
Computer Assisted Methods in Engineering and Science, 24: 67–81, 2017.
Copyright © 2017 by Institute of Fundamental Technological Research, Polish Academy of Sciences
Application of grammatical evolution
to stock price prediction

Eisuke Kita1, Hideyuki Sugiura2, Yi Zuo3, Takao Mizuno2
1 Graduate School of Informatics
Nagoya University
Nagoya 464–8601, Japan
e-mail: kita@is.nagoya-u.ac.jp

2 Graduate School of Information Science
Nagoya University
Nagoya 464–8601, Japan

3 Institute of Innovation for Future Society
Nagoya University
Nagoya 464–8601, Japan

Grammatical evolution (GE) is one of evolutionary computation techniques. The aim of GE is to find the
function or the executable program or program fragment that will find the optimal solution for the design
objective such as the function for representing the set of given data, the robot control algorithm and so on.
Candidate solutions are described in bitstring. The mapping process from the genotype (bitstring) to the
phenotype (function or program or program fragment) is defined according to the list of production rules
of terminal and non-terminal symbols. Candidate solutions are evolved according to the search algorithm
based on genetic algorithm (GA). There are three main issues in GE: genotype definition, production
rules, and search algorithm. Grammatical evolution with multiple chromosomes (GEMC) is one of the
improved algorithms of GE. In GEMC, the convergence property of GE is improved by modifying the
genotype definition. The aim of this study is to improve convergence property by changing the search
algorithm based on GA with the search algorithm based on stochastic schemata exploiter (SSE) in GE
and GEMC. SSE is designed to find the optimal solution of the function, which is the same as GA. The
convergence speed of SSE is much higher than that of GA. Moreover, the selection and crossover operators
are not necessary for SSE. When GA is replaced with SSE, the improved algorithms of GE and GEMC
are named “grammatical evolution by using stochastic schemata exploiter (GE-SSE)” and “grammatical
evolution with multiple chromosome by using stochastic schemata exploiter (GEMC-SSE)”, respectively.
In this study, GE-SSE is compared with GE in the symbolic regression problem of polynomial function.
The results show that the convergence speed of GE-SSE is higher than that of original GE. Next, GE-SSE
and GEMC-SSE are compared in stock price prediction problem. The results show that the convergence
speed of GEMC-SSE is slightly higher than that of GE-SSE.

Keywords: grammatical evolution (GE), mapping process, stochastic schemata exploiter (SSE), symbolic
regression problem, stock price prediction.

1. INTRODUCTION

Grammatical evolution (GE), which is one of the evolutionary computations [1–4], is designed to
find a function or a program or a program fragment which satisfies the optimal solution of the design
objective such as the function for representing the set of given data, the robot control algorithm
and so on. The GE search process starts from defining the population of individuals. Individuals
remember candidate solutions as the bitstrings or a set of binary numbers. The mapping process
from genotype (bitstring) to phenotype (function or program) is done according to the production
rules that connect the non-terminal symbols with the terminal symbols such as operators, variables
and so on. Once an individual genotype is mapped to a phenotype, the fitness is calculated for

68 E. Kita, H. Sugiura, Y. Zuo, T. Mizuno

the phenotype of each individual. The search algorithm based on GA [5–7] is used for finding the
optimal solution. While the aim of GE is the same as that of genetic programming (GP) [8, 9],
the use of bitstring is similar to GA. There are three main key issues in GE: genotype definition,
mapping process and search algorithm. For improving the genotype definition, Hara et al. presented
“grammatical evolution with multiple chromosomes (GEMC)” [10]. On the list of the production
rules, different production rules are defined for each non-terminal symbol. While the original GE
uses single genotype (bitstring) for all production rules, GEMC uses different genotype (bitstring)
for each production rule.
This study focuses on the improvement of GE and GEMC by using the search algorithm based on

