential quantifier
∃, exists) quantified formula
∃Vn such that En ∧ g1,n <Kf ∧ −gn,n <Kf , (18)

of course under the validity of all the assumptions An.
In order to perform quantifier elimination in Mathematica we can use either the Resolve com-

mand (dedicated to quantifier elimination) or the much more general Reduce command to generally
essentially obtain the same results as far as quantifier elimination is concerned. Here we will ex-
clusively use the Reduce command. The related complete Mathematica notebook (commands and
approximate QFFs) for the present crack problem with c = a/b = 0.45 (i.e., with the collinear cracks
very close to each other) is displayed in Appendix, paragraph A1. For this value of c, we obtained
the following approximate QFFs:

QFF2 = Kf > 4.46607pmin or pmin < 0.223911Kf , (19)

QFF3 = Kf > 2.45180pmin or pmin < 0.407864Kf , (20)

QFF4 = Kf > 2.19817pmin or pmin < 0.454923Kf , (21)

QFF5 = Kf > 2.13585pmin or pmin < 0.468198Kf , (22)

QFF6 = Kf > 2.11937pmin or pmin < 0.471839Kf , (23)

QFF7 = Kf > 2.11494pmin or pmin < 0.472827Kf , (24)

QFF8 = Kf > 2.11375pmin or pmin < 0.473093Kf . (25)

Each of these QFFs concerns the necessary and sufficient condition permitting the validity of the
equations and the inequality constraints of the present crack problem, of course, with the use of the
Lobatto-Chebyshev method with n nodes. We also observe the rapid convergence of the numerical
coefficients in the right-hand sides of these QFFs for increasing values of the number of nodes n.

2.2. A periodic array of parallel cracks

Completely analogously, we can work with a periodic array of parallel cracks, which are assumed
to be parallel to the Ox-axis (Fig. 2). Again each crack has length 2a and the period of the array
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Fig. 2. A periodic array of parallel cracks.

(but now along the Oy-axis) is b (Fig. 2). We also use again the ratio c = a/b. In this case, the
Cauchy-type singular integral equation (1) holds still true, but the singular kernel Ks(t, x) is now
given by the somewhat more complicated formula [29, 41]

Ks(t, x) = 2coth[πc(t − x)] − πc(t − x) csch2[πc(t − x)]. (26)

For c = a/b = 0.50 (i.e., with the parallel cracks moderately close to each other) and for n =
2,3, . . . ,8, exactly as previously by using the same approach based on the Lobatto-Chebyshev
method [29, 41, 58] we obtain the approximate QFFs

QFF2 = Kf > 0.337898pmin or pmin < 2.95948Kf , (27)

QFF3 = Kf > 0.554644pmin or pmin < 1.80296Kf , (28)

QFF4 = Kf > 0.571915pmin or pmin < 1.74851Kf , (29)

QFF5 = Kf > 0.570153pmin or pmin < 1.75391Kf , (30)

QFF6 = Kf > 0.570188pmin or pmin < 1.75381Kf , (31)

QFF7 = Kf > 0.570193pmin or pmin < 1.75379Kf , (32)

QFF8 = Kf > 0.570193pmin or pmin < 1.75379Kf . (33)

Again, we observe the rapid convergence of the numerical coefficients on the right-hand sides of
these QFFs for increasing values of the number of nodes n.
It is understood that when we perform quantifier elimination to the quantified formulae and

the related constraints without parameters (free variables), i.e., here with the present parameters
pmin and Kf taking concrete, numerical values, then, obviously, the resulting QFF will be simply
True or False. And naturally, exactly the same result, True or False, will be obtained simply by
substituting the parameters, e.g., here pmin and Kf in the above QFFs QFFn, with their numerical
values provided that these values are available.

3. APPLICATION OF QUANTIFIER ELIMINATION TO SINGULAR INTEGRAL
INEQUALITIES UNDER INEQUALITY CONSTRAINTS

A further and rather interesting use of the present computational approach based on quantifier
elimination consists in its direct application to singular integral inequalities instead of equations.
Two such applications to the same periodic arrays of cracks (collinear and parallel cracks) will
be briefly presented in Subsec. 3.1. Next, the application in Subsec. 3.2 will concern the case of
a parametric kernel.
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3.1. Periodic arrays of collinear and parallel cracks

First, we consider again the problem of a periodic array of collinear cracks in an infinite plane
isotropic elastic medium. This problem was already studied in the previous section on the basis
of the singular integral equation (1) (with its singular kernel Ks(t, x) given by Eq. (2)) and the
accompanying condition of single-valuedness of displacements (3).
More explicitly, here instead of the singular integral equation (1) we consider the related singular

integral inequality

c −
1

∫
−1

1√
1 − t2 Ks(t, x)g(t)dt ≥ pmin, −1 < x < 1 (34)

with pmin > 0. Here we have directly inserted the lower bound pmin into the constraint (14) con-
cerning the compressive normal loading distribution p(x) of the cracks in this singular integral
inequality (34). Naturally, the condition (3) of single-valuedness of displacements should once more
hold true.
Next, we performed again quantifier elimination by using the Reduce command of Mathematica

analogously to what we did in the previous section and by using again the inequality constraints
(13), i.e., ±gn(±1) < Kf , but now in the singular integral inequality (34) instead of the related
singular integral equation (1). Moreover, the Lobatto-Chebyshev quadrature rule was used in the
singular integral inequality (34) and in the condition (3). As expected, the obtained QFFs were
again those displayed in Eqs. (19)–(25).
Completely analogously, we studied the singular integral inequality (34) for an array of parallel

cracks with the singular kernel Ks(t, x) given by Eq. (26). As expected, the obtained QFFs were
again those displayed in Eqs. (27)–(33).

3.2. A periodic array of collinear cracks with a parametric kernel

In this subsection, we consider again the problem of a periodic array of collinear cracks but now
with a parametric kernel Ks(t, x) with parameter the ratio c = a/b under the geometric restriction
that 0 ≤ c < 1/2. This is clear from Fig. 1 since c = a/b. Here for computational convenience we
will also use the dimensionless unknown function g∗(t) ∶= g(t)/pmin with pmin > 0. As a result, the
singular integral inequality (34) takes its simpler form

c −
1

∫
−1

1√
1 − t2 Ks(t, x)g∗(t)dt ≥ 1, −1 < x < 1. (35)

Moreover, here we assume that the actual compressive normal loading distribution p(x) applied
to the fundamental crack x ∈ [−1,1] of the present periodic array of cracks is a symmetric loading
with p(−x) = p(x). Then, obviously, the unknown function g∗(t), which is related to the slope v ′(t)
of the crack opening displacement v(t), will be an antisymmetric function with g∗(−t) = −g∗(t).
Therefore, the condition of single-valuedness of displacements (3) is automatically satisfied and
does not need to be taken into account here.
Exactly as in the previous subsections, we will apply again the Lobatto-Chebyshev method [29,

