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Identification of external heat flux and relaxation time
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A cylindrical skin tissue domain subjected to an external heat flux is considered. Thermal processes in
the domain considered are described by the Cattaneo-Vernotte equation supplemented by the appropriate
boundary and initial conditions. The aim of considerations is the identification of external heat flux and
relaxation time on the basis of ‘measured’ heating/cooling curves at the set of selected points located on
the surface of the skin. The direct problem is solved using the implicit scheme of the Finite Difference
Method (FDM), while at the stage of the inverse problem solution, the evolutionary algorithm is applied.
In the final part of the paper the examples of computations are presented.
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finite difference method.

1. INTRODUCTION

Thermal processes occurring in domain of biological tissue can be described in the different ways.
The first model was presented in 1948 by Pennes [1]. The well-known parabolic Pennes equation
contains the volumetric internal heat sources connected with the perfusion and metabolism. The
basic assumption leading to the adopted form of the perfusion heat source is that the tissue domain
is supplied by a large number of capillary blood vessels uniformly distributed in the domain con-
sidered. The metabolic heat source is often treated as a constant value (but different for different
behaviors of an individual).

Recently there has been a view that, taking into account the specific internal structure of a tissue,
the hyperbolic type equations better than parabolic ones reproduce the actual course of the thermal
processes taking place in the domain considered, e.g. [2–5]. In this place the Cattaneo-Vernotte
equation (CVE) [6] and the dual phase lag equation can be mentioned.

The final form of the CVE results from the generalization of the Fourier law consisting in the
introduction of the lag time between heat flux and temperature gradient (see: next section). In
this way the effect of the finite velocity of thermal wave propagation is taken into account. The
relaxation time appearing in CVE in the case of biological tissue is of the order of few to the several
seconds (e.g. [7, 8]). The examples of CVE applications in the scope of bio-heat transfer can be
found (among others) in [9–12].
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The dual phase lag equation (DPLE) contains two lag times called ‘a relaxation time’ and
‘a thermalization time’. This form of the energy equation is also used in the problems related to
bio-heat transfer. Here, for example, the papers [13–15] may be mentioned. The basic problem when
using this type of bio-heat transfer model is the selection of the right values of delay times, because
in the literature the quoted quantities differ greatly among themselves.

At the stage of numerical modeling the Finite Difference Method (FDM) is applied. This method
has been successfully used many times to solve the tasks based on the hyperbolic type equations,
e.g. [16–18]. The authorial program concerning the direct problem solution is based on the three
level implicit scheme of FDM for the objects oriented in the cylindrical co-ordinates. The system
of equations associated with the transition from time t to time t +∆t is solved using the Gaussian
iteration method.

The inverse problem discussed in this paper consists of the two parameters identification, in
particular the boundary condition given in the part of the upper surface of the system (the Neumann
boundary condition) and the relaxation time occurring in the energy equation. The task formulated
in this way is solved using the evolutionary algorithm (EA) – see: [19–23].

2. GOVERNING EQUATIONS

A start point leading to the Cattaneo-Vernotte equation is the generalized form of the Fourier law,
namely

q(X, t + τq) = −λ∇T (X, t), (1)

where q is a heat flux, λ is a thermal conductivity, τq is the relaxation time, X = {r, z} and t denote
the spatial co-ordinates and time. In this way the finite velocity of thermal wave and ‘delay time’
of heat flux with respect to temperature gradient is taken into account.

The well-known energy equation

c
∂T (r, z, t)

∂t
= −∇ ⋅ q(r, z, t), (2)

where c is a volumetric specific heat, it can be transformed to the form of CVE when the first-order
approximation of formula (1) is applied

q(r, z, t) + τq
∂q(r, z, t)

∂t
= −λ∇T (r, z, t) (3)

or

−q(r, z, t) = τq
∂q(r, z, t)

∂t
+ λ∇T (r, z, t). (4)

This expression should be introduced to Eq. (2) and then

c
∂T (r, z, t)

∂t
= τq

∂

∂t
[∇q(r, z, t)] +∇ [λ∇T (r, z, t)] . (5)

Substituting – ∇q by c(∂T /∂t) one obtains

c [∂T (r, z, t)
∂t

+ τq
∂2T (r, z, t)

∂t2
] = ∇ [λ∇T (r, z, t)] . (6)

As mentioned previously, in the case of bio-heat problems the Cattaneo-Vernotte equation contains
the components connected with the perfusion and metabolism. In the presence of internal heat
sources Q(r, z, t) within the tissue domain Eq. (6) takes a form

c [∂T (r, z, t)
∂t

+ τq
∂2T (r, z, t)

∂t2
] = ∇ [λ∇T (r, z, t)] +Q(r, z, t) + τq

∂Q(r, z, t)
∂t

. (7)
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Considering the axially-symmetrical task and assuming the constant value of thermal conductivity
one has

c [∂T (r, z, t)
∂t

+ τq
∂2T (r, z, t)

∂t2
] = λ

r

∂

∂r
[r∂T (r, z, t)

