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In this paper, an axially symmetrical biological tissue domain subjected to an external heat source is
analyzed. The thermal processes occurring in the domain considered are described using the generalized
dual-phase lag model supplemented by the Neumann boundary conditions and the appropriate initial
conditions. The problem of tissue heating is solved using the implicit scheme of the finite difference
method. The obtained solution allows one to determine the local and temporary values of the Arrhenius
integral. Next, the inverse problem related to the identification of the boundary heat flux assuring the
postulated destruction of the tissue target region is considered. The problem is solved using the gradient
method. In the final part of the paper, the results of computations and the conclusions are presented.
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1. INTRODUCTION

One of the important issues related to the impact of high temperatures on biological tissue is the
estimation of its destruction. From the mathematical point of view, to achieve this goal, the Arrhe-
nius integral [1–3] can be used. To calculate the Arrhenius integral, the temperature distribution in
the domain of biological tissue should be known. Numerous models describing the bioheat transfer
can be found in literature, e.g., Pennes equation [4–9], Cattaneo-Vernotte equation [10–12], dual-
phase lag model [13–18] or generalized dual-phase lag model [19–22]. In this paper, the generalized
dual-phase lag model is used. This model is based on the theory of porous media [23], and then the
biological tissue is divided into two regions: the vascular region (blood vessel) and the extravascular
region (tissue) [24, 25]. The mathematical model consists of two coupled equations describing the
tissue and blood temperature, respectively. In the generalized dual-phase lag equation (GDPLE)
concerning the tissue sub-domain, the phase lag times appear, namely the relaxation time and
thermalization time. The phase lag times are expressed in terms of the blood and tissue properties,
the interphase convective heat transfer coefficient and the blood perfusion rate. The equations are
supplemented by appropriate boundary and initial conditions. Formulated in this way problem can
be solved using the numerical method. The implicit scheme of finite difference method is applied
here. Knowing the spatial-temporal distribution of the tissue temperature, the Arrhenius integral
can be calculated.

In the inverse problem considered here, based on the knowledge of the Arrhenius integral at
the set of measuring points of the domain, the parameters of the Neumann boundary condition
are identified. To determine these parameters, the gradient method [26–28] is used. Sensitivity
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coefficients occurring in the gradient method are calculated using the direct approach of sensitivity
analysis [29–31].

It should be noted that a similar problem is presented in [32], but here the two-temperature
generalized dual-phase lag model is used, which better reflects thermal processes occurring in heated
tissues.

The proposed procedure can be helpful in planning artificial hyperthermia treatment because it
allows to predict the amount of necessary heat delivered to the tissue that ensures the destruction
of the target region.

2. DIRECT PROBLEM

An axially symmetrical domain of biological tissue exposed to an external heat source is considered.
Thermal processes can be described by the generalized dual-phase lag model [21, 22, 25]:

(r, z) ∈ Ω ∶ C (
∂T

∂t
+ τq

∂2T

∂t2
) = Λ [∇

2T + τT
∂

∂t
(∇

2T)]

+ G(Tb − T ) + εQb + (1 − ε)Q +
τqC

(1 − ε)ρc
[ε
∂Qb
∂t

+ (1 − ε)
∂Q

∂t
] (1)

and

Tb = T −
ε ρbcb
G

∂Tb
∂t

, (2)

where T = T (r, z, t), Tb = Tb(r, z, t) are the tissue and blood temperatures, respectively, r, z are the
spatial coordinates, t is the time, ε denotes the porosity (the ratio of blood volume to the total
volume), ρ, ρb are the densities of tissue and blood, respectively, c, cb are the specific heats, Q, Qb
are the metabolic heat sources, while

Λ = (1 − ε)λ + ελb (3)

and

C = (1 − ε)ρc + ερbcb (4)

are the effective thermal conductivity (λ, λb are the thermal conductivities of tissue and blood)
and effective heat capacity, respectively.

The coupling factor G is expressed as [19, 21]

G = Aα +w cb, (5)

where A is the volumetric heat transfer area between tissue and blood, α is the heat transfer
coefficient, and w is the blood perfusion rate.