41, 58] now to the singular integral inequality (35) here with n = 6 nodes ti,n. Because of the
presence of the parameter c = a/b in the trigonometric singular kernel Ks(t, x) = cot[πc(t − x)]
in Eq. (2), we use an approximation to this kernel. More explicitly, focusing our attention on not
very high values of c, we use a generalized Taylor-Maclaurin series expansion of the singular kernel
Ks(t, x) in Eq. (2). For example, with an order r = 10 in this series expansion by usingMathematica
we easily obtain the approximation K̃s(t, x) to the kernel Ks(t, x) = cot s:

K̃s(t, x) = 1

s
− 1

3
s − 1

45
s3 − 2

945
s5 − 1

4725
s7 − 2

93555
s9 (36)

with s ∶= πc(t − x) and here with powers up to s9.
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By applying the already described Lobatto-Chebyshev method with n = 6 nodes to the singular
integral inequality (35) we get the approximate system of linear inequalities

c
n/2

∑
i=1

Ai,n[K̃s(ti,n, xk,n) − K̃s(tn−i+1,n, xk,n)]g∗n(ti,n) ≥ 1, k = 1,2, . . . , n/2 (37)

with n being an even positive integer. The reason for using here only n/2 (here 3 since n = 6)
inequalities is that we have already observed the antisymmetry g∗(−t) = −g∗(t) of the unknown
function g∗(t) due to the assumed symmetry p(−x) = p(x) of the loading p(x). Therefore, we have

g∗n(tn−i+1,n) = −g∗n(ti,n), i = 1,2, . . . , n/2, (38)

here with n = 6 nodes whence n/2 = 3 nodes. The above equations were already taken into account
in the linear inequalities (37). In this way, with n = 6 we will use only n/2 = 3 linear inequalities
of the form (37) and this constitutes a great simplification in the symbolic computations during
quantifier elimination with Mathematica. In fact, the assumed symmetry of p(x) and the resulting
antisymmetry of g(t) and further g∗(t) permit us to restrict our attention on the right half x ∈ [0,1]
of the fundamental crack x ∈ [−1,1] employing only the non-negative collocation points xk,n in
Eqs. (8) with k = 1,2, . . . , n/2.
In addition to the singular integral inequality (35) we also assume again that the stress intensity

factors K(±1) at the crack tips x = ±1 do not reach the fracture toughness Kf and therefore the
fracture of the cracked specimen is avoided. Next, because of the assumed symmetry p(−x) = p(x)
of the present loading p(x) only the first of the related two inequality constraints (13) should be
taken into account. Therefore, here we must simply have (with t1,n = 1 in the Lobatto-Chebyshev
quadrature rule)

gn(1) <Kf or here equivalently g∗n(1) <K ∗f (39)

with K∗f > 0 and

K ∗f ∶=
Kf

pmin

since g∗n(t) ∶= gn(t)
pmin

with pmin > 0. (40)

Summing up, under all of the previous assumptions here with n = 6 and therefore n/2 = 3 we
have to perform quantifier elimination to the existentially quantified formula

∃{g∗6 (t1,6), g∗6 (t2,6), g∗6 (t3,6)} such that I3 ∧ g∗6(t1,6) <K ∗f (41)

under the geometric assumption 0 ≤ c < 1/2, where t1,6 = 1 and I3 denotes the system of the three
linear inequalities (37) (here with n/2 = 3).
The related quantifier elimination was again performed with the help of the Reduce command

of Mathematica with respect to the free variable K ∗f ∶= Kf /pmin. The auxiliary Refine command

was also used again so that the geometric assumption 0 ≤ c < 1/2 can automatically be taken into
account in the resulting QFF (quantifier-free formula). Moreover, the Chop command was also used
so that extremely small quantities do not appear in the output.
After an appropriate simplification of the result with the help of the Simplify command the

following final form of the QFF was obtained:

nc(c)
dc(c) <K

∗
f or equivalently

nc(a/b)
dc(a/b) pmin <Kf , (42)

including the free (not quantified) variables K ∗f ∶=Kf /pmin and c = a/b. In this QFF the numerator
nc(c) and the denominator dc(c) in the fraction denote the two polynomials

nc(c) = −3.906960c20 − 3.341522c18 − 0.983512c16 + 1.847320c14 + 0.240696c12 + 26.277337c10
+ 8.138855c8 + 2.513184c6 + 0.802112c4 + 0.988136 with c = a/b, (43)
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dc(c) = +0.756270c30 + 1.042278c28 + 0.337607c26 − 0.925124c24 + 9.818766c22 − 50.420814c20

− 27.735330c18 − 5.772990c16 + 4.487693c14 + 23.557404c12 − 30.222222c10

− 10.035338c8 − 3.769776c6 − 1.604224c4 − 1.625419c2 + 0.988136 with c = a/b. (44)
The above approximate QFF (42) seems to be somewhat complicated. This happens because

of the appearance of the fraction nc(c)/dc(c) = nc(a/b)/dc(a/b) on its left-hand side. A simpler
but even more approximate QFF can be derived by approximating this fraction. For example, by
proceeding to a Taylor-Maclaurin series approximation to this fraction with terms of order up to
2r = 20 by using Mathematica we easily obtain the approximate QFF

(60019.96486c20 + 19070.11945c18 + 6012.43216c16 + 1900.75837c14 + 613.57547c12

+ 223.50332c10 + 61.77691c8 + 17.48558c6 + 5.14104c4

+ 1.64493c2 + 1.00000)pmin < Kf with c = a/b. (45)
The above approximate QFF (45) constitutes a sufficiently good additional approximation to the
original approximate QFF (42), especially for not very large values of the parameter c = a/b and
always under the constraint 0 ≤ c < 1/2.
The above QFFs correspond to an order r = 10 in the generalized Taylor-Maclaurin series

expansion (36) of the kernel Ks(t, x). We have also derived the approximate QFFs corresponding
to orders r = 5, r = 20 and r = 30, which will not be displayed here either in their original forms
or after their further approximations, by using again Taylor-Maclaurin series expansions to the
fraction nc(c)/dc(c) on their left-hand sides. Naturally, it is clear that for increasing values of the
order r of the approximation the related approximate QFFs become more complicated and more
difficult for Mathematica to derive, but also simultaneously more accurate.

Now we denote by fr,c the fraction

fr,c ∶= nc(c)
dc(c) =

nc(a/b)
dc(a/b) (46)

in the approximate QFF (42) corresponding to a value r of the order of approximation in the
generalized Taylor-Maclaurin series expansion (36) of the kernel Ks(t, x). Below we just present
the values of fr,c for r = 5,10,20 and 30 and c = a/b = 0.10,0.20,0.30,0.40 and 0.45 having taken
into account for geometric reasons that 0 ≤ c < 1/2 because 2a < b or c = a/b < 1/2 as it is clear from
Fig. 1, so that we can have separate cracks:

f5,0.10 = 1.01698, f5,0.20 = 1.07526, f5,0.30 = 1.20615,
f5,0.40 = 1.51624, f5,0.45 = 1.85042 for r = 5,

(47)

f10,0.10 = 1.01698, f10,0.20 = 1.07533, f10,0.30 = 1.20826,
f10,0.40 = 1.55095, f10,0.45 = 1.98470 for r = 10, (48)

f20,0.10 = 1.01698, f20,0.20 = 1.07533, f20,0.30 = 1.20846,
f20,0.40 = 1.56427, f20,0.45 = 2.08888 for r = 20, (49)

f30,0.10 = 1.01698, f30,0.20 = 1.07533, f30,0.30 = 1.20847,
f30,0.40 = 1.56511, f30,0.45 = 2.11153 for r = 30.