SSE [11–15], instead of the search algorithm based on GA. SSE, which is also one of the evolutionary
computations, is designed to find the solution of the complicated objective function. Although the
aim of SSE is similar to that of GA, their algorithms are very different. While GA finds the optimal
solution by using genetic operators such as selection, crossover, and mutation, SSE uses schema
operation and mutation. The search process of SSE also starts from the definition of individual
population. Once every individual fitness in the population is estimated, the sub-populations are
defined from the whole population according to their fitness and the semi-order relation of the sub-
populations [11]. The sets of common binary numbers, which are called “schema”, are extracted
from the individuals in the sub-populations. Uncommon binary numbers are replaced with ran-
domly generated ‘0’s and ‘1’s to generate offspring. The process is repeated until the convergence
criterion is satisfied. GE and GEMC in which GA is replaced with SSE are named as “grammati-
cal evolution by using stochastic schemata exploiter (GE-SSE)” and “grammatical evolution with
multiple chromosome by using stochastic schemata exploiter (GEMC-SSE)”, respectively. Best val-
ues for crossover and mutation rates of GE and GE-SSE are discussed in the symbolic regression
problem. Next, the convergence performance of GE-SSE and GEMC-SEE is compared in the stock
price prediction problem.
The remaining part of this paper is organized as follows. The algorithms of GE and GEMC are

explained in Sec. 2. The application of SSE to GE is explained in Sec. 3. Numerical examples are
shown in Sec. 4. The final conclusions are presented in Sec. 5.

2. GRAMMATICAL EVOLUTION

2.1. Original GE algorithm

The original GE algorithm is summarized above in Algorithm 1.

Algorithm 1. Original Grammatical Evolution

Set population size N .
Define mapping process with production rules, and terminal and non-terminal symbols.
Define fitness function which estimates the individual satisfying the design objective.
for all i such that 0 ≤ i < N do {Define initial population. }
Define individual genotype with randomly generated bit-string.
end for

if The best individual does not satisfy convergence criterion. then
for all i such that 0 ≤ i < N do {Calculate individual fitness. }
Translate individual genotype to phenotype.
Calculate fitness of individual phenotype.
end for

for all i such that 0 ≤ i < N do {Update population.}
Update individual genotypes with the search algorithm based on GA.
end for

end if

Output phenotype of best individual.
Terminate process.

Application of grammatical evolution to stock price prediction 69

Firstly, the mapping process is defined with the production rules and terminal and non-terminal
symbols (Subsec. 2.2). Then, the fitness function is defined for estimating the individual satisfying
the design objective. Initial population is defined with the individuals of randomly defined bitstrings.
If the best individual does not satisfy the convergence criterion, the individual genotype is trans-

lated into the phenotype and then the individual fitness is calculated (Subsec. 2.3). The individuals
in the population are updated according to the search algorithm based on GA (Subsec. 2.4).
If the best individual satisfies the convergence criterion, the phenotype of the best individual is

output and the process is terminated.

2.2. Symbols and production rules

A Backus-Naur form (BNF) grammar is consists of the tuple of N, T, P and S. N is the set of all
non-terminal symbols, T is the set of all terminal symbols, P is the set of the production rules that
map N to N or P, and S is the initial start symbol.
Using the tuple N, T and S as

N = { <expr> , <op> , <num> , <var> }

T = { + , - , * , / , x , y , 1 , 2 , 3 }

S = { <expr> }

the tuple P is shown in Table 1. The symbol “|” denotes the “or”, which is the sepa-
rations between the candidates. The production rule (A) denotes that <expr> can be re-
placed with <expr><op><expr>, <num> or <var>. In other words, <expr> has three candidates
<expr><op><expr>, <num> and <var>. <op> has four candidates +, -, * and /. <x> has two
candidates x and y, and <num> has three candidates 1, 2 and 3.

Table 1. Example of production rules. Four rules are defined for non-terminal symbols.