∂r
]

+ λ∂
2T (r, z, t)
∂z2

+Q(r, z, t) + τq
∂Q(r, z, t)

∂t
. (8)

The internal heat source according to the Pennes theory [1] is a sum of two components

Q(r, z, t) = GBcB [TB − T (r, z, t)] +Qmet, (9)

where GB [m3 blood/m3 tissue/s] is a perfusion coefficient, cB is a volumetric specific heat of blood,
TB is an arterial blood temperature, Qmet is a metabolic heat source (treated here as a constant
value). Equation (8) can be rewritten in the form

(1 + τqGBcB
c

) ∂T (r, z, t)
∂t

+ τq
∂2T (r, z, t)

∂t2
= a
r

∂T (r, z, t)
∂r

+ a∂
2T (r, z, t)
∂r2

a
∂2T (r, z, t)

∂z2
+ GBcB

c
[TB − T (r, z, t)] + Qmet

c
, (10)

where a = λ/c is a thermal diffusivity. Equation (10) must be supplemented by the boundary and
initial conditions. Thus, on the bottom of the cylinder (z = Z) the body core temperature Tb is
given (the Dirichlet condition). On the top of the cylinder (z = 0) the boundary condition for time
less than the exposure one (texp) is non-homogeneous. For the area of external heat source action
(r ≤ R0 where R0 is a radius of flux action) the boundary heat flux is equal to qb. On the other part
of a top surface the no-flux condition is assumed. The same condition is given on the lateral surface
(r = R), and for r ≤ R0 when t > texp . It should be pointed out, that for the Cattaneo-Vernotte
equation the form of the Neumann condition is the following

qb (r, z, t) + τq
∂qb (r, z, t)

∂t
= −λn ⋅ ∇T (r, z, t) , (11)

where n ⋅ ∇T (r, z, t) denotes a normal derivative. The initial conditions are also given

t = 0 ∶ T (r, z,0) = Tp,
∂T (r, z, t)

∂t
∣
t=0

= u(r, z), (12)

where Tp is an initial temperature, while u(r, z) is a known function.

3. NUMERICAL ALGORITHM

Let us introduce the time grid

0 = t0 < t1 < ... < tf−2 < tf−1 < tf < ... < tF <∞ (13)

and the regular differential mesh with step h in which the five-points stars Pi,j (central node) and
Pi+1,j , Pi−1,j , Pi,j+1, Pi,j−1 (neighboring nodes). In Fig. 1 the geometrical model of the problem
considered and five-point star is presented. To simplify the mathematical notation the local numer-
ation of the nodes is introduced, in particular 0 (central node) and 1, 2, 3, 4 (neighboring nodes).
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Fig. 1. The geometrical model and five-points star.

The FDM approximation of Eq. (10) for f ≥ 1 is taken in the form

[c + τqGBcB
c

] T f0 − T
f−1
0

∆t
+ τq

T f0 − 2T f−10 + T f−10

∆t2

= a

r0

T f+10 − T f−10

2h
+ aT

f
1 + T

f
2 + T

f
3 + T

f
4 − 4T f0

h2
+ GBcB

c
TB −

GBcB
c

T f0 +
Qmet

c
(14)

or

A0 T
f
0 −A1 T

f
1 −A2 T

f
2 −A3 T

f
3 −A4 T

f
4 = B1 T

f−1
0 −B2 T

f−2
0 + GBcB

c
TB +

Qmet

c
, (15)

where

c + τqGBcB
c

= A,

A0 =
A

∆t
+ GBcB

c∆t
+ τq

∆t2
+ 4a

h2
,

A1 =
a

h
(1

h
+ 1

2r0
),

A2 =
a

h
(1

h
− 1

2r0
),

A3 = A4 =
a

h2
,

B1 =
A

∆t
+ 2τq

∆t2
,

B2 =
τq

∆t2
.

(16)
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In the case of the constant boundary heat flux or no-flux condition the FDM equation corresponding
to formula (11) is very simple. For example, on the lateral surface r = R one has

−λT
f
0 − T

f
1

h
= 0 ⇒ T f0 − T

f
1 = 0, (17)

etc. Assuming that for t = 0 ∶ T (r, z,0) = Tp, u(r, z,0) = 0 one can determine the nodal temperatures
for times t0 and t1, namely T 0

0 = T 1
0 = Tp.

4. INVERSE PROBLEM

The aim of investigations is to determine the relaxation time τq and the external heat flux qb. The
functional (fitness function) S is defined as follows

S (τq, qb) =
F

∑
f=1

K

∑
k=1

(T fk − T
f
dk)

2
Ð→MIN, (18)

where T fk are the temperatures at the control points (sensors), resulting from the numerical solution
of the direct problem for assumed values of τq and qb, in turn T fdk are the ‘postulated’ or ‘measured’
temperatures, K is the number of sensors (here K = 2), F is a number of time steps. The position
of the sensors is marked in Fig. 1. The minimum of functional (18) is found using the evolutionary
algorithm. It is an algorithm belonging to the group of artificial intelligence methods, which does
not require the analysis of the impact of design variables on the identification criterion, and allows
one to obtain an optimal solution with a low risk of error. In Fig. 2 the flow chart of evolutionary
algorithm is presented.