(50)
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For r = 10 we display only the values f̃10,c ≈ f10,c obtained on the basis of the second Taylor-
Maclaurin series approximation (of order 2r = 20) on the left-hand side of the approximate QFF
(45) (f̃10,c is defined as the multiplier of pmin there) for the same values of c. These values are

f̃10,0.10 = 1.01698, f̃10,0.20 = 1.07533, f̃10,0.30 = 1.20826,

f̃10,0.40 = 1.55029, f̃10,0.45 = 1.97282 for r = 10.
(51)

By comparing these values to those displayed in Eqs. (48) we observe that the differences (with
the present accuracy of five decimal digits) are restricted to the case of somewhat large values of
the parameter c, here to c = 0.40 and 0.45 (with 0 ≤ c < 0.50), and even in this case they are rather
small. Therefore, in general the approximate QFF (45) can be used instead of the original but also
approximate QFF (42).

4. APPLICATION OF QUANTIFIER ELIMINATION TO HYPERSINGULAR INTEGRAL
EQUATIONS UNDER INEQUALITY CONSTRAINTS

In this section, we consider the hypersingular integral equation of the problem of a single straight
crack in fracture mechanics again inside an infinite plane isotropic elastic medium. This equation
has the form [23–26, 31, 32]

1

π
=
1

∫
−1

√
1 − t2 g(t)

(t − x)2 dt = −p(x), −1 < x < 1. (52)

In this equation, the product
√
1 − t2 g(t) of the weight function √1 − t2 and the unknown function

g(t) is proportional to the crack opening displacement v(t). Moreover, the known function p(x)
on the right-hand side is again the normal loading distribution applied to the two crack edges.
Because of the minus sign in −p(x), this loading distribution is assumed to be positive when it
is compressive and negative when it is tensile. We can add that the dimensionless stress intensity
factors K(±1) at the crack tips x = ±1 are now determined by the very simple formulae [32]

K(±1) = g(±1). (53)

Naturally, for the validity of the above hypersingular integral equation (52) the crack opening

displacement v(t), which is proportional to the product √1 − t2 g(t), should be a non-negative
function along the whole crack t ∈ [−1,1]. Therefore, the same should be also the case with the
unknown function g(t) itself and we must have
∀t ∈ [−1,1] g(t) ≥ 0. (54)

This is the inequality constraint (here a universally quantified formula because of the presence of the
universal quantifier ∀, for all, in it) that accompanies the hypersingular integral equation (52). This
inequality constraint should not be ignored for the validity of the approximate solution gn(t) ≈ g(t)
of this equation.
Two well-known methods for the approximate solution of the hypersingular integral equa-

tion (52) are (i) the collocation method and (ii) the Galerkin method [20, 21, 32, 63]. A third
related method is the quadrature method, which is based on the simultaneous application of the
Gauss-Chebyshev and the Lobatto-Chebyshev quadrature rules to Eq. (52) after appropriate selec-
tions of the collocation points during the application of both these quadrature rules. The quadrature
method for the numerical solution of hypersingular integral equations constitutes a generalization
of the related method for the numerical solution of Cauchy-type singular integrodifferential equa-
tions [42].
Here we will not use the quadrature method, which is somewhat complicated as far as hyper-

singular integral equations are concerned, and we will restrict our attention to the collocation and
Galerkin method [20, 21, 32, 63].
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4.1. Non-negativity of the crack opening displacement by the collocation method

First, we will use the collocation method. In this method the unknown function g(t) in the hyper-
singular integral equation (52) is approximated by the sum [32]

gn(t) =
n

∑
i=0

aiUi(t), (55)

where ai are unknown coefficients to be determined and Ui(t) denote the Chebyshev polynomials
of the second kind of degree i. The n + 1 unknown coefficients ai are determined from the solution
of the approximate system of n + 1 linear algebraic equations [32]

n

∑
i=0

(i + 1)Ui(xk,n)ai = p(xk,n), k = 0,1, . . . , n. (56)

In these equations, xk,n are the n + 1 collocation points. Here these points are selected as the n + 1
roots of the Chebyshev polynomial of the first kind Tn+1(x) of degree n + 1. Therefore [32]

xk,n = cos
(2k + 1)π
2(n + 1) , k = 0,1, . . . , n. (57)

After the numerical solution of the system of Eqs. (56) and the determination of the approxima-
tion gn(t) in Eq. (55) to the unknown function g(t) in Eq. (52) we are ready to perform quantifier
elimination to the quantified formula (54) again by using the Reduce command of Mathematica.
Here we selected the following exponential form of the normal loading distribution p(x) of the
crack:

p(x) = pex + qe−x (58)

with two parameters, p and q.
Here having worked with n + 1 collocation points xk,n we display the values of the approximate

stress intensity factors Kn(±1) ≈K(±1) at the crack tips x = ±1 respectively directly obtained from
Eqs. (53) as well as the related QFFs (quantifier-free formulae) QFFn obtained by the application
of quantifier elimination to the quantified formula (54), now for gn(t) ≈ g(t). The related results
for Kn(±1) and QFFn with an accuracy of 12 decimal digits are displayed below:

K0(+1) = p + q, K0(−1) = p + q, (59)

QFF0 = p + q ≥ 0, (60)

K1(+1) = 1.80331 26571 58p + 0.71787 10158 85q,

K1(−1) = 0.71787 10158 85p + 1.80331 26571 58q,
(61)

QFF1 = (q ≤ 0 ∧ p ≥ −2.51202 87868 63q) ∨ (q > 0 ∧ p ≥ −0.39808 46100 29q), (62)

K2(+1) = 1.83090 69420 61p + 0.70113 48587 99q,

K2(−1) = 0.70113 48587 99p + 1.83090 69420 61q,
(63)

QFF2 = (q ≤ 0 ∧ p ≥ −2.61134 77586 84q) ∨ (q > 0 ∧ p ≥ −0.38294 40168 11q), (64)

K3(+1) = 1.83122 31777 95p + 0.70090 81792 84q,

K3(−1) = 0.70090 81792 84p + 1.83122 31777 95q,
(65)

QFF3 = (q ≤ 0 ∧ p ≥ −2.61264 34701 72q) ∨ (q > 0 ∧ p ≥ −0.38275 40999 82q), (66)

K4(+1) = 1.83122 49756 63p + 0.70090 67787 40q,

K4(−1) = 0.70090 67787 40p + 1.83122 49756 63q,
(67)
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QFF4 = (q ≤ 0 ∧ p ≥ −2.61265 12557 85q) ∨ (q > 0 ∧ p ≥ −0.38275 29593 88q), (68)

K5(+1) = 1.83122 49817 31p + 0.70090 67737 71q,

K5(−1) = 0.70090 67737 71p + 1.83122 49817 31q,
(69)

QFF5 = (q ≤ 0 ∧ p ≥ −2.61265 12829 64q) ∨ (q > 0 ∧ p ≥ −0.38275 29554 06q), (70)