(A) <expr> ::= <expr><op><expr> (A0)

| <num> (A1)

| <var> (A2)

(B) <op> ::= + (B0)

| - (B1)

| * (B2)

| / (B3)

(C) <var> ::= x (C0)

| y (C1)

(D) <num> ::= 1 (D0)

::= 2 (D1)

::= 3 (D2)

2.3. Mapping process from genotype to phenotype

2.3.1. Grammatical evolution

The mapping process from genotype to phenotype is summarized as follows:

1. The leftmost unused number is referred to as ni.

2. The leftmost non-terminal symbol in the string is α, and the number of the candidates for α
is nα.

70 E. Kita, H. Sugiura, Y. Zuo, T. Mizuno

3. The remainder nl is calculated by nl = ni%nα from ni and nα.

4. The non-terminal symbol α is replaced with the nl-th candidate symbol of the symbol α.

5. If the non-terminal symbols exist, the process goes to step 1.

According to Table 1, the genotype

{ni} = {n1, n2, n3, n4, n5, n6} = {3,1,3,0,2, 1} (1)

is translated into the phenotype as follows:

1. The start symbol is α = S = <expr>.

2. The leftmost unused number is n1 = 3. The symbol α = <expr> has three candidates, nα = 3.
Since nl = n1%nα = 3%3 = 0, the symbol α = <expr> is replaced with the 0th candidate
<expr><op><expr> (A0).

3. The leftmost unused number is n2 = 1. The leftmost non-terminal symbol α = <expr> has three
candidates, nα = 3. Since nl = n2%nα = 1%3 = 1, the symbol α = <expr> is replaced with the 1st
candidate <num> (A1).

4. The leftmost unused number is n3 = 3. The leftmost non-terminal symbol α = <num> has three
candidates, nα = 3. Since nl = n3%nα = 3%3 = 0, the symbol α = 1 is replaced with the 0th
candidate 1 (D0).

5. The leftmost unused number is n4 = 0. The leftmost non-terminal symbol α = <op> has four
candidates, nα = 4. Since nl = n4%nα = 0%4 = 0, the symbol α = <op> is replaced with the 0th
candidate + (B0).

6. The leftmost unused number is n5 = 2. The leftmost symbol α = <expr> has three candidates,
nα = 3. Since nl = n5%nα = 2%3 = 2, the symbol α = <expr> is replaced with the 2nd candidate
<var> (A2).

7. The leftmost unused number of the genotype is n6 = 1. The leftmost symbol α = <var> has two
candidates, nα = 2. Since nl = n6%nα = 1%2 = 1, the symbol α = <var> is replaced with the 2nd
candidate y (C1).

8. Finally, the phenotype 1+y is generated.

The process is summarized in Table 2.

Table 2. Example of mapping process in GE. The genotype {3,1,3,0,2,1}
is finally mapped to 1 + y according to the production rules in Table 1.

Step (ni, nα, nl) Selected symbol Symbol evolution

1 <expr>

2 (3, 3, 0) <expr><op><expr> <expr><op><expr>

3 (1, 3, 1) <num> <num><op><expr>

4 (3, 3, 0) 1 1<op><expr>

5 (0, 4, 0) + 1+<expr>

6 (2, 3, 2) <var> 1+<var>

7 (1, 2, 1) y 1+y

Application of grammatical evolution to stock price prediction 71

2.3.2. Grammatical evolution with multiple chromosomes

The production rules are shown in Table 1. The genotype is given as follows:

{nij} =
⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

nA1 nA2 nA3 nA4

nB1 nB2 nB3 nB4

nC1 nC2 nC3 nC4

nD1 nD2 nD3 nD4

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

0 1 2 0

1 2 3 1

0 3 1 2

3 0 2 1

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭

← Rule (A),
← Rule (B),
← Rule (C),
← Rule (D).

(2)

The mapping process is summarized as follows:

1. The start symbol is α = <expr>.

2. The leftmost unused number for the symbol α = <expr> is nA1 = 0. The leftmost non-terminal
symbol α = <expr> has three candidates, nα = 3. Since nl = nA1%nα = 0%3 = 0, α = <expr> is
replaced with the 0th candidate <expr><op><expr>(A0).