In Eq. (1) τq is the relaxation time and τT is the thermalization time. These phase lags are
defined as follows [19, 21]:

τq =
ε (1 − ε)ρcρbcb

GC
(6)

and

τT =
ε (1 − ε)ρbcbλ

GΛ
. (7)
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In the dual-phase lag model, the Neumann condition takes a form [17, 18]

(r, z) ∈ Γ ∶ −λ [n ⋅ ∇T (r, z, t) + τT
∂ [n ⋅ ∇T (r, z, , t)]

∂t
] = qb (r, z, t) + τq

∂qb (r, z, t)

∂t
, (8)

where n is the normal outward vector, n ⋅∇T (r, z, t) is the derivative of temperature in the normal
direction, while qb(r, z, t) is known boundary heat flux.

On the upper surface of the domain, the following boundary heat flux is assumed:

qb(r,0, t) =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

q0
t

te
(1 −

t

te
) exp(−

r2

r2D
) , t ≤ te,

0, t > 0,

(9)

where q0 is the constant value and te is the exposure time, while rD ≤ R where R is the radius of the
cylinder. On the remaining boundaries, the no-heat flux conditions can be accepted (qb(r, z, t) = 0).
The initial conditions are also known:

t = 0 ∶ T (r, z,0) = T0,
∂T (r, z, t)

∂t
∣
t=0

= u(r, z), Tb (r, z,0) = T0, (10)

where T0 is the constant initial temperature and u(r, z) is the initial heating rate.
The thermal damage parameter can be evaluated according to the Arrhenius integral [1–3, 33]:

A (r, z, tf) = P

tf

∫

0

exp(−
E

RgT (r, z, t)
)dt, (11)

where P is the pre-exponential factor, E is the activation energy, Rg is the universal gas constant,
T (r, z, t) is the tissue temperature, and [0, tf ] is the time interval under consideration.

A value of damage integral A(r, z, tf) = 1 corresponds to a 63% probability of cell death at
a specific point, while A(r, z, tf) = 4.6 corresponds to 99% probability of cell death at this point.

3. SENSITIVITY ANALYSIS

The purpose of the research is to estimate the boundary heat flux (9), more specifically, the values
q0 and te, which ensure the destruction of the target region of biological tissue. Thus, at first, the
sensitivity analysis [28–31] of tissue temperature and blood temperature with respect to q0 and te
will be carried out.

The governing equations are differentiated with respect to the parameter ps, s = 1,2, where
p1 = q0, p2 = te. The differentiation of Eqs (1) and (2) gives

(r, z) ∈ Ω ∶ C (
∂Us
∂t

+ τq
∂2Us
∂t2

) = Λ [∇
2Us + τT

∂

∂t
(∇

2Us)] −GUs, (12)

and

Ubs = Us −
ερbcb
G

∂Ubs
∂t

, (13)

where Us = ∂T /∂ps, Ubs = ∂Tb/∂ps are sensitivity functions, s = 1,2. It should be noted that in
Eq. (1) the constant values of Q and Qb are assumed.

Differentiation of boundary condition (8) gives

−λ{n ⋅ ∇Us(r, z, t) + τT
∂

∂t
[n ⋅Us(r, z, t)]} =

∂qb (r, z, t)

∂ps
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∂
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[
∂qb (r, z, t)
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] , (14)
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where (p1 = q0)
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⎨
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and (p2 = te)
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∂te
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⎨
⎪⎪⎪⎪⎩

q0
t

t2e
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te
− 1) exp(−
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The initial conditions (10) are also differentiated

t = 0 ∶ Us (r, z,0) = 0,
∂Us (r, z, t)

∂t
∣
t=0

= 0, Ubs (r, z,0) = 0. (17)

Finally, the Arrhenius integral (11) is differentiated with respect to the parameter ps

Rs(r, z, t
f
) = P

tf

∫

0

E

RgT 2(r, z, t)
exp(−

E

RgT (r, z, t)
)Us(r, z, t)dt. (18)

To solve the direct problem and additional problems related to the sensitivity analysis, the implicit
scheme of the finite difference method is used.