Kn(+1) = 1.83122 49817 44p + 0.70090 67737 60q,

Kn(−1) = 0.70090 67737 60p + 1.83122 49817 44q,
(71)

QFFn = (q ≤ 0 ∧ p ≥ −2.61265 12830 26q) ∨ (q > 0 ∧ p ≥ −0.38275 29553 97q) (72)

with n = 6,7, . . . ,12 in Eqs. (71) and (72).
At this point, we can also mention that the theoretical values of the dimensionless stress intensity

factors K(±1) in the present crack problem are determined as follows:

K(+1) = 1

π

1

∫
−1

√
1 + x
1 − x (pe

x + qe−x)dx = [I0(1) + I1(1)]p + [I0(1) − I1(1)]q

≈ 1.83122 49817 44p + 0.70090 67737 60q, (73)

K(−1) = 1

π

1

∫
−1

√
1 − x
1 + x (pe

x + qe−x)dx = [I0(1) − I1(1)]p + [I0(1) + I1(1)]q

≈ 0.70090 67737 60p + 1.83122 49817 44q. (74)

In these equations, I0(x) and I1(x) denote the modified Bessel functions of the first kind and of
orders 0 and 1 respectively. Moreover, the computation of the stress intensity factors K(±1) was
made analogously to the computation of the same factors in [32], where the same Bessel functions
I0(x) and I1(x) appear in the formulae for K(±1).
Naturally, the previous numerical results for the approximate stress intensity factors Kn(±1)

(here in a dimensionless form) obtained by the collocation method converge to the above theoretical
values (73) and (74) respectively. Moreover, the same results in the special, non-parametric case
p = 1 and q = 0 in Eq. (58) for the normal loading distribution p(x), i.e., simply with p(x) = ex, are
in complete agreement with the corresponding results obtained by Ioakimidis [32].

4.2. Non-negativity of the crack opening displacement by the Galerkin method

Instead of the collocation method we can use the Galerkin method for the numerical solution of
hypersingular integral equations [32]. In this method the unknown function g(t) in Eq. (52) is
again approximated by the sum gn(t) in Eq. (55). In the present simple crack problem, the n + 1
coefficients ai in this sum are determined from the very simple system of n + 1 linear algebraic
equations [32, p. 174, Eqs. (38)]

(i + 1)ai = 2

π
γ i, i = 0,1, . . . , n (75)

with the quantities γ i determined by [32, p. 172, Eqs. (20)]

γ i =
1

∫
−1

√
1 − x2 p(x)Ui(x) dx, i = 0,1, . . . , n. (76)

Evidently, in many and more difficult crack problems the resulting system of linear algebraic equa-
tions becomes more complicated [32, p. 172, Eqs. (18)] compared with its present extremely simple
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form (75). Here the normal loading distribution p(x) is again assumed to be of the form (58) with
two parameters, p and q.
Exactly as previously in the collocation method, here using the Galerkin method after the

solution of the system of Eqs. (75) and the determination of the approximation gn(t) in Eq. (55)
to the unknown function g(t) we can perform quantifier elimination to the quantified formula (54)
again by using the Reduce command of Mathematica. The obtained results are similar to those
derived by the collocation method in the previous subsection and are displayed below:

K0(+1) = 1.13031 82079 85(p + q), K0(−1) = 1.13031 82079 85(p + q), (77)

QFF0 = p ≥ −1.00000 00000 00q, (78)

K1(+1) = 1.67330 88870 53p + 0.58732 75289 17q,

K1(−1) = 0.58732 75289 17p + 1.67330 88870 53q,
(79)

QFF1 = (q ≤ 0 ∧ p ≥ −2.84902 17207 07q) ∨ (q > 0 ∧ p ≥ −0.35099 76750 03q), (80)

K2(+1) = 1.80631 94365 99p + 0.72033 80784 63q,

K2(−1) = 0.72033 80784 63p + 1.80631 94365 99q,
(81)

QFF2 = (q ≤ 0 ∧ p ≥ −2.50759 95433 34q) ∨ (q > 0 ∧ p ≥ −0.39878 77580 61q), (82)

K3(+1) = 1.82821 63983 67p + 0.69844 11166 94q,

K3(−1) = 0.69844 11166 94p + 1.82821 63983 67q,
(83)

QFF3 = (q ≤ 0 ∧ p ≥ −2.61756 69711 72q) ∨ (q > 0 ∧ p ≥ −0.38203 41603 53q), (84)

K4(+1) = 1.83093 10299 27p + 0.70115 57482 54q,

K4(−1) = 0.70115 57482 54p + 1.83093 10299 27q,
(85)

QFF4 = (q ≤ 0 ∧ p ≥ −2.61130 43136 08q) ∨ (q > 0 ∧ p ≥ −0.38295 03879 68q), (86)

K5(+1) = 1.83120 08938 65p + 0.70088 58843 16q,

K5(−1) = 0.70088 58843 16p + 1.83120 08938 65q,
(87)

QFF5 = (q ≤ 0 ∧ p ≥ −2.61269 47836 18q) ∨ (q > 0 ∧ p ≥ −0.38274 65826 74q), (88)

K6(+1) = 1.83122 32829 20p + 0.70090 82733 72q,

K6(−1) = 0.70090 82733 72p + 1.83122 32829 20q,
(89)

QFF6 = (q ≤ 0 ∧ p ≥ −2.61264 32694 42q) ∨ (q > 0 ∧ p ≥ −0.38275 41293 89q), (90)

K7(+1) = 1.83122 48766 20p + 0.70090 66796 72q,

K7(−1) = 0.70090 66796 72p + 1.83122 48766 20q,
(91)

QFF7 = (q ≤ 0 ∧ p ≥ −2.61265 14837 58q) ∨ (q > 0 ∧ p ≥ −0.38275 29259 90q), (92)

K8(+1) = 1.83122 49759 51p + 0.70090 67790 03q,

K8(−1) = 0.70090 67790 03p + 1.83122 49759 51q,
(93)

QFF8 = (q ≤ 0 ∧ p ≥ −2.61265 12552 16q) ∨ (q > 0 ∧ p ≥ −0.38275 29594 71q), (94)

K9(+1) = 1.83122 49814 57p + 0.70090 67734 97q,

K9(−1) = 0.70090 67734 97p + 1.83122 49814 57q,
(95)

QFF9 = (q ≤ 0 ∧ p ≥ −2.61265 12835 95q) ∨ (q > 0 ∧ p ≥ −0.38275 29553 14q), (96)

K10(+1) = 1.83122 49817 31p + 0.70090 67737 71q,

K10(−1) = 0.70090 67737 71p + 1.83122 49817 31q,
(97)

QFF10 = (q ≤ 0 ∧ p ≥ −2.61265 12829 63q) ∨ (q > 0 ∧ p ≥ −0.38275 29554 06q). (98)
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Naturally, the previous numerical results Kn(±1) for the approximate dimensionless stress inten-
sity factors K(±1), now obtained by using the Galerkin method, also converge to the corresponding
theoretical values (73) and (74) respectively although a little more slowly than the related results
obtained by the collocation method in the previous subsection. Moreover, the same results in the
special, non-parametric case p = 1 and q = 0 in Eq. (58) for the loading distribution p(x), i.e.,
simply with p(x) = ex, are again in complete agreement with the corresponding results obtained by
Ioakimidis [32].