3. The leftmost unused number for the symbol α = <expr> is nA2 = 1. The leftmost non-terminal
symbol α = <expr> has three candidates, nα = 3. Since nl = nA2%nα = 1%3 = 1, α = <expr> is
replaced with the 1st candidate <num> (A1).

4. The leftmost unused number for the symbol α = <num> is nD1 = 3. The leftmost non-terminal
symbol α = <num> has three candidates, nα = 3. Since nl = nD1%nα = 3%3 = 0, the symbol α =
<num> is replaced with the 0th candidate 1 (D0).

5. The leftmost unused number for the symbol α = <op> is nB1 = 1. The leftmost non-terminal
symbol α = <op> has four candidates, nα = 4. Since nl = nB1%nα = 1%4 = 1, the symbol α =
<op> is replaced with the 1st candidate - (B1).

6. The leftmost unused number for the symbol α = <expr> is nA3 = 2. The leftmost non-terminal
symbol α = <expr> has three candidates, nα = 3. Since nl = nA3%nα = 2%3 = 2, the symbol α =
<expr> is replaced with the 2nd candidate <var> (A2).

7. The leftmost unused number for the symbol α = <var> is nC1 = 0. The leftmost non-terminal
symbol α = <var> has two candidates, nα = 2. Since nl = nC1%nα = 0%2 = 0, the symbol α =
<var> is replaced with the 0th candidate x (A2).

8. Finally, the phenotype 1-x is generated.

This process is summarized in Table 3.

Table 3. Example of mapping process in GEMC. The genotype (2) is finally mapped
to 1 − x according to the production rules in Table 1.

Step (ni, nα, nl) Selected symbol Symbol evolution

1 <expr>

2 (0, 3, 0) <expr><op><expr> <expr><op><expr>

3 (1, 3, 1) <num> <num><op><expr>

4 (3, 3, 0) 1 1<op><expr>

5 (1, 4, 1) - 1-<expr>

6 (2, 3, 2) <var> 1-<var>

7 (0, 2, 0) x 1-x

72 E. Kita, H. Sugiura, Y. Zuo, T. Mizuno

2.4. Search algorithm

The search algorithm is shown in Algorithm 2. In this study, the search algorithm uses one-point
crossover, mutation, roulette selection and elite selection [5–7].

The population size and the number of elite individuals are referred to as N and Ne, respec-
tively. Ne elite individuals are kept and then N −Ne new individuals are generated by one-point
crossover, mutation and roulette selection. Once parents are selected from the population according
to the roulette selection, off-springs are generated from them according to one-point crossover and
mutation.

Algorithm 2. Search Algorithm of GE

Set number of elite individuals Ne.
Keep Ne elite individuals.
for all i such that 0 ≤ i < N −Ne do

Select parent individuals from population by roulette selection.
Generate offspring individuals by one-point crossover and mutation.
end for

Update population with Ne elite individuals and N −Ne new individuals.

3. APPLICATION OF STOCHASTIC SCHEMATA EXPLOITER
TO GRAMMATICAL EVOLUTION

3.1. GE-SSE algorithm

When the search algorithm based on GA in the original GE is replaced with the search algorithm
based on SSE, the algorithm of GE-SSE is identical to that of the original SSE, except that GA
is replaced with SSE as the search algorithm. Therefore, in Algorithm 1, the statement “Update
individual genotypes with the search algorithm based on GA” is replaced with the statement
“Update individual genotypes with the search algorithm based on SSE”.

3.2. Stochastic schemata exploiter

The update algorithm of the population in SSE is summarized as follows:

1. Individuals are re-numbered in the descending order of their fitness.

2. When more than one individual has the same fitness value, they are numbered randomly.

3. Sub-populations are defined by some individuals selected from whole population, as shown in
Subsec. 3.2.1.

4. Common schemata are extracted from the individuals in sub-populations, as shown in Sub-
sec. 3.2.2.

5. Offspring are generated from the common schemata, as shown in Subsec. 3.2.3.

While SGA generates offspring from parents (individuals), SSE generates them from the common
schemata of individuals. SSE tends to search for better solution from the set of the similar solutions
to the best solution that has been found ever.