Fig. 2. Flow chart of evolutionary algorithm.

The evolutionary algorithm operates on the chromosomes population. Each chromosome contains
the genes. Chromosome whose genes contain information about the identified parameters is defined
in the following way

p = [ τq qb ]T , (19)
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where τq and qb are the genes containing information about the relaxation time and external heat
flux, respectively. The genes representing the possible solutions (parameters value) are obtained
during operation of the EA, within the constraints

τLq ≤ τq ≤ τHq ,

qLb ≤ qb ≤ qHb ,
(20)

where L and H denote the minimum and maximum values of the limitations imposed on the
identified parameters, respectively. To solve the inverse problem, using the evolutionary algorithm,
house-in software was applied. In Table 1, the parameters of evolutionary algorithm used in com-
putations are collected.

Table 1. Evolutionary algorithm parameters.

Number
of generations

Number
of chromosomes

Probability
of uniform
mutation

Probability
of nonuniform

mutation

Probability
of arithmetic

crossover

Probability
of cloning

100 50 20% 30% 50% 100%

5. RESULTS OF COMPUTATIONS

The cylindrical domain of dimensions R = 0.03 m, Z = 0.03 m is considered. The radius of the
surface on which the external heat source operates is equal to R0 = R/4 (Fig. 1). Thermophysical
parameters of the biological tissue are the following [4]: thermal conductivity λ = 0.5 W/(mK),
volumetric specific heat of tissue c = 3 MW/(m3K), blood perfusion rate GB = 0.002 1/s, volumetric
specific heat of blood cB = 3.9962 MW/(m3K), blood temperature TB = 37○C, metabolic heat source
Qm = 245 W/m3. The different values of relaxation time and external heat flux have been considered,
the solution presented in Fig. 3 corresponds to the case 1 (see Table 2). Thus, in order to verify the
correctness of an evolutionary algorithm, the identification task was solved repeatedly. The results
of inverse problem solutions are collected in Table 2. It was assumed that the constraints for the
identified parameters, for all cases, belong to the intervals

1 ≤ τq ≤ 5 s

− 10000 ≤ qb ≤ −1000 W/m2.
(21)

Table 2. Result of computations using the EA.

Case Design variable Found value Error
[%]

Fitness function value
(Eq. (18))

1 τq [s]
qb[W/m2]

2.0818
−5004.37

4.09
0.0884

0.07895255

2 τq [s]
qb[W/m2]

2.1308
−5005.27

6.54
0.1054

0.08013317

3 τq [s]
qb[W/m2]

2.1241
−5012.23

6.21
0.2446

0.08522016

4 τq [s]
qb[W/m2]

2.1201
−4998.94

6.01
0.0212

0.08243718

5 τq [s]
qb[W/m2]

2.1018
−5005.39

5.09
0.1078

0.07896257
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In Fig. 3 an example of the direct problem solution is shown, this means the temperature history
in control points indicated in Fig. 1.

Fig. 3. The temperature history (heating/cooling curves) at the control points.

Figures 4–7 present the identification process using the evolutionary algorithm after 1st, 10th,
50th and 100th generations, respectively, for case 1 (cf. Table 2). The ’◯’ symbol shows the location

Fig. 4. The location of potential solutions after 1st generation.

Fig. 5. The location of potential solutions after 10th generations.
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Fig. 6. The location of potential solutions after 50th generations.

Fig. 7. The location of potential solutions after 100th generations.

of potential solutions (chromosomes) in the space of acceptable solutions (based on constraints (21)).
In turn, the optimal solution for the identified parameters is indicated by the ’×’ symbol, i.e. τq = 2 s,
qb = −5000 W/m2. Figure 8 shows the course of the fitness function for the best chromosome at
each generation, obtained for the case 1 (cf. Table 2).

Fig. 8. Fitness function value for identification problem (case 1, Table 2).
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6. FINAL REMARKS

The application of evolutionary algorithms for the solutions of identification problems is (from the
numerical point of view) essentially time-consuming. The computations have been performed using
the computer with a processor Intel R○ CoreTM i7 CPU 950 @3.07 GHz with 12 GB RAM. The time
necessary to carry out one identification process was equal several hours. The reduction of the
identification time can be obtained by the computations parallelizing. Summing up, the solution of
the inverse problem discussed in this paper is quite satisfactory. On the other hand, however, the
mathematical and numerical problems connected with the adequate algorithm construction seem
to be essentially simpler in comparison with the very popular gradient methods. The exactness of
parameters τq and qb estimation is quite satisfying.

The solutions of the direct problems have been found using the three-level implicit scheme of
the FDM. The system of equations corresponding to the transition from time t to time t +∆t has
been solved iteratively (the Gauss iteration method). The additional testing calculations confirmed
that the assumed spatial-time mesh is dense enough.
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