4.3. Non-negativity of the crack opening displacement

and fracture-related inequality constraints

As an extension of the previous results, we consider the interesting and physically reasonable
case where we wish in the present crack problem: (i) the non-negativity of the crack opening
displacement v(t), in our case with g(t) ≥ 0 for t ∈ [−1,1], and, simultaneously, (ii) the values of the
stress intensity factors K(±1) at the crack tips x = ±1 not to reach the positive critical value Kf

(the fracture toughness of the elastic material) so that fracture can be avoided. Therefore, because
of Eqs. (53) now we have to satisfy the following three inequality constraints:

∀t ∈ [−1,1] g(t) ≥ 0 ∧ g(1) <Kf ∧ g(−1) <Kf , (99)

instead of the single inequality constraint (54) previously.
In this problem, by using again the Galerkin method [32], the related approximation gn(t) in

Eq. (55) to the unknown function g(t) of the hypersingular integral equation (52) as well as using
again the Reduce command of Mathematica for quantifier elimination, we obtain the following ap-
proximate QFFs (quantifier-free formulae) QFFn for the related necessary and sufficient conditions:

QFF0 = p ≥ −q ∧Kf > 1.13031 82079 85p + 1.13031 82079 85q, (100)

QFF1 = {Kf > 1.67330 88870 53p + 0.58732 75289 17q

∧ [(p + 2.84902 17207 07q ≥ 0 ∧ q ≤ 0) ∨ p > q > 0]}
∨ (Kf > 0.58732 75289 17p + 1.67330 88870 53q

∧ p + 0.35099 76750 03q ≥ 0 ∧ p ≤ q ∧ q > 0), (101)
QFF2 = {Kf > 1.80631 94365 99p + 0.72033 80784 63q

∧ [(p + 2.50759 95433 34q ≥ 0 ∧ q ≤ 0) ∨ p > q > 0]}
∨ (Kf > 0.72033 80784 63p + 1.80631 94365 99q

∧ p + 0.39878 77580 61q ≥ 0 ∧ p ≤ q ∧ q > 0), (102)
QFF3 = {Kf > 1.82821 63983 67p + 0.69844 11166 94q

∧ [(p + 2.61756 69711 72q ≥ 0 ∧ q ≤ 0) ∨ p > q > 0]}
∨ (Kf > 0.69844 11166 94p + 1.82821 63983 67q

∧ p + 0.38203 41603 53q ≥ 0 ∧ p ≤ q ∧ q > 0), (103)
QFF4 = {Kf > 1.83093 10299 27p + 0.70115 57482 54q

∧ [(p + 2.61130 43136 08q ≥ 0 ∧ q ≤ 0) ∨ p > q > 0]}
∨ (Kf > 0.70115 57482 54p + 1.83093 10299 27q

∧ p + 0.38295 03879 68q ≥ 0 ∧ p ≤ q ∧ q > 0), (104)



Supplementing the numerical solution of singular/hypersingular... 55

QFF5 = {Kf > 1.83120 08938 65p + 0.70088 58843 16q

∧ [(p + 2.61269 47836 18q ≥ 0 ∧ q ≤ 0) ∨ p > q > 0]}
∨ (Kf > 0.70088 58843 16p + 1.83120 08938 65q

∧ p + 0.38274 65826 74q ≥ 0 ∧ p ≤ q ∧ q > 0), (105)
QFF6 = {Kf > 1.83122 32829 20p + 0.70090 82733 72q

∧ [(p + 2.61264 32694 42q ≥ 0 ∧ q ≤ 0) ∨ p > q > 0]}
∨ (Kf > 0.70090 82733 72p + 1.83122 32829 20q

∧ p + 0.38275 41293 89q ≥ 0 ∧ p ≤ q ∧ q > 0), (106)
QFF7 = {Kf > 1.83122 48766 20p + 0.70090 66796 72q

∧ [(p + 2.61265 14837 58q ≥ 0 ∧ q ≤ 0) ∨ p > q > 0]}
∨ (Kf > 0.70090 66796 72p + 1.83122 48766 20q

∧ p + 0.38275 29259 90q ≥ 0 ∧ p ≤ q ∧ q > 0), (107)
QFF8 = {Kf > 1.83122 49759 51p + 0.70090 67790 03q

∧ [(p + 2.61265 12552 16q ≥ 0 ∧ q ≤ 0) ∨ p > q > 0]}
∨ (Kf > 0.70090 67790 03p + 1.83122 49759 51q

∧ p + 0.38275 29594 71q ≥ 0 ∧ p ≤ q ∧ q > 0), (108)
QFF9 = {Kf > 1.83122 49814 57p + 0.70090 67734 97q

∧ [(p + 2.61265 12835 95q ≥ 0 ∧ q ≤ 0) ∨ p > q > 0]}
∨ (Kf > 0.70090 67734 97p + 1.83122 49814 57q

∧ p + 0.38275 29553 14q ≥ 0 ∧ p ≤ q ∧ q > 0), (109)

QFF10 = {Kf > 1.83122 49817 31p + 0.70090 67737 71q

∧ [(p + 2.61265 12829 63q ≥ 0 ∧ q ≤ 0) ∨ p > q > 0]}
∨ (Kf > 0.70090 67737 71p + 1.83122 49817 31q

∧ p + 0.38275 29554 06q ≥ 0 ∧ p ≤ q ∧ q > 0). (110)
First, from the above approximate QFFs we observe their sufficiently rapid convergence for

increasing values of n. Moreover, we observe that apart from the obvious non-negativity of the
crack opening displacement v(t), which is proportional to the product √1 − t2 g(t) with g(t) being
the present unknown function in Eq. (52), the above QFFs take automatically into account which
of the two approximate stress intensity factors Kn(±1) is greater than the other, this of course
depending on the values of the two parameters p and q.
Therefore only one of these approximate stress intensity factors Kn(±1) appears in each disjunc-

tive term of the QFF (with two disjunctive terms for n ≥ 1). More explicitly, in the first disjunctive
term, i.e., the term that includes the constraints p > q > 0 (although it is not restricted to this case),
we observe the appearance of Kn(+1). By contrast, in the second disjunctive term, i.e., the term
including the constraints p ≤ q and simultaneously q > 0, we observe the appearance of Kn(−1).
These remarks are clear from the formulae for the approximate stress intensity factors Kn(±1)
already displayed in the previous subsection and obtained again by using the Galerkin method [32].
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4.4. Quadratic loading of the crack

As a further application of the Galerkin method, we consider the problem of the same single straight
crack, but now under the parametric quadratic normal loading distribution

p(x) = px2 + qx + r (111)

with three parameters: p, q and r. In this application, we first use the already briefly described
Galerkin method [32] and next quantifier elimination to the quantified formula

∀t ∈ [−1,1] g(t) > 0 ∧ g(1) <Kf ∧ g(−1) <Kf , (112)

where we preferred to use the symbol > instead of the symbol ≥ that has been used previously in
the quantified formula (99). The related basic Mathematica command is displayed in Appendix,
paragraph A2, where again the approximation gn(t) ≈ g(t) has been used.
The obtained results for the unknown function gn(t) ≈ g(t) and the related QFF (quantifier-free

formula) QFFn are

g0(t) = 1

4
(p + 4r), (113)