4. FINITE DIFFERENCE METHOD

A structure of Eqs (1) and (12) is similar, they can be therefore written in the form:

C (
∂Zs
∂t

+ τq
∂2Zs
∂t2

) = Λ [∇
2Zs + τT

∂

∂t
(∇

2Zs)] −GZs +GTb + εQb + (1 − ε)Q, (19)

where Z0(r, z, t) = T (r, z, t), Zs(r, z, t) = Us(r, z, t), s = 1,2 and

Ws = {
GTb + εQb + (1 − ε)Q, s = 0,

0, s = 1,2.
(20)

Equations (2) and (13) can be expressed as follows:

Zbs = Zs −
ερbcb
G

∂Zbs
∂t

, (21)

where Zb0(r, z, t) = Tb(r, z, t), Zbs(r, z, t) = Ubs(r, z, t), s = 1,2.
The boundary conditions (8) and (14) take a form

(r, z) ∈ Γ ∶ −Λ{n ⋅ ∇Zs(r, z, t) + τT
∂

∂t
[n ⋅Zs(r, z, t)]} = Vs(r, z, t), (22)

where
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⎧⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎩

qb (r, z, t) + τq
∂qb (r, z, t)

∂t
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∂qb (r, z, t)

∂ps
+ τq

∂
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[
∂qb (r, z, t)
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] , s = 1,2.

(23)

Equations (19)–(23) are supplemented by the initial conditions (10) and (17).
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The basic problem and additional ones connected with the sensitivity functions are solved using
the implicit scheme of finite difference method.

The following approximation of Eq. (19) is proposed:

C
⎛

⎝

Zfi,j −Z
f−1
i,j

∆t
+ τq
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(25)

while ∆t is the time step, h is the grid step. In the above equations, index s is omitted for simpli-
fication.

After mathematical manipulations we obtain

Zfi,j =
Λ∆t (∆t + τT )

D
(Zfi−1,j +Z

f
i+1,j +
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D
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D
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where

D = h2 [C (∆t + τq) +G (∆t)2] + 4Λ∆t (∆t + τT ) . (27)

The approximation of the boundary conditions (22) is as follows:

−Λ{n ⋅ ∇Zs(r, z, t
f
) +

τT
∆t

[n ⋅Zs(r, z, t
f
) − n ⋅Zs(r, z, t
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f
). (28)

Thus, we obtain the formulas:

● for j = 1,2, ..., n − 1

Zf0,j = Z
f
1,j −

τT
∆t + τT

(Zf−10,j −Zf−11,j ) +
h∆t

Λ (∆t + τT )
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f
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∆t + τT

(Zf−1n,j −Zf−1n−1,j) −
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● for i = 1,2, ..., n − 1
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f
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f
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Finally, Eq. (21) is approximated:

Zfbi,j = Z
f
i,j −

ερbcb
G

Zfbi,j −Z
f−1
bi,j

∆t
, (33)

and then

Zfbi,j =
G∆t

G∆t + ερbcb
Zfi,j +

ερbcb
G∆t + ερbcb

Zf−1bi,j . (34)

The system of Eqs (26) and (34) supplemented by boundary conditions (29)–(32) and initial con-
ditions (10) and (17) is solved using the iterative method.

5. INVERSE PROBLEM

As mentioned earlier, the inverse problem formulated here concerns the estimation of the parameters
q0 and te occurring in the boundary heat flux (9). Thus, the following criterion is formulated:

S(q0, te) =
F

∑
f=1

M

∑
i=1

[A(ri, zi, t
f , q0, te) −Am(ri, zi, t

f
)]

2
, (35)

where Am(ri, zi, t
f) is the ‘measured’ Arrhenius integral. A(ri, zi, t

f , q0, te) is the calculated Arrhe-
nius integral obtained from the direct problem solution with the current estimation of the unknown
parameters q0 and te, while M is the number of points and F is the number of time steps.