Application of grammatical evolution to stock price prediction 73

3.2.1. Semi-order relation and sub-population definition

The fitness of the individual ci is estimated by the function f(ci). The population P is composed of
the individuals c1, c2,⋯, cM , which are numbered according to the descending order of their fitness.
The symbol S, which denotes the sub-population of the population P , is composed of the individuals
cs(1), cs(2),⋯, cs(m). The parameter s(i) denotes the descending order of the fitness of individuals
in the subpopulation S. The individual c′ denotes worse one than all other in the subpopulation S:

1. When the individual c′ is added to the subpopulation S, the subpopulation is S′. A first semi-
order relation is given as follows:

f(S) ≥ f(S′). (3)

2. When the individual c′ is replaced with cs(m), the subpopulation is S
′′. A second semi-order

relation is given as follows:

f(S) ≥ f(S′′). (4)

The use of semi-order relations gives the following order of sub-populations:

1. The first sub-population S1 is composed of the best individual c1 alone, S1 = {c1}.
2. The second sub-population S2 is given by adding the individual c2 to the sub-population S1

according to the relation (3), S2 = {c1, c2}.
3. The third sub-population is given by replacing the individual c1 in the sub-population S1 with
the individual c2 according to the relation (4), S3 = {c2}.

4. The fourth sub-population is given by adding the individual c3 to the sub-population S2 accord-
ing to the relation (3), S4 = {c1, c2, c3}.

5. According to the similar procedure, the sub-populations are defined.

3.2.2. Common schemata

When the candidate solutions are defined in bitstrings, the common bits are kept and the uncommon
bits are replaced with the character ‘*’s. In Fig. 1, the common bits in chromosome 1 and 2 are
1st, 2nd, 5th, 7th and 8th bits and the other bits are replaced with the character ‘*’s. Therefore,
the common schema is ‘10**0*11’.

Fig. 1. Example of bitstrings and common schema. The common schema 10**0*11 is extracted
from two individuals 10110011 and 10000111.

74 E. Kita, H. Sugiura, Y. Zuo, T. Mizuno

3.2.3. New individual generation

The extracted schemata are composed of three characters: ‘0’, ‘1’, and ‘∗’. So, the new individuals
are generated by randomly replacing ‘∗’ by ‘0’ or ‘1’.
Offspring is generated from the schema shown in Fig. 1 as follows:

1. The schema ‘10**0*11’ is shown in Fig. 1.

2. 3rd, 4th and 6th bits of the schema ‘10**0*11’ are ‘∗’s.
3. ‘0’, ‘1’ and ‘1’ are selected for 3rd, 4th and 6th bits of the schema.

4. Replacing the values of 3rd, 4th and 6th bits as ‘0’, ‘1’ and ‘1’, respectively, the offspring is
‘10010111’ (Fig. 2).

Fig. 2. Example of offspring generated from common schema. Offspring ‘10010111’ is generated
from the common schema ‘10**0*11’.

4. NUMERICAL EXAMPLES

4.1. Symbolic regression problem for polynomial function

4.1.1. Problem setting

The convergence properties of GE and GE-SSE are compared in the symbolic regression problem
of the polynomial function.
The objective of this problem is to find the approximate function f that can express adequately

the given data set {(x1, y1), (x2, y2),⋯, (xn, yn)}. When the exact function f is given, the equation
yi = f(xi) is held.
The exact function is given as follows:

f(x) = x4 + x3 + x2 + x. (5)

The set of data for variable xi is given as {xi} = {−10.0,−9.9,⋯,9.9, 10.0}.
The set of all non-terminal symbols N, the set of all non-terminal symbols T and the initial start

symbol S are given as follows:

N = { <expr>, <op>, <var>, <num> }

T = { +, -, *, /, x, 1, 2, 3, 4, 5, 6, 7, 8, 9}

S = { <expr> }

The production rules from genotype to phenotype are shown in Table 4.