QFF0 = 4Kf > p + 4r, (114)

g1(t) = 1

4
(2qt + p + 4r), (115)

QFF1 = p > −4r ∧ [(q ≤ 0 ∧ p + 2q + 4r > 0 ∧ 4Kf + 2q > p + 4r)
∨ (q > 0 ∧ p + 4r > 2q ∧ 4Kf > p + 2q + 4r)], (116)

gn(t) = 1

6
(2pt2 + 3qt + p + 6r), n = 2,3,4,5,6, (117)

QFFn = {q ≤ 0 ∧ 2Kf + q > p + 2r ∧ [(p + q + 2r > 0 ∧ 4p + 3q ≤ 0)
∨ (4p + 3q > 0 ∧ p + 6r > 9q2/(8p))]} ∨ {q > 0 ∧ 2Kf > p + q + 2r

∧ [(p + 2r > q ∧ 4p < 3q) ∨ (p + 6r > 9q2/(8p) ∧ 4p ≥ 3q)]}, n = 2,3,4,5,6. (118)

We observe that Mathematica has been completely successful in quantifier elimination even in
this case with the presence of four parameters (free variables in the quantified formula). These
parameters are the three loading parameters p, q and r in Eq. (111) for the loading distribution
p(x) on the crack and the upper bound Kf (the fracture toughness of the cracked isotropic elastic
material) for the stress intensity factors K(±1). Moreover, since the present loading distribution
p(x) in Eq. (111) is a quadratic polynomial, gn(t) and QFFn for n ≥ 2 are the exact unknown
function g(t) in Eq. (117) and the related exact QFF (118) respectively for the present crack
problem.

4.5. Cubic loading of the crack

In quite a similar manner, we proceed (again by using the Galerkin method) to study the slightly
more difficult cubic polynomial

p(x) = x3 + px2 + qx + r (119)

as the normal loading distribution of the crack [−1,1]. We also use the three inequality constraints
(112) related both to the positivity of the crack opening displacement v(t) along the whole crack
[−1,1] and to the fracture toughness Kf of the isotropic elastic material.
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With the above cubic normal loading distribution p(x) the Galerkin method derives the exact
results both for the unknown function gn(t) and for the QFF (quantifier-free formula) QFFn for
n ≥ 3. For the present unknown function g(t), which is naturally a cubic polynomial, we found that

g(t) = gn(t) = 1

24
[6t3 + 8pt2 + (12q + 3)t + 4p + 24r], n = 3,4,5,6. (120)

Additionally, for the related QFF we found that

QFF = [A1 ∧ (A21∨A22)]∨[B1 ∧ (B21∨B22)]∨C∨D. (121)

This QFF is displayed here in a more convenient yet completely equivalent and verified with Math-
ematica form with the help of the eight algebraic-logical quantities A1, A21, A22, B1, B21, B22, C
and D. These quantities are given by

A1 = 2Kf > p + q + 2r + 3

4
, (122)

A21 = p + 2r > q + 3

4
∧
⎡⎢⎢⎢⎢⎣
(4p + 3 < 0 ∧ 4q + 3 > 0) ∨ (4p > 9 ∧ 16p ≤ 12q + 21)

∨ ⎛⎝4p ≤ 9 ∧ 4p + 3 > 0 ∧ p(2p + 3) ≤ 9q +
45

8

⎞
⎠
⎤⎥⎥⎥⎥⎦
, (123)

A22 = 4q + 3 > 0 ∧√2(32p2 − 108q − 27)3/2 + 1296pq < 8(32p3 + 81p + 729r)

∧
⎡⎢⎢⎢⎢⎣
(4p > 9 ∧ 16p > 12q + 21) ∨ ⎛⎝4p ≤ 9 ∧ 4p + 3 > 0 ∧ p(2p + 3) > 9q +

45

8

⎞
⎠
⎤⎥⎥⎥⎥⎦
, (124)

B1 = 2Kf + q + 3

4
> p + 2r, (125)

B21 = p + q + 2r + 3

4
> 0 ∧

⎡⎢⎢⎢⎢⎣
(4p + 3 > 0 ∧ 16p + 12q + 21 ≤ 0)

∨ (4p + 27 < 0 ∧ 4q + 3 ≤ 0) ∨ ⎛⎝ −
27

4
≤ p < − 3

4
∧ 4q + 3 < 0⎞⎠

⎤⎥⎥⎥⎥⎦
, (126)

B22 = 4p + 3 > 0 ∧ 4q + 3 ≤ 0 ∧ 16p + 12q + 21 > 0 ∧√2(32p2 − 108q − 27)3/2
+ 1296pq < 8(32p3 + 81p + 729r), (127)

C = 4p + 3 = 0 ∧ [(4q + 3 > 0 ∧ 2Kf > q + 2r ∧ 2q + 3 < 4r)
∨ (4q + 3 ≤ 0 ∧ 4Kf + 2q + 3 > 4r ∧ q + 2r > 0)], (128)

D = − 27
4
≤ p < − 3

4
∧ 4q + 3 = 0 ∧ 2Kf > p + 2r ∧ p + 2r > 0. (129)

We observe that Mathematica has been again completely successful in quantifier elimination
also in the present rather difficult crack problem again with four parameters (free variables in the
quantified formula): p, q, r and Kf . But clearly, this will generally not be the case if we proceed to
even more difficult problems with more than four parameters.
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5. APPLICATION OF QUANTIFIER ELIMINATION TO HYPERSINGULAR
INTEGRAL INEQUALITIES UNDER INEQUALITY CONSTRAINTS

As a final possible use of the present approach, we consider the case of a hypersingular integral
inequality again under parametric inequality constraints. More explicitly, we consider the hyper-
singular integral inequality

− 1
π
=
1

∫
−1

√
1 − t2 g(t)

(t − x)2 dt ≥ pb(x), −1 < x < 1. (130)

This inequality is related to the hypersingular integral equation (52) of the previous section written
here in an inequality form with the minus sign for convenience on its left-hand side and with pb(x)
instead of p(x) on its right-hand side. The above inequality (130) simply denotes that the normal
loading p(x) of the crack, which is determined by the left-hand side of this inequality, is greater
than or equal to the loading pb(x) on its right-hand side along the whole crack [−1,1]. Moreover,
evidently the dimensionless stress intensity factors K(±1) at the crack tips x = ±1 are computed
again by using Eqs. (53), i.e., K(±1) = g(±1).
Here we will apply again the collocation method with the lower bound pb(x) of the normal

loading p(x) in the hypersingular integral inequality (130) given by the exponential function in
Eq. (58), i.e.,

pb(x) = pex + qe−x, (131)

but now under the assumption that p, q > 0. Of course, pb(x) does not denote the actual normal
loading p(x) of the crack, which because of Eq. (52) is given by

p(x) = − 1

π
=
1

∫
−1

√
1 − t2 g(t)