In the case of typical gradient method application [26–28] the criterion (35) is differentiated
with respect to the unknown parameters q0, te, and next, the necessary condition of the optimum
is used. Thus, one obtains the following system of equations (c.f. formula (18))

∂S(q0, te)

∂q0
= 2

F

∑
f=1

M

∑
i=1

(Afi −A
f
m,i)R

f
1,i = 0,

∂S(q0, te)

∂te
= 2

F

∑
f=1

M

∑
i=1

(Afi −A
f
m,i)R

f
2,i = 0,

(36)

where Afi = A (ri, zi, t
f , q0, te), Afm,i = A (ri, zi, t

f).

The function Afi is expanded into a Taylor series for the known values of qk0 and tke , this means

Afi = (Afi )
k
+ (Rf1,i)

k
(qk+10 − qk0) + (Rf2,i)

k
(tk+1e − tke) , (37)

where k is the number of iteration, qk0 and tke for k = 0 are the arbitrary assumed values of q0 and
te, while for k > 0 qk0 and tke result from the previous iteration.

Introducing formula (37) to Eq. (36) one obtains

F

∑
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M

∑
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[(Afi )
k
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f
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f
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k
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F

∑
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M

∑
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[(Afi )
k
+ (Rf1,i)

k
(qk+10 − qk0) + (Rf2,i)

k
(tk+1e − tke) −A

f
m,i] (R

f
2,i)

k
= 0,

(38)
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it means

(qk+10 − qk0)
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M
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∑
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k
=
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∑
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∑
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∑
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or in the matrix form

⎡
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⎢
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⎢
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⎢
⎢
⎣
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∑
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⎥
⎥
⎥
⎥
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. (40)

After solving the system of Eqs (40), the new values of identified parameters are determined using
the formulas:

qk+10 = qk0 +∆qk0 ,

tk+1e = tke +∆tke .
(41)

The iterative process is continued until the assumed number K of iterations is achieved.

6. RESULTS OF COMPUTATIONS

An axially symmetrical domain of biological tissue is considered (R = Z = 0.015 m). The values of the
parameters are collected in Table 1. It is assumed that in the Arrhenius integral (11) the activation
energy is equal to E = 6.67 ⋅ 105 J/mole, pre-exponential factor is equal to P = 1.98 ⋅ 10106 1/s, and
the universal gas constant: Rg = 8.314472 J/(mol K) [34, 35]. Three variants of porosity, as shown
in Table 2, are considered.

Table 1. Values of parameters [23, 38].

Parameter Tissue Blood

Thermal conductivity [W/(m K)] λt = 0.5 λb = 0.5

Specific heat [J/(kg K)] ct = 4000 cb = 3770

Density [kg/m3] ρt = 1000 ρb = 1060

Metabolic heat source [W/m3] Qmt = 250 Qmb = 250

Initial temperature [○C] Tp = 37 Tp = 37

Table 2. Variants of porosity [19, 22].

Variant ε G [W/(m3K)] τq [s] τT [s] w [kg/(m3s)]

v1 0.0041 34 785.174 0.46772 0.46771 1

v2 0.0357 79 102.601 1.74116 1.74110 3

v3 0.1637 96 479.910 5.67173 5.67085 5

At first, the direct problem is solved under the assumption that q0 = 15 000 W/m2, te = 200 s,
(c.f. Eq. (9)) and rD = R/4. The spatial grid step is h = 0.0003 m and the time step ∆t = 0.1 s.

In Fig. 1, the tissue temperature distribution after 120 s is shown, while Fig. 2 illustrates the
tissue temperature history at two selected points from the considered domain. As it is visible,



28 L. Turchan, E. Majchrzak

the higher the porosity value, the lower the tissue temperature, although the differences are not
big. It should be noted that in the two-temperature models, the blood temperature is lower than
the temperature of the tissue (Fig. 3); therefore, a larger sub-domain of blood vessels corresponding
to a higher value of porosity gives a lower tissue temperature [36, 37].

Fig. 1. Tissue temperature distribution after 120 s for different variants of porosity.

Fig. 2. Tissue temperature history at the points P1 (0.3; 0.3) [mm] and P2 (1.5; 1.5) [mm]
for different variants of porosity.

Fig. 3. Distribution of tissue and blood temperatures after 100 s for the third variant of porosity (v3).