Application of grammatical evolution to stock price prediction 75

Table 4. Production rules for symbolic regression problem of polynomial function.

(A) <expr> ::= <expr><op><expr> (A0)

| <var> (A1)

(B) <op> ::= + (B0)

| - (B1)

| * (B2)

| / (B3)

(C) <var> ::= x (C0)

| <num> (C1)

(D) <num> ::= 1 (D0)

| 2 (D1)

| 3 (D2)

| 4 (D3)

| 5 (D4)

| 6 (D5)

| 7 (D6)

| 8 (D7)

| 9 (D8)

Fitness of each individual is given as follows:

E =
¿ÁÁÀ 1

201

201

∑
i=1

(f(xi) − f (xi))2. (6)

The optimal solution is determined so as to minimize the fitness.

GA and SSE are applied for finding the function satisfying the data set. The parameters for
GE are summarized in Table 5. Simulations are performed for different values of the crossover and
mutation rates. Since the number of elites is 3, the first, second and third best individuals are
kept in the population for the next generation. The mutation changes the value of the randomly
selected gene from 0/1 to 1/0. Maximum generation is the number of iteration. Number of trials
denotes the number of the independent runs. Population size is the number of individuals in the
population. Chromosome length is the length of the individual genotype. The parameters for SSE
are summarized in Table 6. One-point crossover and elite selection are not necessary for SSE.

Table 5. Parameters for GE.

Crossover rate 0.9, 0.8, 0.7, 0.6, 0.5

Mutation rate 0.5, 0.4, 0.3, 0.2, 0.1, 0.075, 0.05, 0.025, 0.01

Number of elites 3

Maximum generation 1000

Number of trials 100

Population size 300

Chromosome length 800

76 E. Kita, H. Sugiura, Y. Zuo, T. Mizuno

Table 6. Parameters for GE-SSE.

Mutation rate 0.5, 0.4, 0.3, 0.2, 0.1, 0.075, 0.05, 0.025, 0.01

Maximum generation 1000

Number of trials 100

Population size 300

Chromosome length 800

4.1.2. Effect of crossover and mutation rates

The effect of the crossover and mutation rates is discussed when GA is used for finding the solu-
tion. The average values of the fitness functions of the best individuals at the final generation are
compared in Fig. 3 for different values of the crossover and mutation rates. The smallest fitness
value is observed when the crossover rate is 0.6 and the mutation rate is 0.075. The effect of the
mutation rate in GE-SSE is summarized in Fig. 4. The figure is plotted with the mutation rate as

Fig. 3. Effect of crossover and mutation rates for GE.

Fig. 4. Effect of mutation rate for GE-SSE.

Application of grammatical evolution to stock price prediction 77

the horizontal axis and the fitness as the vertical axis, respectively. The smallest fitness value is
observed when the mutation rate is 0.3.
For GE, the crossover rate and the mutation rate are specified as 0.6 and 0.075, respectively.

For GE-SSE, the mutation rate is specified as 0.3. The convergence histories of GE and GE-SSE
are compared in Fig. 5. The figure shows that the convergence speed of GE-SSE is higher than that
of GE and thus GE-SSE finds better solution than GE.

Fig. 5. Comparison of convergence histories of GE and GE-SSE.

4.2. Stock price prediction problem

4.2.1. Problem setting

The symbolic regression problem for stock price prediction is considered as the second numerical
example. The prediction regression is generated from the Nikkei stock average data from October 1,
2010 to September 30, 2011. The generated regression is applied for the prediction of the stock
fluctuation from October 3, 2011 to November 30, 2011.
The set of all non-terminal symbols N, the set of all non-terminal symbols T and the initial start

symbol S are given as follows:

N = { <expr>, <var>, <op>,

<stock>, <num>}

T = { +, -, *, /, yt−1, yt−2, yt−3, yt−4,

1, 2, 3, 4, 5, 6, 7, 8, 9}

S = { <expr> }

The production rules from genotype to phenotype are shown in Table 7. The variable yt denotes
the stock price on the day t.
Fitness of each individual is given as follows:

E =
¿ÁÁÀ 1

M

N

∑
t=1

(yt − yt)2. (7)

78 E. Kita, H. Sugiura, Y. Zuo, T. Mizuno

Table 7. Production rules for stock price prediction problem.