(t − x)2 dt, −1 < x < 1, (132)

i.e., by the left-hand side of the singular integral inequality (130). Here pb(x) simply denotes the
lower bound of p(x) in the singular integral inequality (130), i.e.,

p(x) ≥ pb(x), −1 < x < 1. (133)

In some sense, this inequality is an abbreviated form of the singular integral inequality (130).
We can add that since we assumed that p, q > 0 in Eq. (131), the lower bound pb(x) of p(x) in
the above inequality (133) is continuously positive on the crack [−1,1]. Therefore, because of the
same inequality (133) the actual loading p(x) of the crack will also be continuously positive, i.e.,
a continuously compressive normal loading.
Here we assume again that the dimensionless stress intensity factors K(±1) should not reach

the fracture-related positive upper bound Kf (Kf > 0) so that fracture can be avoided. Therefore,
because of Eq. (53) we must have

g(1) <Kf and g(−1) <Kf . (134)

Under all the above conditions now we proceed to the application of the collocation method [32]
already briefly described in Subsec. 4.1, which will permit us to derive the related QFF (quantifier-
free formula). This QFF is again a logical-algebraic formula providing the necessary and sufficient
conditions validating both the hypersingular integral inequality (130) and the two fracture-related
inequality constraints (134) under the assumption (131) for the lower bound pb(x) of the actual
loading distribution p(x) of the crack in the inequality (133). Of course, it is understood that since
we apply the collocation method, which is an approximate method, the resulting QFF will also be
approximate.
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Here the basic command in Mathematica for obtaining this QFF is again based on its Reduce
command and is displayed in Appendix, paragraph A3, where we assume again the approximation
gn(t) given by Eq. (55) to the unknown function g(t) in the hypersingular integral inequality (130).
Moreover, we use again the same collocation points xk,n in Eqs. (57). Therefore, the hypersingular
integral inequality (130) is now approximated by the system of n + 1 linear inequalities

n

∑
i=0

(i + 1)Ui(xk,n)ai ≥ pb(xk,n), k = 0,1, . . . , n. (135)

Obviously, the system of these inequalities is completely analogous to the system of linear equa-
tions (56), but here with the inequality sign ≥ and with pb(xk,n) on the right-hand side. Here we
also use the positivity assumptions

A = p > 0 ∧ q > 0 ∧Kf > 0. (136)

After the above description of the present crack problem and the collocation method used for
the derivation of the related approximate QFF, we display below the related results obtained by
Mathematica for QFFn by using n + 1 collocation points xk,n. For n = 1,2, . . . ,5 these results are
QFF1 = (p ≤ q ∧Kf > 0.71787 10158 85p + 1.80331 26571 58q)

∨ (p > q ∧Kf > 1.80331 26571 58p + 0.71787 10158 85q), (137)
QFF2 = (p ≤ q ∧Kf > 0.70113 48587 99p + 1.83090 69420 61q)

∨ (p > q ∧Kf > 1.83090 69420 61p + 0.70113 48587 99q), (138)
QFF3 = (p ≤ q ∧Kf > 0.70090 81792 84p + 1.83122 31777 95q)

∨ (p > q ∧Kf > 1.83122 31777 95p + 0.70090 81792 84q), (139)
QFF4 = (p ≤ q ∧Kf > 0.70090 67787 40p + 1.83122 49756 63q)

∨ (p > q ∧Kf > 1.83122 49756 63p + 0.70090 67787 40q), (140)
QFF5 = (p ≤ q ∧Kf > 0.70090 67737 71p + 1.83122 49817 31q)

∨ (p > q ∧Kf > 1.83122 49817 31p + 0.70090 67737 71q). (141)
First from the above results we observe their rapid convergence for increasing values of n. Next,

we observe that these results are in agreement with the results in Eqs. (61), (63), (65), (67) and
(69) as far as the dimensionless stress intensity factors K(±1) are concerned. Finally, what is more
important, in the above results a distinction of cases is made: (i) if p < q, then the lower bound
pb(x) = pex + qe−x in Eq. (131) is “dominated” by the parameter q and therefore it is the stress
intensity factor K(−1) that should not reach the fracture-related upper bound Kf , (ii) on the
contrary, if p > q, then the lower bound pb(x) is “dominated” by the parameter p and therefore it is
the stress intensity factor K(+1) that should not reach the same upper bound Kf . And naturally,
if p = q, then simply K(−1) =K(+1) <Kf .

6. CONCLUSIONS – DISCUSSION

From the above results it is concluded that the use of the computational method of quantifier
elimination constitutes an interesting possibility when singular/hypersingular integral equations
accompanied by inequality constraints (usually parametric inequality constraints) have to be solved
by some numerical method such as the quadrature method, the collocation method and the Galerkin
method. This approach permits to derive the necessary and sufficient conditions involving the
parameters of the problem so that both the integral equation and the inequality constraint(s) are
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satisfied. Naturally, if no parameters are present, the result of quantifier elimination, the QFF
(quantifier-free formula), is simply True or False.
The modern and powerful implementation of quantifier elimination in Mathematica [64] seems

to offer a very good approach for quantifier elimination. Nonetheless, naturally improvements to
this implementation in the future are very welcome and are expected to be made on the basis of
new related results, see, e.g., the recent results by Strzeboński [56, 57]. Of course, although quan-
tifier elimination is generally performed without approximations, in the presented results several
approximations were made and this is completely natural since we based our results on numerical
methods for the approximate solution of singular/hypersingular integral equations and the related
appearance of floating-point numbers. Nevertheless, the obtained approximate results were seen to
converge sufficiently rapidly.
Although the presented results concern crack problems in fracture mechanics, naturally the

approach is completely general and can be applied to any problem in solid and fluid mechanics
formulated through the use of singular/hypersingular integral equations and including inequality
constraints. Here the constraints (i) of the non-negativity of the crack opening displacement v(t)
and (ii) of an upper boundKf (the fracture toughness of the elastic material) for the stress intensity
factorsK(±1) at the crack tips were used since these constraints are extremely interesting in fracture
mechanics. But evidently, many other inequality constraints also appear in a natural way in several
solid and fluid mechanics problems.
Moreover, the present approach is not restricted only to singular/hypersingular integral equa-

tions, but, evidently, it is also applicable to any kind of integral equations such as weakly singular
integral equations, ordinary (with a regular kernel) integral equations, etc. A typical example con-
cerns contact problems between two elastic media (such as a beam and an elastic foundation),
which should result in a compressive normal traction so that the contact can be assured.
As it was already seen, the application of quantifier elimination can be made either simulta-

neously with the numerical solution of the integral equation (here inside the Reduce command of
Mathematica) or just after this numerical solution. On the other hand, it is clear that in many
cases Mathematica is unable to perform quantifier elimination in a reasonable computer time. This
is particularly the case when many variables are present (the quantified variables and the param-
eters) and generally the presence of few variables strongly facilitates the computations. On the
other hand, the degrees of the variables are also extremely important, and linear equations and
inequalities also strongly facilitate Mathematica in its computations. For example, in Sec. 2 it has
been easily possible for n = 8 to use fifteen quantified variables Vn in Eq. (17) and additionally two
free variables (the parameters pmin and Kf ), and derive the related QFF8 in Eqs. (25) and (33) for
collinear and parallel cracks, respectively. These quantifier eliminations were easily possible since
both the equations En and the inequality constraints An were linear (of the first degree) in all their
variables.
Incidentally, it can be added that in some cases we can instruct Mathematica to use some appro-

priate method when performing quantifier elimination in a particular problem, which is appropriate
for this problem. This can be very helpful from the computational point of view and it can easily be
achieved through the SetSystemOptions command, which defines the related option. For example,
the command