In Figs 4 and 5, the distributions of sensitivity functions U1 = ∂T /∂q0 [K m2/W] and U2 =

∂T /∂te [K/s] are shown, while Figs 6 and 7 illustrate the courses of these functions at the two
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selected points from the domain considered. Figure 4 presents the results after 120 seconds, which
correspond to the maximum values of the sensitivity function U1, as can be seen in Fig. 6. Figure 5
presents the results after 200 seconds, which correspond to the maximum values of the sensitivity
function U2, as can be seen in Fig. 7. The sensitivity functions have lower values for larger porosities.

Fig. 4. Distribution of sensitivity function U1 = ∂T /∂q0 [K m2/W] after 120 s
for different variants of porosity.

Fig. 5. Distribution of sensitivity function U2 = ∂T /∂te [K/s] after 200 s for different variants of porosity.

Fig. 6. Courses of sensitivity function U1 = ∂T /∂q0 at the points P1 (0.3; 0.3) [mm] and P2 (1.5; 1.5) [mm]
for different variants of porosity.
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Fig. 7. Courses of sensitivity function U2 = ∂T /∂te at the points P1 (0.3; 0.3) [mm] and P2 (1.5; 1.5) [mm]
for different variants of porosity.

Figure 8 presents the distribution of Arrhenius integral after 400 seconds. The sub-domain of
biological tissue in which the Arrhenius integral exceeds the value of 4.6 is destroyed. For a larger
value of porosity, this sub-domain is slightly smaller.

Fig. 8. Distribution of Arrhenius integral after 400 s for different variants of porosity
(part of the cross-section).

Next, the inverse problem is solved. As mentioned earlier, based on the knowledge of the Ar-
rhenius integral, the parameters q0 and te in the Neumann boundary condition (9) are identified.
It is assumed that the values of Arrhenius integral at fifty points uniformly distributed in the sub-
domain 0 ≤ r ≤ 2.7 mm and 0 ≤ z ≤ 2.7 mm are known. These values are obtained from the direct
problem solution. Below, the results for starting points q0 = 30 kW/m2, te = 40 s (variant sp1),
q0 = 12 kW/m2, te = 400 s (variant sp2) and q0 = 37.5 kW/m2, te = 500 s (variant sp3) are pre-
sented. For these values, the iteration process is convergent. Thus, in Figs 9 and 10, the values of
parameters q0 and te in subsequent iterations for the first variant of porosity are shown. As it can
be seen, the number of iterations at which the real values are achieved depends on the starting
point.

Figures 11–14 present the iteration process for different values of porosity and different starting
points. For all variants, the iterative process is still convergent.

Fig. 9. Iteration process for the first variant of porosity and different starting points – parameter q0.
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Fig. 10. Iteration process for the first variant of porosity and different starting points – parameter te.

Fig. 11. Iteration process for starting point sp1 and all variants of porosity – parameter q0.

Fig. 12. Iteration process for starting point sp1 and all variants of porosity – parameter te.

Fig. 13. Iteration process for starting point sp2 and all variants of porosity – parameter q0.



32 L. Turchan, E. Majchrzak

Fig. 14. Iteration process for starting point sp2 and all variants of porosity – parameter te.

7. CONCLUSIONS

Thermal processes occurring in the axially symmetrical domain of heated tissue have been consid-
ered. This study aimed to estimate the boundary heat flux assuring the postulated destruction of
the tissue target region. The direct problem has been described by the generalized dual-phase lag
equation supplemented by appropriate boundary-initial conditions and has been solved using the
implicit finite difference method. The inverse problem consisting in the identification of two pa-
rameters appearing in the Neumann boundary condition has been solved by means of the gradient
method.

It should be noted that the iteration process was not always convergent. This paper presents
the results only for those starting points, for which the iterative process was convergent. In future
studies, it will be better to use a hybrid algorithm, which is a combination of an evolutionary
algorithm and the gradient algorithm [38–43]. In the first stage, by using the evolutionary algorithm,
it is possible to determine the starting point, and in the second stage, by using the gradient
algorithm, determine the values of the identified parameters.
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