(A) <expr> ::= <expr><expr><op> (A0)

| <var> (A1)

(B) <var> ::= <stock> (B0)

| <num> (B1)

(C) <op> ::= + (C0)

| - (C1)

| * (C2)

| / (C3)

(D) <stock> ::= yt−1 (D0)

| yt−2 (D1)

| yt−3 (D2)

| yt−4 (D3)

| yt−5 (D4)

(E) <num> ::= 1 (E0)

| 2 (E1)

| 3 (E2)

| 4 (E3)

| 5 (E4)

| 6 (E5)

| 7 (E6)

| 8 (E7)

| 9 (E8)

The variables yt and yt denote the real stock price on the day t and the price estimated from
the function predicted by GE, respectively. The parameter M is the total number of days in which
Eq. (7) is estimated. The optimal solution is determined so that the fitness is minimized. Parameters
are shown in Table 8.

Table 8. Parameters for GE for symbolic regression problem of stock price prediction.

Maximum generation 1000

Number of trials 100

Population size 300

Individual length 800

Number of elites 3

Mutation rate 0.5, 0.4, 0.3, 0.2, 0.1, 0.075, 0.05, 0.025, 0.01

4.2.2. Results and discussion

Firstly, GE-SSE is applied to the problem. Figure 6 shows the average values of the best individual
fitness at the final generation. The fastest convergence speed is observed when the mutation rate
is 0.1. The prediction function, which the best individual could find, is as follows:

yt = (yt−1 − 5) + (yt−3 − yt−5) + 10
yt−2

+ yt−5 − yt−4
5

. (8)

Application of grammatical evolution to stock price prediction 79

Fig. 6. Effect of mutation rate on average values of the best individuals at the final step in GE-SSE. The
figure is plotted with the mutation rate as the horizontal axis and the average value of the best individuals’

fitness, respectively.

Secondly, GEMC-SSE is applied to the problem. Figure 7 shows the average values of the
best individuals fitness at the final generation. The figure is plotted with the mutation rate as
the horizontal axis and the average value of the best individuals’ fitness, respectively. The fastest
convergence speed is observed when the mutation rate is 0.4. The prediction function, which the
best individual could find, is as follows:

yt = (yt−1 + 4) + 9yt−5(yt−4 − yt−5)
8yt−4 − 9yt−1(yt−4 − yt−5) . (9)

Fig. 7. Effect of mutation rate on average values of the best individuals at the final step in GEMC-SSE. The
figure is plotted with the mutation rate as the horizontal axis and the average value of the best individuals’

fitness, respectively.

The convergence histories of the best results of GE-SSE and GEMC-SSE are compared in Fig. 8.
The generation and the fitness denote the iteration number and the fitness of the best individual
at each generation, respectively. The figure shows that the convergence speed of GEMC-SSE is
slightly higher than that of GE-SSE.

80 E. Kita, H. Sugiura, Y. Zuo, T. Mizuno

Fig. 8. Comparison of convergence histories of the best results of GE-SSE and GEMC-SSE. The figure
is plotted with the generation as the horizontal axis and the fitness as the vertical axis, respectively.

Figure 9 compares the real stock price with the stock prices estimated from Eqs. (8) and (9).
The figure shows that the stock prices estimated from Eqs. (8) and (9) are very similar, although
the equations are different.

Fig. 9. Comparison of real and predicted stock prices. The figure is plotted with the date as the horizontal
axis and the stock price as the vertical axis, respectively. The solid and the broken lines denote the real and

predicted prices, respectively.