SetSystemOptions["InequalitySolvingOptions"-> "LinearQE"-> True]

instructs Mathematica to use an algorithm appropriate for linear quantifier elimination and this is
the well-known Loos-Weispfenning linear quantifier elimination algorithm [48] instead of cylindrical
algebraic decomposition, which is a general-purpose algorithm. Additionally, the related command

SystemOptions["InequalitySolvingOptions"]

displays all the 28 inequality solving options together with their default values. All the related
details concerning the options for quantifier elimination can be found in the tutorial of Mathemat-
ica for real polynomial systems [65].
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Moreover, naturally, it is completely evident that the appearance of several parameters (free
variables) will generally lead to complicated or even extremely complicated QFFs independently of
the efficiency of the quantifier elimination algorithms implemented in Mathematica or in another
computer algebra system, and this unfortunate situation cannot be avoided. Therefore, the present
computational method is generally useful when only one to four parameters are present. For exam-
ple, the three QFFs (116), (118) and (121) in Sec. 4 include four parameters: the three coefficients
p, q, r of the related polynomial, i.e., the quadratic polynomial (111) or the cubic polynomial (119),
and the fracture toughness Kf of the elastic material.
Finally, perhaps an interesting possible use of the present computational approach based on

quantifier elimination consists in its applicability to singular/hypersingular integral inequalities
instead of singular/hypersingular integral equations. It seems that so far the numerical methods
for the approximate solution of singular/hypersingular integral equations (such as the quadrature,
collocation and Galerkin methods) were not extended to include the case of the related inequalities.
Here, this has been achieved and it is illustrated in the applications presented in Sec. 3 and Sec. 5.
What seems to be important is that this happened practically automatically, i.e., essentially with-
out the necessity to modify the original numerical method (e.g., in Sec. 3 the Lobatto-Chebyshev
method and in Sec. 5 the collocation method) so that it could become applicable to singular/hyper-
singular integral inequalities. Evidently, analogous is the case for any type of integral inequalities
considered instead of integral equations.

APPENDIX: MATHEMATICA NOTEBOOK AND COMMANDS

A1. The complete Mathematica notebook (commands and approximate QFFs) for the crack prob-
lem of a periodic array of collinear cracks with c = a/b = 0.45 of Subsec. 2.1
t[i_,n_] = N[Cos[(i-1)Pi/(n-1)]];

A[i_,n_] = Pi/(n-1); A[1,n_] = A[n_,n_] = Pi/(2(n-1));

x[k_,n_] = N[Cos[(2 k-1)Pi/(2(n-1))]];

Ks[t_,x_] = Cot[Pi c(t-x)];

eqs[n_] := {Table[c Sum[A[i,n] Ks[t[i,n],x[k,n]] g[i,n], {i,1,n}] == p[k,n],

{k,1,n-1}], Sum[A[i,n] g[i,n], {i,1,n}] == 0}/.List->And

var[n_] := {Table[p[k,n], {k,1,n-1}], Table[g[i,n], {i,1,n}]}//Flatten

ass0 = Kf > 0 && pmin > 0; ass[n_] := ass0 && Table[p[k,n] >= pmin,

{k,1,n-1}]/.List->And//Flatten

QFF[n_,basicvar_] := Refine[Reduce[Exists[Evaluate[var[n]],

ass[n], Evaluate[eqs[n] && g[1,n] < Kf && -g[n,n] < Kf]],

basicvar, Reals], ass0]//Timing; Off[Reduce::ratnz];

c = 0.45; Table[{"n =", n, QFF[n,Kf], "or", QFF[n,pmin]}, {n,2,8}]

{{"n =", 2, {0.015, Kf > 4.46607 pmin}, "or", {0., pmin < 0.223911 Kf}},

{"n =", 3, {0.016, Kf > 2.4518 pmin}, "or", {0.015, pmin < 0.407864 Kf}},

{"n =", 4, {0.032, Kf > 2.19817 pmin}, "or", {0.031, pmin < 0.454923 Kf}},

{"n =", 5, {0.062, Kf > 2.13585 pmin}, "or", {0.079, pmin < 0.468198 Kf}},

{"n =", 6, {0.203, Kf > 2.11937 pmin}, "or", {0.203, pmin < 0.471839 Kf}},

{"n =", 7, {0.703, Kf > 2.11494 pmin}, "or", {0.703, pmin < 0.472827 Kf}},

{"n =", 8, {5.688, Kf > 2.11375 pmin}, "or", {5.734, pmin < 0.473093 Kf}}}

In the above Mathematica notebook, the actual quantifier elimination command is obviously the
command defining the QFF function. In this command, besides the main command – the Reduce
command, we also used some auxiliary commands: the Evaluate command for the evaluation of
the list of our variables var[n] and our equations eqs[n], the Refine command for the appearance
of this QFF in its final form taking into account our assumptions ass0 and, finally, the completely
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optional Timing command permitting us to be informed on the required CPU time for the execution
of the above complete command. Moreover, naturally the symbol Exists denotes the existential
quantifier ∃ (exists) and the option Reals instructs Mathematica to perform quantifier elimination
exclusively inside the set of real numbers. Finally, the symbol basicvar instructs Mathematica to
present the resulting QFF solved with respect to this variable, i.e., here either the fracture toughness
Kf of the elastic material or alternatively the lower bound pmin of the normal compressive loading
p(x) of the cracks. Then, naturally we obtain completely equivalent QFFs but solved either with
respect to Kf or with respect to pmin as it is also clear from the above derived QFFs.

A2. The basic Mathematica command that performed the quantifier elimination on the quan-
tified formula (112) of Subsec. 4.4 with gn(t) ≈ g(t) for the parametric quadratic loading (111) of
a crack

Reduce[ForAll[t, -1<=t<=1, g[n,t] > 0 && g[n,1] < Kf && g[n,-1] < Kf,

Reals]//Simplify

Here, in addition to the basic Reduce command the symbol ForAll denotes the universal quan-
tifier ∀ (for all) and the Simplify command at the end is used for the simplification of the resulting
QFF.

A3. The basic Mathematica command that performed the quantifier elimination in Sec. 5 for
the hypersingular integral inequality (130) and the parametric exponential loading (131) of a crack
under the inequality constraints (133) and (134) by using the collocation method

Refine[Reduce[Exists[Evaluate[var[n]], ass && Evaluate[ineqs[n]],

Evaluate[g[n,1] < Kf && g[n,-1] < Kf]], Reals], ass]//Simplify//Timing

In this command, besides the aforementioned commands the symbol ass denotes the positivity
assumptions A in Eq. (136) and the symbol ineqs[n] denotes the n + 1 inequalities (135) resulting
from the hypersingular integral inequality (130) through the application of the collocation method.
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