5. CONCLUSIONS

The aim of the GE is to find the function or the program which finds the optimal solution for
the design objective such as the function for representing the set of given data, the robot control

Application of grammatical evolution to stock price prediction 81

algorithm and so on. Candidate solutions, which are defined as the bitstrings, are evolved with the
simple genetic algorithm (SGA). In this study, SGA is replaced with SSE in order to improve the
convergence speed of GE. The proposal algorithms are named as “grammatical evolution by using
stochastic schemata exploiter (GE-SSE)” and “grammatical evolution with multiple chromosome
by using stochastic schemata exploiter (GEMC-SSE)”. Firstly, the best values for the crossover and
mutation rates of GE and GEMC were discussed in the symbolic regression problem. The results
show that the convergence speed of GE-SSE is higher than that of the original GE. Next, the
convergence performance of GE-SSE and GEMC-SEE was compared in the stock price prediction
problem. The convergence speed of GEMC-SEE is higher than that of GE-SSE, although their
convergence properties are similar. Therefore, it is concluded that the use of SSE is effective for
enhancing the convergence speed of GE.

REFERENCES

[1] C. Ryan, J.J. Collins, M. O’Neill. Grammatical evolution: Evolving programs for an arbitrary language. In:
Proceedings of the 1st European Workshop on Genetic Programming, pp. 83–95, Springer-Verlag, 1998.

[2] C. Ryan, M. O’Neill. Crossover in grammatical evolution: A smooth operator? In: Proceedings of the European
Conference on Genetic Programming, pp. 149–162, Springer-Verlag, 2000.

[3] M. O’Neill, C. Ryan. Grammatical evolution. IEEE Transactions on Evolutionary Computation, 5(4): 349–358,
2001.

[4] C. Ryan, M. O’Neill. Grammatical Evolution: Evolutionary Automatic Programming in an Arbitrary Language.
Springer-Verlag, 2003.

[5] J.H. Holland. Adaptation in Natural and Artificial Systems. The University of Michigan Press, 1st edition, 1975.
[6] D.E. Goldberg. Genetic Algorithms in Search, Optimization and Machine Learning. Addison-Wesley, 1st edition,
1989.

[7] M.D. Vose. The Simple Genetic Algorithm: Foundations and Theory. The MIT press, 1st edition, 1999.
[8] J.R. Koza [Ed.]. Genetic Programming II. The MIT Press, 1994.
[9] J.R. Koza, F.H. Bennett III, D. Andre, M.A. Keane [Eds.]. Genetic Programming III. Morgan Kaufmann Pub.,
1999.

[10] A. Hara, T. Yamaguchi, T. Ichimura, T. Takahama. Multi-chromosomal grammatical evolution. In: Proceedings
of 4th International Workshop on Computational Intelligence & Applications, Okayama, Japan, 2008.

[11] N.A. Aizawa. Evolving SSE: A stochastic schemata exploiter. In: Proc. of 1st IEEE Conf. Evol. Comp.,
pp. 525–529. IEEE, 1994.

[12] T. Maruyama, E. Kita. Estimation and extension of stochastic schemata exploiter. In: Data Mining VI: Data
Mining, Text Mining and their Business Applications (Proceedings of Data Mining 2005), pp. 45–54, 2005.

[13] T. Maruyama, E. Kita. Evaluation of extended stochastic schemata exploiter. In: Computer Aided Optimum
Design in Engineering X (Proceedings of OPTI2007, USA), pp. 45–54, 2007.

[14] T. Maruyama, E. Kita. Cross-generational elitist selection SSE. In: Proc. of the 7th World Congress of Structural
and Multidisciplinary Optimization, 2007. CD-ROM.

[15] T. Maruyama, E. Kita. Convergence analysis of cross-generational elitist selection SSE. In: Proceedings
of the 2008 International Conference on Parallel and Distributed Processing Techniques and Applications
(PDPTA2008), 2008.

